3.4.1 Uniqueness of reduced row-echelon form row-equivalent to given matrix.

- 0. The material in this appendix is supplementary.
- 1. Here we give a proof for the result on the uniqueness of the reduced row-echelon form row-equivalent to any arbitrarily given matrix.

Theorem (7). (Uniqueness of reduced row-echelon form which is row-equivalent to a given matrix.) Suppose that A is a matrix, and B, C are reduced row-echelon forms.

Further suppose that B is row-equivalent to A, and C is also row-equivalent to A. Then B = C.

2. Observations on the statement of Theorem (7), and on how we shall apply mathematical induction to prove Theorem (7).

In view of the basic properties of row-equivalence, Theorem (7) is logically equivalent to the statement (\dagger) :

(†) Suppose B, C are row-echelon forms which are row-equivalent to each other. Then B = C.

By making a 'slight twist' in the wording, we may re-formulate the statement (\dagger) as the statement (\ddagger) :

(‡) Let r be a non-negative integer. Suppose B, C are row-echelon forms which are row-equivalent to each other, and suppose the rank of C is r. Then B = C.

In view of the above, we shall prove Theorem (7) by applying the method of mathematical induction to prove the statement (\ddagger) .

3. In the argument for the statement (\ddagger) , we take for granted the validity of Theorem (6) and Theorem (9).

Theorem (6).

Let B, C be $(p \times q)$ -matrix. Denote the *j*-th columns of B, C by $\mathbf{b}_j, \mathbf{c}_j$ respectively for each $j = 1, 2, \cdots, q$. Suppose B is row-equivalent to C. Then the statements below hold:—

- (a) If \mathbf{b}_j is a linear combination of $\mathbf{b}_{k_1}, \mathbf{b}_{k_2}, \cdots, \mathbf{b}_{k_n}$ with respect to scalars $\alpha_1, \alpha_2, \cdots, \alpha_n$ then \mathbf{c}_j is a linear combination of $\mathbf{c}_{k_1}, \mathbf{c}_{k_2}, \cdots, \mathbf{c}_{k_n}$ with respect to scalars $\alpha_1, \alpha_2, \cdots, \alpha_n$.
- (b) If $\mathbf{b}_{k_1}, \mathbf{b}_{k_2}, \cdots, \mathbf{b}_{k_n}$ are linearly dependent with the non-trivial relation $\alpha_1 \mathbf{b}_{k_1} + \alpha_2 \mathbf{b}_{k_2} + \cdots + \alpha_n \mathbf{b}_{k_n} = \mathbf{0}_p$, then $\mathbf{c}_{k_1}, \mathbf{c}_{k_2}, \cdots, \mathbf{c}_{k_n}$ are linear dependent with the non-trivial relation $\alpha_1 \mathbf{c}_{k_1} + \alpha_2 \mathbf{c}_{k_2} + \cdots + \alpha_n \mathbf{c}_{k_n} = \mathbf{0}_p$.
- (c) If $\mathbf{b}_{k_1}, \mathbf{b}_{k_2}, \cdots, \mathbf{b}_{k_n}$ are linearly independent, then $\mathbf{c}_{k_1}, \mathbf{c}_{k_2}, \cdots, \mathbf{c}_{k_n}$ are linear independent.

Theorem (9). ('Linear relations' amongst columns of a reduced row-echelon form.)

Let C be a reduced row-echelon form with q columns. Denote the j-th column of C by \mathbf{c}_j for each $j = 1, 2, \dots, q$, and denote the (k, ℓ) -th entry of C by $\gamma_{k\ell}$ for each k, ℓ .

Denote the rank of C by r, and suppose the pivot columns of C, from left to right, are the d_1 -th, d_2 -th, d_r -th columns of C.

Then:-

- (a) $\mathbf{c}_{d_1}, \mathbf{c}_{d_2}, \cdots, \mathbf{c}_{d_r}$ are linearly independent.
- (b) For each $j = 1, 2, \dots, q$, if \mathbf{c}_j is a free column, and the pivot columns strictly to the left of \mathbf{c}_j are the d_1 -th, d_2 -th, ..., d_h -th columns, then \mathbf{c}_j is a linear combination of $\mathbf{c}_{d_1}, \mathbf{c}_{d_2}, \dots, \mathbf{c}_{d_h}$, with the linear relation $\mathbf{c}_j = \gamma_{1j}\mathbf{c}_{d_1} + \gamma_{2j}\mathbf{c}_{d_2} + \dots + \gamma_{hj}\mathbf{c}_{d_h}$.
- (c) For each $k = 1, 2, \dots, r$, the d_k -th column of C, (which is the column vector \mathbf{c}_{d_k} ,) is not a linear combination of the columns of C strictly to its left.

In particular, the d_k -th column of C is not a linear combination of the d_1 -th, d_2 -th, ..., d_{k-1} -th columns of C.

4. Proof of the statement (\ddagger) .

Denote by P(r) the proposition below:—

'Suppose B, C are row-echelon forms of the same size which are row-equivalent to each other, and suppose the rank of C is r. Then B = C.'

We verify P(0):

Suppose B, C are row-echelon forms of the same size which are row-equivalent to each other, and suppose the rank of C is 0.

[We ask: Is it true that B = C?]

