3.3.1 Answers to Exercise.

1.
2. (a) $A+a I_{n}$ is invertible. Reason: $A+a I_{n}$ has a right inverse.

The matrix inverse of $A+a I_{n}$ is given by $\frac{1}{a b} B+\frac{1}{a} I_{n}$.
(b) A, B commute with each other.
3. Let A, B be $(n \times n)$-square matrices. Suppose $A B-I_{n}$ is invertible.
(a) Verify that $\left(B A-I_{n}\right)\left[B\left(A B-I_{n}\right)^{-1} A-I_{n}\right]=\alpha I_{n}$, in which α is a number whose value is independent of A, B, n and which you have to give explicitly.
(b) Is $B A-I_{n}$ invertible? Justify your answer. If $B A-I_{n}$ is invertible, also write down the matrix inverse of $B A-I_{n}$ in terms of A, B.
(a) $\alpha=1$.
(b) $B A-I_{n}$ is invertible. Reason: $B A-I_{n}$ has a right inverse.

The matrix inverse of $B A-I_{n}$ is given by $\left(B A-I_{n}\right)^{-1}=B\left(A B-I_{n}\right)^{-1} A-I_{n}$
4. (a) Comment.

Be very patient to expand and collect terms at the appropriate moments.
Never write ' U^{-1}, ' ' V^{-1}, It has not be assumed that $p=q$; when $p \neq q$, it does not make sense to talk about U, V being invertible or not.
To save time and effort, you may use the logical equivalence between invertibility and existence of one of left/right inverse.
(b)
5. -
6. -
7. (a) -
(b) $A^{-1}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ -a & 1 & 0 & 0 \\ a b & -b & 1 & 0 \\ -a b c & b c & -c & 1\end{array}\right]$.
8. Let $A=\left[\begin{array}{lllll}1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 3 & 0 \\ 1 & 1 & 3 & 4 & 1 \\ 2 & 1 & 4 & 5 & 0 \\ 3 & 0 & 3 & 3 & 1\end{array}\right]$.
(a) Find a reduced row-echelon form A^{\prime} which is row-equivalent to A.
(b) Hence, or otherwise, determine whether A is invertible. Justify your answer with reference to any equivalent formulation for the notion of invertibility.
(c) Hence, or otherwise, determine whether the rows of A are linearly independent.
(a) $A^{\prime}=\left[\begin{array}{lllll}1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(b) A is not invertible. Reason: $\mathcal{L S}\left(A, \mathbf{0}_{5}\right)$ has some non-trivial solution (because A^{\prime} has some free column).
(c) The rows of A are linearly dependent. Reason: A^{t} is not invertible (because A is not invertible).
9.
10.
11.

12

