3.4.2 Exercise: Row-equivalence from the point of view of invertible matrices.

In all the questions below, unless otherwise stated:-

- You may take for granted the validity of the result below, where it is relevant and appropriate:-

Suppose A, B are matrices with p rows. Then the statements below are logically equivalent:-
(1) A, B are row-equivalent to each other.
(2) There exists some invertible $(p \times p)$-square matrix G such that $B=G A$.

Now suppose any one of the above holds (so that both hold). Then, for the same G, the equality $A=G^{-1} B$ holds.

- You may also take for granted that each matrix is row-equivalent to one and only one reduced row-echelon form.

1. Let x, y, z, u, v, w be real numbers, and $A=\left[\begin{array}{ccccc}1 & 1 & x & 1 & 5 \\ 2 & 0 & y & 1 & 6 \\ 3 & -2 & z & 1 & 7\end{array}\right], B=\left[\begin{array}{lllll}1 & 0 & 2 & 0 & u \\ 0 & 1 & 5 & 0 & v \\ 0 & 0 & 0 & 1 & w\end{array}\right]$.

Denote the columns of A, from left to right, by $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}$.
Denote the columns of B, from left to right, by $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}, \mathbf{b}_{5}$.
It is assumed that A is row-equivalent to B.
(a) What are the values of x, y, z ? Justify your answer.
(b) Are $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ linearly dependent or linearly independent? Justify your answer.
(c) What are the values of u, v, w ? Justify your answer.
2. (a) Prove the statement (\sharp):-
($\#$) Let A, B be $(p \times q)$-matrices, and G a $(p \times p)$-square matrix.
Suppose $B=G A$, and G is invertible.
Then for each $j=1,2, \cdots, q$, the j-th column of A is all zero if and only if the j-th column of B is all zero.
(b) Hence, or otherwise, deduce the statement (\sharp^{*}): -
($\left.\sharp^{\prime}\right)$ Let C, D be $(m \times n)$-matrices, and H a $(n \times n)$-square matrix.
Suppose $D=C H$, and H is invertible.
Then for each $i=1,2, \cdots, m$, the i-th row of C is all zero if and only if the i-th row of D is all zero.
(c) Dis-prove the statement (\downarrow), by providing an appropriate counter-example:-
(\sqsubset) Let C, D be $(m \times n)$-matrices, and G an $(m \times m)$-square matrix.
Suppose $D=G C$, and G is invertible.
Then for each $i=1,2, \cdots, m$, if the i-th row of C is all zero then the i-th row of D is all zero.
(d) Is the statement ($\left\llcorner^{\prime}\right.$) true? Justify your answer.
(h^{\prime}) Let A, B be $(p \times q)$-matrices, and H a $(q \times q)$-square matrix.
Suppose $B=A H$, and H is invertible.
Then for each $j=1,2, \cdots, q$, if the j-th column of A is all zero then the j-th column of B is all zero.
3. Let A, B, C, D, J, K, L, M be $(n \times n)$-square matrices. Suppose there is a sequence of row operations

$$
[A \mid J] \longrightarrow \cdots \longrightarrow[B \mid K] \longrightarrow \cdots \longrightarrow[C \mid L] \longrightarrow \cdots \longrightarrow[D \mid M]
$$

Which of the statements are true? For each of those statements which is true, give a proof. For each of those statements which is true, just write 'The statement concerned is false'.
(a) Suppose A is invertible. Then C is invertible.
(b) Suppose K is invertible. Then M is invertible.
(c) Suppose $C=I_{n}$. Then A is invertible.
(d) Suppose $A=M=I_{n}$. Then D, J are invertible, and $D J=I_{n}$.
(e) Suppose $J=A^{3}$ and $K=A^{2}$ and $L=A$ and $M=I_{n}$. Then A is invertible and $B=I_{n}$ and $C=A^{-1}$ and $D=A^{-2}$.
4. Prove the statement (\sharp): -
(\sharp) Let A be an $(m \times n)$-matrix. Suppose A^{\prime} is the reduced row-echelon form which is row-equivalent to A.
Then the statements below are logically equivalent:-
(1) Every row of A^{\prime} is non-zero.
(2) For any \mathbf{b} with m entries, $\mathcal{L S}(A, \mathbf{b})$ is consistent.

