
4.4 Basis for subspaces of column vectors.

0. Assumed background.

• Whatever has been covered in Topics 1-3, especially:—
∗ 1.5 Linear combinations.
∗ 1.6 Linear dependence and linear independence.
∗ 3.3 Various necessary and sufficient conditions for invertibility.

• 4.1 Sets of matrices and sets of vectors.
• 4.2 Set equality (for sets of matrices and sets of vectors).
• 4.3 Subspaces of column vectors.

Abstract. We introduce:—

• the notions of basis for an arbitrary subspace of Rn,
• a re-formulation for the notion of invertibility of square matrices in terms of basis,
• the ‘Change-of-basis’ Theorem for arbitrary subspaces of Rn.

In the appendix, we provide the proof of the ‘Change-of-basis’ Theorem.

1. Definition. (Basis for a subspace of Rn over the reals.)
Let V be a subspace of Rn over the reals.

(1) (Suppose V is the zero subspace of Rn over the reals.)
We declare that the empty set is the basis for (or of) {0n} over the reals.

(2) Suppose V is not the zero subspace of Rn over the reals.
Suppose u1,u2, · · · ,up ∈ V.
Then we say that u1,u2, · · · ,up constitute a basis for (or of) V over the reals if and only if both of the
statements (BL), (BS) below hold:—

(BL) u1,u2, · · · ,up are linearly independent over the reals.
(BS) Every column vector belonging to V is a linear combination of u1,u2, · · · ,up over the reals.

2. Comments on the use of set language in the definition above.
In the context of this definition, it happens that the statement (BS) is equivalent to the statement (BS’) that
reads:—

(BS’) V = Span ({u1,u2, · · · ,up}).

For this reason, some people may choose to replace the condition (BS) by the condition (BS’) in the entire statement
of the definition for the notion of basis.
This is an approach usually taken in a more advanced course in linear algebra, in which set language is used more
extensively.
The purpose and the advantage in such an approach are to allow linear algebra to be done on more general mathemat-
ical objects (not just matrices and vectors), in which a key concept to be introduced very soon, namely dimension,
needs not to be restricted to be ‘finite numbers’.
(There is also the very small purpose of taking care of the zero subspace in a more natural way.)
In this course, we choose not to use set language unless we must. (And there are not many situations we will have
to take care of the zero subspace.)

3. The conditions (BL), (BS) in the statement of the definition for the notion of basis can be condensed into one
condition, of the form of an existence-and-uniqueness statement. This is made precise in the result below.
Theorem (1). (Re-formulation for the notion of basis.)
Let V be a subspace of Rn over the reals.
Suppose u1,u2, · · · ,up ∈ V.
Then the statements below are logically equivalent:—

(1) u1,u2, · · · ,up constitute a basis for V over the reals.
(2) For any x ∈ V, there exist some unique α1, α2, · · · , αp ∈ R such that x = α1u1 + α2u2 + · · ·+ αpup.
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Proof of Theorem (1). Exercise. (This is a tedious word game in definitions and logic.)

4. Theorem (2). (Standard base for Rn.)

Fix any positive integer n. Suppose e
(n)
k = En,1

k,1 for each k = 1, 2, · · · , n.

(So e
(n)
k is the column vector with n real entries whose k-th entry is 1 and whose every other entry is 0. .)

Then the n column vectors e
(n)
1 , e

(n)
2 , · · · , e(n)n constitute a basis for Rn.

Remark on terminology. e
(n)
1 , e

(n)
2 , · · · , e(n)n are collectively called the standard base for Rn (over the

reals).

5. Proof of Theorem (2).

Fix any positive integer n. Suppose e
(n)
k = En,1

k,1 for each k = 1, 2, · · · , n.

(a) We verify that e
(n)
1 , e

(n)
2 , · · · , e(n)n are linearly independent over the reals:—

• Pick any α1, α2, · · · , αn ∈ R.
Suppose α1e

(n)
1 + α2e

(n)
2 + · · ·+ αne

(n)
n = 0n.

We have


α1
α2
...
αn

 = α1e
(n)
1 + α2e

(n)
2 + · · ·+ αne

(n)
n = 0n. Then α1 = α2 = · · · = αn = 0.