Since the rank of C is 0, there is no non-zero row in C. Then C is a zero matrix. Since B is row-equivalent to C, there is some invertible matrix G such that B = GC. Since C is the zero matrix, B is also the zero matrix. Then B = C. It follows that P(0) is true.

Let s be a non-negative integer. Suppose P(s) is true. We deduce that P(s+1) is true (with the help of P(s)):

(a) Suppose B, C are row-echelon forms of the same size which are row-equivalent to each other, and suppose the rank of C is s.
Suppose the pivot columns of C are the d₁-th, d₂-th, ..., d₅-th, d₅+1-th columns. Denote these column vectors by cd₁, cd₂, ···, cd₅, cd₅+1.

Note that for each $j = 1, 2, \dots, s + 1$, the *j*-th entry of \mathbf{c}_{d_j} is 1, and all other entries of \mathbf{c}_{d_j} are 0.

- (b) Write $B = [B_{\sharp} | B_{\natural}], C = [C_{\sharp} | C_{\natural}]$, in which:—
 - B_{\sharp} is the matrix consisting of all the columns of B strictly to the left of the d_{s+1} -th column of B,
 - B_{\natural} is the rest of B, starting from the d_{s+1} -th column of B, and ending at the last column of B,
 - C_{\sharp} is the matrix consisting of all the columns of C strictly to the left of the d_{s+1} -th column of C, and
 - C_{\natural} is the rest of C, starting from the d_{s+1} -th column of C, and ending at the last column of C.

By construction, B_{\sharp}, C_{\sharp} are reduced row-echelon forms and they are row-equivalent.

Moreover, by construction, the rank of C_{\sharp} is s.

- (c) By P(s), we have $B_{\sharp} = C_{\sharp}$. So $B = [C_{\sharp} | B_{\natural}]$.
- (d) We are going to show that the d_{s+1} -th column of B is the same as that of C, namely, $\mathbf{c}_{d_{s+1}}$:
 - i. By definition, the d_{s+1} -th column of C, which is the last pivot column of C, is not a linear combination of the d_1 -th, d_2 -th, ..., d_s -th columns of C, which are first s pivot columns of C.
 - ii. Since B is row-equivalent to C, the d_{s+1} -th column of B, which is the first column of B_{\natural} , is not a linear combination of the d_1 -th, d_2 -th, ..., d_s -th columns of B, which are respectively the d_1 -th, d_2 -th, ..., d_s -th columns of C_{\sharp} , and are respectively given by $\mathbf{c}_{d_1}, \mathbf{c}_{d_2}, \cdots, \mathbf{c}_{d_s}$.
 - iii. Then the d_{s+1} -th column of B has at least one non-zero entry starting from the (s+1)-th entry downwards. [Ask: Can we pinpoint such an entry?]
 - iv. Recall that the rank of C_{\sharp} is s. Then all rows in C_{\sharp} below the s-th row are rows of 0's. As B is a reduced row-echelon form, it is then along the d_{s+1} -th column of B that the first non-zero entry

of a non-zero row of B appears.

Then the d_{s+1} -th column of B is a pivot column of B. It is the (s+1)-th pivot column of B (after the d_1 -th, d_2 -th, ..., d_s -th columns of B), and therefore it is the same as $\mathbf{c}_{d_{s+1}}$.

- (e) We are going to complete the argument for the equality B = C, by studying the columns of B, C strictly to the right of their respective d_{s+1} -th column:
 - i. For each $\ell > d_{s+1}$, denote the respective ℓ -th columns of B, C by $\mathbf{b}_{\ell}, \mathbf{c}_{\ell}$. For each k, denote the respective k-th entries of $\mathbf{b}_{\ell}, \mathbf{c}_{\ell}$ by $\beta_{k\ell}, \gamma_{k\ell}$.
 - ii. Since C is a reduced row-echelon form whose pivot columns are the d_1 -th, d_2 -th, ..., d_s -th, d_{s+1} -th columns, \mathbf{c}_{ℓ} is the linear combination of the d_1 -th, d_2 -th, ..., d_s -th, d_{s+1} -th columns of C with respect to the scalars $\gamma_{1\ell}, \gamma_{2\ell}, \cdots, \gamma_{s\ell}, \gamma_{s+1,\ell}$.
 - iii. Since B is row-equivalent to C, we have \mathbf{b}_{ℓ} is the linear combination of the d_1 -th, d_2 -th, ..., d_s -th, d_{s+1} -th columns of B (which are now known to be $\mathbf{c}_{d_1}, \mathbf{c}_{d_2}, \cdots, \mathbf{c}_{d_s}, \mathbf{c}_{d_{s+1}}$ respectively) with respect to the scalars $\gamma_{1\ell}, \gamma_{2\ell}, \cdots, \gamma_{s\ell}, \gamma_{s+1,\ell}$.

Then
$$\mathbf{b}_{\ell} = \gamma_{1\ell} \mathbf{c}_{d_1} + \gamma_{2\ell} \mathbf{c}_{d_2} + \dots + \gamma_{s\ell} \mathbf{c}_{d_s} + \gamma_{s+1,\ell} \mathbf{c}_{d_{s+1}} = \mathbf{c}_{\ell}$$

Hence B = C. It follows that P(s+1) is true.

By the Principle of Mathematical Induction, P(r) is true for any non-negative integer r.