Remark. It is best to formulate the argument in terms of invertible matrices. At some point of the argument, you may need to observe that there are m pivot columns in A^{\prime}. They make up each of the m column vectors which are $E_{1,1}^{m, 1}, E_{2,1}^{m, 1}, E_{3,1}^{m, 1}, \cdots, E_{m, 1}^{m, 1}$.
5. (a) Prove the statement below, with direct reference to the definitions of invertibility and of linear combinations:Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{v}$ be column vectors with 6 entries.
Suppose G is an invertible (6×6)-square matrix. Then the statements below are logically equivalent:-
(1) \mathbf{v} is a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$ with respect to scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$.
(2) $G \mathbf{v}$ is a linear combination of $G \mathbf{u}_{1}, G \mathbf{u}_{2}, G \mathbf{u}_{3}, G \mathbf{u}_{4}$ with respect to scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$.
(b) Hence, or otherwise, deduce the statement below:-

Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{v}$ be column vectors with 6 entries.
Suppose $\mathbf{u}_{1}^{\prime}, \mathbf{u}_{2}^{\prime}, \mathbf{u}_{3}^{\prime}, \mathbf{u}_{4}^{\prime}, \mathbf{v}^{\prime}$ are row-equivalent to $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{v}$ under the same sequence of row operations.
Then the statements below are logically equivalent:-
(1) \mathbf{v} is a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$ with respect to scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$.
(2) $G \mathbf{v}$ is a linear combination of $G \mathbf{u}_{1}, G \mathbf{u}_{2}, G \mathbf{u}_{3}, G \mathbf{u}_{4}$ with respect to scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$.
6. We introduce the definition for the notion of canonical matrices:-

For each integer m, n, for each integer k between 0 and the minimum of m, n, denote by $J_{k}^{m, n}$ the $(m \times n)$-matrix whose (1,1)-th, (2,2)-th, $\ldots,(k, k)$-th entries are 1 and whose all other entries are 0 .
(We understand $J_{0}^{m, n}$ as $\mathcal{O}_{m \times n}$.)
The matrix $J_{k}^{m, n}$ is called the canonical $(m \times n)$-matrix with k non-zero entries.
(a) Prove the statement (\sharp) :-
(\sharp) Suppose A is a $(p \times q)$-matrix. Then there exist some invertible ($p \times p$)-square matrix G, and some invertible $(q \times q)$-square matrix H, such that the equality $A=G J_{r}^{p, q} H$ holds and r is the rank of A.
Remark. How do you relate, through matrix equalities, the matrices A, B, C, in which B is the reduced row-echelon form which is row-equivalent to A, and C is the reduced row-echelon form which is row-equivalent to B^{t} ?
(b) For each the $(p \times q)$-matrix below, denoted by A here, express it as a product of the form $G J_{r}^{p, q} H$ in which G, H are some appropriate invertible matrices and r is the rank of A.
i. $A=\left[\begin{array}{llll}1 & 2 & 2 & 4 \\ 1 & 3 & 3 & 5 \\ 2 & 6 & 5 & 6\end{array}\right]$.
ii. $A=\left[\begin{array}{cccc}1 & -1 & 1 & 2 \\ 3 & -2 & 1 & 7 \\ -1 & 3 & -5 & 3\end{array}\right]$.
iii. $A=\left[\begin{array}{cccc}0 & 1 & -2 & 1 \\ -1 & -2 & 3 & -4 \\ 2 & 7 & -12 & 11\end{array}\right]$.
iv. $A=\left[\begin{array}{ccccc}1 & 2 & 0 & 1 & 7 \\ 1 & 1 & 1 & -1 & 3 \\ 3 & 1 & 5 & -7 & 1\end{array}\right]$.
v. $A=\left[\begin{array}{cccccc}0 & 1 & 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 2 & 3 & 4 \\ -2 & -1 & -3 & 3 & 1 & 3\end{array}\right]$.
vi. $A=\left[\begin{array}{ccccc}1 & 2 & 7 & 1 & -1 \\ 1 & 1 & 3 & 1 & 0 \\ 3 & 2 & 5 & -1 & 9 \\ 1 & -1 & -5 & 2 & 0\end{array}\right]$.