(b) We verify that every column vector belonging to Rn is a linear combination of e(n)1 , e
(n)
2 , · · · , e(n)n over the reals:

• Pick any x ∈ Rn.
For each j = 1, 2, · · · , n, denote the j-th entry of x by xj .

Then x =


x1
x2
...
xn

 = x1e
(n)
1 + x2e

(n)
2 + · · ·+ xne

(n)
n .

6. Bases of Rn over the reals.
For the moment we focus on Rn as a subspace of Rn itself, and think of the bases of Rn over the reals. (More general
subspaces of Rn are considered later.)
We make some observations with the various re-formulations of the notion of invertibility.
Given any n column vectors, say, u1,u2, · · · ,un with n real entries, the statements (I), (II), (III) below are logically
equivalent:—

(I) The square matrix [ u1 u2 · · · un ] is invertible.
(II) u1,u2, · · · ,un are linearly independent over the reals.

(III) Every column vector with n real entries is a linear combination of u1,u2, · · · ,un are linearly independent over
the reals.

Because of the logical equivalence between the statement (II) and the statement (III), when either of them holds,
the other will also hold. Then, as a consequence the statement (IV) will hold as well:—

(IV) u1,u2, · · · ,un constitutes a basis for Rn over the reals.

When the statement (IV) holds, the statements (II), (III) will certainly hold by the definition of the notion of basis.

7. The above consideration suggests the result below, which may be regarded as an ‘extension’ of the ‘dictionary’ on
the various re-formulations for the notion of invertibility.
Theorem (3). (Re-formulations for the notion of invertibility, incorporating the point of view of
basis.)
Suppose A is an (n× n)-square matrix with real entries. Then:—

(a) The statements (1)-(6) are logically equivalent:—
(1) A is invertible.
(2) The homogeneous system LS(A, 0n) has no non-trivial solution.
(3) For any b ∈ Rn, the system LS(A, b) is consistent.
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(4) The columns of A are linearly independent over the reals.
(5) Every column vector with n real entries is a linear combination of the columns of A over the real.
(6) The columns of A constitute a basis for Rn over the reals.

(b) The statements (1∗)-(6∗) are logically equivalent to each other, and also are also logically equivalent to each of
the statements (1)-(6):—

(1∗) At is invertible.
(2∗) The homogeneous system LS(At, 0n) has no non-trivial solution.
(3∗) For any b ∈ Rn, the system LS(At, b) is consistent.
(4∗) The rows of A are linearly independent over the reals.
(5∗) Every row vector with n real entries is a linear combination of the rows of A over the reals.
(6∗) The columns of At constitute a basis for Rn over the reals.

(Or equivalently: the respective transposes of the rows of A constitute a basis for Rn over the reals.)
(c) Now further suppose any one of the statements (1)-(6), (1∗)-(6∗) holds. (So all hold.)

For each j = 1, 2, · · · , n, denote the j-th column of A by aj .
Suppose x ∈ Rn. For each k = 1, 2, · · · , n, denote the k-th entry of A−1x by αk(x).
Then x = α1(x) a1 + α2(x) a2 + · · ·+ αn(x) an.

Remark. The argument for part (a) of the conclusion is outlined in the passages above the statement of Theorem
(3). That for part (b) follows immediately from the logical equivalence between the statements (1), (1∗). We only
have to verify part (c) of the conclusion.

8. Argument for part (c) of the conclusion in Theorem (3).
Suppose A is an (n× n)-square matrix with real entries.
Suppose any one of the statements (1)-(6), (1∗)-(6∗) holds. (So all hold.)
For each j = 1, 2, · · · , n, denote the j-th column of A by aj .

Suppose x ∈ Rn. For each k = 1, 2, · · · , n, denote the k-th entry of A−1x by αk(x).
Then

x = Inx = (AA−1)x = A(A−1x) = [ a1 a2 · · · an ]


α1(x)
α2(x)

...
αn(x)

 = α1(x) a1 + α2(x) a2 + · · ·+ αn(x) an.

9. Example (1). (Display of various bases of Rn, and illustration of the content of Theorem (3).)
(For simplicity of presentation, we work with R4 here. But the idea can be generalized to Rn for each n.)

Apart from the standard base for R4, we display three other bases for R4 (which are not especially important), and
justify our claims with slightly different methods, as suggested by the various re-formulations for the notion for
invertibility.

(a) Define u1 =

11
1
1

, u2 =

01
1
1

, u3 =

00
1
1

, u4 =

00
0
1

.

i. We verify that u1,u2,u3,u4 are linearly independent:—
• Pick any α1, α2, α3, α4 ∈ R. Suppose α1u1 + α2u2 + α3u3 + α4u4 = 04.

Then

 α1
α1 + α2

α1 + α2 + α3
α1 + α2 + α3 + α4

 = α1u1 + α2u2 + α3u3 + α4u4 = 04.

By comparing the respective entries, we deduce α1 = 0, α2 = 0, α3 = 0, α4 = 0 in succession.
ii. We verify that every column vector belonging to R4 is a linear combination of u1,u2,u3,u4:

• Pick any x ∈ R4. For each j = 1, 2, 3, 4, denote the j-th entry of x by xj .
We have

x = x1e
(4)
1 + x2e

(4)
2 + x3e

(4)
3 + x4e

(4)
4

= x1(u1 − u2) + x2(u2 − u3) + x3(u3 − u4) + x4u4

= x1u1 + (x2 − x1)u2 + (x3 − x2)u3 + (x4 − x3)u4
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iii. It follows that u1,u2,u3,u4 constitute a basis for R4 over the reals.

From the calculations above, we see that for any x ∈ R4, if x =

x1
x2
x3
x4

 then

x = x1u1 + (x2 − x1)u2 + (x3 − x2)u3 + (x4 − x3)u4.

This expression of such an x as a linear combination of u1,u2,u3,u4 is uniquely determined.

(b) Define v1 =

12
3
4

, v2 =

01
2
3

, v3 =

00
1
2

, v4 =

00
0
1

.

Write V = [ v1 v2 v3 v4 ].
i. We verify that v1,v2,v3,v4 are linearly independent:—

• We obtain the sequence of row operations below joining V to some row-echelon form V ♯:—

V =

 1 0 0 0
2 1 0 0
3 2 1 0
4 3 2 1

 −2R1+R2−−−−−−→ −3R1+R3−−−−−−→ −4R1+R4−−−−−−→

−2R2+R3−−−−−−→ −3R2+R4−−−−−−→ −2R3+R4−−−−−−→

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = V ♯.

V ♯ is in fact the reduced row-echelon form I4, whose columns are all pivot columns.
It follows that LS(V, 04) has no non-trivial solution.

ii. We verify that every column vector belonging to R4 is a linear combination of v1,v2,v3,v4:
• Pick any x ∈ R4. [We show that the system LS(V, x) is consistent.]

Write Cx = [ V x ].
We obtain the sequence of row operations below joining Cx to some row-echelon form C♯

x below:—

Cx =

 1 0 0 0 x1
2 1 0 0 x2
3 2 1 0 x3
4 3 2 1 x4

 −2R1+R2−−−−−−→ −3R1+R3−−−−−−→ −4R1+R4−−−−−−→

−2R2+R3−−−−−−→ −3R2+R4−−−−−−→ −2R3+R4−−−−−−→

 1 0 0 0 x1
0 1 0 0 −2x1 + x2
0 0 1 0 x1 − 2x2 + x3
0 0 0 1 x2 − 2x3 + x4

 = C♯
x.

The last column of C♯
x is a free column. It follows that LS(V, x) is consistent.

Hence x is a linear combination of v1,v2,v3,v4.
iii. It follows that v1,v2,v3,v4 constitute a basis for R4 over the reals.

From the calculations above, we see that for any x ∈ R4, if x =

x1
x2
x3
x4

 then

x = x1v1 + (−2x1 + x2)v2 + (x1 − 2x2 + x3)v3 + (x2 − 2x3 + x4)v4.

This expression of such an x as a linear combination of v1,v2,v3,v4 is uniquely determined.

(c) Define w1 =

12
3
4

, w2 =

23
4
1

, w3 =

34
1
2

, w4 =

41
2
3

.

Write W = [ w1 w2 w3 w4 ].
Note that W is a square matrix. We verify that W is invertible:—
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• Apply a sequence of row operations below to join W to some row-echelon form W ♯:—

W =

 1 4 3 2
2 1 4 3
3 2 1 4
4 3 2 1

 −2R1+R2−−−−−−→ −3R1+R2−−−−−−→ −4R1+R2−−−−−−→

 1 4 3 2
0 −7 −2 −1
0 −10 −8 −2
0 −13 −10 −7


−2R2+R4−−−−−−→ R2↔R4−−−−−→

 1 4 3 2
0 1 −6 −5
0 −7 −2 −1
0 −10 −8 −2

 7R2+R3−−−−−→ 10R2+R4−−−−−−→
− 1

4R3−−−−→
− 1

4R4−−−−→

 1 4 3 2
0 1 −6 −5
0 0 11 9
0 0 17 13


−1R3+R4−−−−−−→ −2R4+R3−−−−−−→ 6R3+R4−−−−−→

 1 4 3 2
0 1 −6 −5
0 0 −1 1
0 0 0 10

 = W ♯

Note that every column of W ♯ is a pivot column. Hence W is invertible.
Since W is invertible, the column vectors w1,w2,w3,w4 constitute a basis for R4.
By direct computation (such as re-running the sequence of row operations above, starting with [ W I4 ]), we

find that W−1 =
1

40

 −9 1 1 11
1 1 11 −9
1 11 −9 1
11 −9 1 1

.

For any x ∈ R4, if x =

x1
x2
x3
x4

 then

x=W (W−1x)=
−9x1+x2+x3+11x4

40
w1+

x1+x2+11x3−9x4

40
w2+

x1+11x2−9x3+x4

40
w3+

11x1−9x2+x3+x4

40
w4.

This expression of such an x as a linear combination of w1,w2,w3,w4 is uniquely determined.

10. As seen in Example (1), there are many distinct bases for Rn over the reals. In the light of this, there are two
natural questions to ask, for any two arbitrarily given bases of Rn over the reals:—

(1) How are the two bases compared with each other?
(2) How are the expressions of the same column vector with n real entries as linear combinations of column vectors

in the respective bases compared with each other?

We answer the two questions above in a slightly more general context, in the form of the result immediately below
about bases for a general subspace of Rn over the reals.
Its proof is provided in the appendix.

11. Theorem (4). (‘Change-of-basis’ Theorem.)
Let W be a subspace of Rn over the reals.
Suppose u1,u2, · · · ,up constitute a basis for W over the reals. Also suppose v1,v2, · · · ,vp constitute a basis for W
over the reals.
Define U = [ u1 u2 · · · up ], V = [ v1 v2 · · · vp ].
Then the statements below hold:—

(a) There exists some unique invertible (p× p)-square matrix S with real entries such that U = V S.
(b) Let x ∈ W, and α1, α2, · · · , αp, β1, β2, · · · , βp ∈ R.

Suppose x = α1u1 + α2u2 + · · ·+ αpup and x = β1v1 + β2v2 + · · ·+ βpvp.

Then


β1
β2
...
βp

 = S


α1
α2
...
αp

, for the same invertible (p× p)-square matrix S above.

Remark on terminologies. The matrix S, which relates the matrices U, V via the equality U = V S, is called
the change-of-basis matrix, relating the (ordered) basis u1,u2, · · · ,up for W to the (ordered) basis
v1,v2, · · · ,vp for W.

Further remark. Because of the invertibility of S, the equality V = US−1 holds. Hence the invertible matrix S−1

is the change-of-basis matrix relating the (ordered) basis v1,v2, · · · ,vp for W to the (ordered) basis u1,u2, · · · ,up

for W.
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12. Further comments on Theorem (4).

(a) Suppose W = Rn. Further suppose u1,u2, · · · ,un constitute a basis for Rn over the reals. Also suppose
v1,v2, · · · ,vp constitute a basis for Rn over the reals.
Then U, V are in fact invertible (n× n)-square matrices.
The uniquely determined square matrix S described in part (a) of the conclusion of Theorem (4) is actually
given by S = V −1U .

(b) In Theorem (4) we impose the seemingly ‘restrictive’ assumption that the number of column vectors in one
basis for W, namely u1,u2, · · · ,up , is the same as that of the number of column vectors in another basis for
W, namely, v1,v2, · · · ,vp.
You may wonder what may happen if we do not assume these two bases have the same number of column
vectors.
This question will turn out a moot one.
It actually happens that any two bases for the same subspace of Rn over the reals have the same number of
column vectors. (We will state this result more formally later on.)

13. Example (2). (Illustration on the content of Theorem (4), in the special case ‘W = Rn and p = n’.)

We have the standard base e
(4)
1 , e

(4)
2 , e

(4)
3 , e

(4)
4 for R4 over the reals.

Note that I4 =
[
e
(4)
1 e

(4)
2 e

(4)
3 e

(4)
4

]
.

These are also bases for R4 over the reals:—

• u1 =

11
1
1

, u2 =

01
1
1

, u3 =

00
1
1

, u4 =

00
0
1

.

• v1 =

12
3
4

, v2 =

01
2
3

, v3 =

00
1
2

, v4 =

00
0
1

.

• w1 =

12
3
4

, w2 =

23
4
1

, w3 =

34
1
2

, w4 =

41
2
3

.

Write U = [ u1 u2 u3 u4 ], V = [ v1 v2 v3 v4 ], W = [ w1 w2 w3 w4 ].
Note that U, V,W are invertible matrices.

(a) We can provide another interpretation for the equalities I4 = UU−1, I4 = V V −1, I4 = WW−1 according to
Theorem (4):—

i. The matrix U−1 =

 1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1

 is the change-of-basis matrix relating the (ordered) basis

e
(4)
1 , e

(4)
2 , e

(4)
3 , e

(4)
4 for R4 to the (ordered) basis u1,u2,u3,u4 for R4.

ii. The matrix V −1 =

 1 0 0 0
−2 1 0 0
1 −2 1 0
0 1 −2 1

 is the change-of-basis matrix relating the (ordered) basis

e
(4)
1 , e

(4)
2 , e

(4)
3 , e

(4)
4 for R4 to the (ordered) basis v1,v2,v3,v4 for R4.

iii. The matrix W−1 =
1

40

 −9 1 1 11
1 1 11 −9
1 11 −9 1
11 −9 1 1

 is the change-of-basis matrix relating the (ordered) basis

e
(4)
1 , e

(4)
2 , e

(4)
3 , e

(4)
4 for R4 to the (ordered) basis w1,w2,w3,w4 for R4.

(b) Write S = V −1U .

i. Note that S =

 1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1

. The equality U = V S holds.

S is the change-of-basis matrix relating the (ordered) basis u1,u2,u3,u4 for R4 to the (ordered) basis
v1,v2,v3,v4 for R4.
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ii. Note that S−1 =

 1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

. The equality V = US−1 holds.

S−1 is the change-of-basis matrix relating the (ordered) basis v1,v2,v3,v4 for R4 to the (ordered) basis
u1,u2,u3,u4 for R4.

(c) Write Q = W−1U .

i. Note that Q =
1

40

 4 13 12 11
4 3 2 −9
4 3 −8 1
4 −7 2 1

. The equality U = WQ holds.

Q is the change-of-basis matrix relating the (ordered) basis u1,u2,u3,u4 for R4 to the (ordered) basis
w1,w2,w3,w4 for R4.

ii. Note that Q−1 =

 1 2 3 4
1 1 1 −3
1 1 −3 1
1 −3 1 1

. The equality W = UQ−1 holds.

Q−1 is the change-of-basis matrix relating the (ordered) basis w1,w2,w3,w4 for R4 to the (ordered) basis
u1,u2,u3,u4 for R4.

(d) Write P = W−1V .

i. Note that P =
1

40

 40 36 23 11
0 −4 −7 −9
0 −4 −7 1
0 −4 3 1

. The equality V = WP holds.

P is the change-of-basis matrix relating the (ordered) basis v1,v2,v3,v4 for R4 to the (ordered) basis
w1,w2,w3,w4 for R4.

ii. Note that P−1 =

 1 2 3 4
0 −1 −2 −7
0 0 −4 4
0 −4 4 0

. The equality V = WP−1 holds.

P−1 is the change-of-basis matrix relating the (ordered) basis w1,w2,w3,w4 for R4 to the (ordered) basis
v1,v2,v3,v4 for R4.

14. The illustrations in Example (3) are less trivial than that in Example (2) in the sense that they are concerned with
proper subspaces of Rn, and that the interplay between the vector equalities and the matrix equalities captures the
‘algebraic essesnce’ in the argument for Theorem (4).
Example (3). (Illustrations for the content of Theorem (4), and the ‘algebra’ in its argument.)

(a) Let u1 =

[
2
1
1

]
, u2 =

[
0
−1
1

]
, v1 =

[
1
1
0

]
, v2 =

[
1
0
1

]
, and W = Span({u1,u2}).

Write U = [ u1 u2 ], V = [ v1 v2 ].
We can verify that u1,u2 are linearly independent over the reals. They constitute a basis for W over the reals.
We can also verify that v1,v2 constitute a basis for W over the reals.

i. We have the pair of vector equalities below:—{
u1 = v1 + v2

u2 = −v1 + v2

This pair of vector equalities can be encoded into the matrix equality U = V S, in which S =
[
1 −1
1 1

]
.

We can verify directly from the definition of invertibility that S is indeed invertible.
The matrix S is the change-of-basis matrix relating the (ordered) basis u1,u2 for W to the (ordered) basis
v1,v2 for W.

ii. We have the matrix equality V = US−1, in which S−1 =

[
1/2 1/2
−1/2 1/2

]
.

This matrix equality in fact encodes this pair of vector equalities:—
v1 =

1

2
u1 − 1

2
u2

v2 =
1

2
u1 +

1

2
u2
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The matrix S−1 is the change-of-basis matrix relating the (ordered) basis v1,v2 for W to the (ordered)
basis u1,u2 for W.

(b) Let u1 =

11
1
1

, u2 =

01
2
3

, v1 =

12
3
4

, v2 =

23
4
5

, and W = Span({u1,u2}).

Write U = [ u1 u2 ], V = [ v1 v2 ].
We can verify that u1,u2 are linearly independent over the reals. They constitute a basis for W over the reals.
We can also verify that v1,v2 constitute a basis for W over the reals.

i. We have the pair of vector equalities below:—{
u1 = −v1 + v2

u2 = 2v1 − v2

This pair of vector equalities can be encoded into the matrix equality U = V S, in which S =
[ −1 2

1 −1

]
.

We can verify directly from the definition of invertibility that S is indeed invertible.
The matrix S is the change-of-basis matrix relating the (ordered) basis u1,u2 for W to the (ordered) basis
v1,v2 for W.

ii. We have the matrix equality V = US−1, in which S−1 =
[
1 2
1 1

]
.

This matrix equality in fact encodes this pair of vector equalities:—{
v1 = u1 + u2

v2 = 2u1 + u2

The matrix S is the change-of-basis matrix relating the (ordered) basis v1,v2 for W to the (ordered) basis
u1,u2 for W.

(c) Let u1 =


2
2
2
1
1

, u2 =


0
0
0
1
1

, u3 =


0
−2
0
−1
1

, v1 =


1
0
1
0
1

, v2 =


0
1
0
1
0

, v3 =


1
1
1
0
0

, and W = Span({u1,u2,u3}).

Write U = [ u1 u2 u3 ], V = [ v1 v2 v3 ].
We can verify that u1,u2,u3 are linearly independent over the reals. They constitute a basis for W over the
reals.
We can also verify that v1,v2,v3 constitute a basis for W over the reals.

i. We have the triple of vector equalities below:— u1 = v1 + v2 + v3

u2 = v1 + v2 − v3

u3 = v1 − v2 − v3

This pair of vector equalities can be encoded into the matrix equality U = V S, in which S =

[
1 1 1
1 1 −1
1 −1 −1

]
.

We can verify directly from the definition of invertibility that S is indeed invertible.
The matrix S is the change-of-basis matrix relating the (ordered) basis u1,u2,u3 for W to the (ordered)
basis v1,v2,v3 for W.

ii. We have the matrix equality V = US−1, in which S−1 =

[
1/2 0 1/2
0 1/2 −1/2
1/2 −1/2 0

]
.

This matrix equality in fact encodes this triple of vector equalities:—

v1 =
1

2
u1 +

1

2
u3

v2 =
1

2
u2 − 1

2
u3

v3 =
1

2
u1 − 1

2
u2

The matrix S is the change-of-basis matrix relating the (ordered) basis v1,v2,u3 for W to the (ordered)
basis u1,u2,u3 for W.
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