3.3.1 Exercise: Various necessary and sufficient conditions for invertibility.

Unless otherwise stated, you may take for granted the validity of any re-formulation for the notion of invertibility. (However, for the purpose of this exercise, do not use the re-formulation in terms of basis, nor the re-formulation in terms of determinants.)

1. By using some appropriate equivalent formulation(s) for the notion of invertibility, or otherwise, show that each of the square matrices below is not invertible:-
(a) $\left[\begin{array}{llllll}1 & 8 & 9 & 1 & 0 & 0 \\ 3 & 6 & 9 & 0 & 1 & 0 \\ 5 & 4 & 9 & 0 & 0 & 1 \\ 2 & 6 & 8 & 1 & 0 & 0 \\ 4 & 4 & 8 & 0 & 1 & 0 \\ 6 & 2 & 8 & 0 & 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{llllll}8 & 8 & 8 & 4 & 4 & 4 \\ 1 & 2 & 3 & 3 & 2 & 1 \\ 7 & 6 & 5 & 1 & 2 & 3 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0\end{array}\right]$
2. Let A, B be square matrices of size n. Let a, b be numbers. Suppose $A B+b A+a B=\mathcal{O}_{n \times n}$.

Suppose a, b are both non-zero.
(a) Is $A+a I_{n}$ invertible? Justify your answer. If $A+a I_{n}$ is invertible, also find its matrix inverse and express it in terms of a, b and B.
(b) Do A, B commute with each other? Justify your answer.
3. Let A, B be $(n \times n)$-square matrices. Suppose $A B-I_{n}$ is invertible.
(a) Verify that $\left(B A-I_{n}\right)\left[B\left(A B-I_{n}\right)^{-1} A-I_{n}\right]=\alpha I_{n}$, in which α is a number whose value is independent of A, B, n and which you have to give explicitly.
(b) Is $B A-I_{n}$ invertible? Justify your answer. If $B A-I_{n}$ is invertible, also write down the matrix inverse of $B A-I_{n}$ in terms of A, B.
4. Let A be a $(p \times p)$-square matrix, B be a $(q \times q)$-square matrix, U be a $(p \times q)$-matrix, and V be a $(q \times p)$-matrix. Suppose A is invertible. Further suppose $B+B V A^{-1} U B$ is also invertible.
(a) Show that $A+U B V$ is invertible, and that its matrix inverse is given by

$$
(A+U B V)^{-1}=A^{-1}-A^{-1} U B\left(B+B V A^{-1} U B\right)^{-1} B V A^{-1}
$$

(b) Now also suppose that B is invertible.

Show that

$$
(A+U B V)^{-1}=A^{-1}-A^{-1} U\left(B^{-1}+V A^{-1} U\right)^{-1} V A^{-1}
$$

5. Let $\alpha, \beta, \gamma, \delta$ be numbers.
(a) Let A be the (3×3)-square matrix given by $A=\left[\begin{array}{lll}1 & \alpha & \alpha^{2} \\ 1 & \beta & \beta^{2} \\ 1 & \gamma & \gamma^{2}\end{array}\right]$.

Prove the statement $\left(\sharp_{3}\right)$:-
$\left(\sharp_{3}\right) A$ is invertible if and only if α, β, γ are pairwise distinct.
(b) Let B be the (4×4)-square matrix given by $A=\left[\begin{array}{cccc}1 & \alpha & \alpha^{2} & \alpha^{3} \\ 1 & \beta & \beta^{2} & \beta^{3} \\ 1 & \gamma & \gamma^{2} & \gamma^{3} \\ 1 & \delta & \delta^{2} & \delta^{3}\end{array}\right]$.

Prove the statement $\left(\sharp_{4}\right)$:-
$\left(\sharp_{4}\right) B$ is invertible if and only if α, β, γ are pairwise distinct.
6. Let α, β be numbers, and $C_{\alpha, \beta}$ be the matrix given by $C_{\alpha, \beta}=\left[\begin{array}{cccc}1 & \alpha & \alpha^{2} & \alpha^{3} \\ 0 & 1 & 2 \alpha & 3 \alpha^{2} \\ 1 & \beta & \beta^{2} & \beta^{3} \\ 0 & 1 & 2 \beta & 3 \beta^{2}\end{array}\right]$.

Prove the statement ($\mathfrak{\square}$):-
(দ) $C_{\alpha, \beta}$ is invertible if and only if α, β are distinct.
7. Let a, b, c be numbers, and A be the (4×4)-square matrix given by

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
a & 1 & 0 & 0 \\
0 & b & 1 & 0 \\
0 & 0 & c & 1
\end{array}\right]
$$

(a) By considering whether the columns of A are linearly independent or linear dependent, or otherwise, show that A is invertible.
(b) Determine the matrix inverse of A by finding a reduced row-echelon form which is row-equivalent to [$A \mid I_{4}$]. Remark. This method is the same as solving the system of linear equations encoded in the matrix equation

$$
A\left[\begin{array}{llll}
x_{11} & x_{12} & x_{13} & x_{14} \\
x_{21} & x_{22} & x_{23} & x_{24} \\
x_{31} & x_{32} & x_{33} & x_{34} \\
x_{41} & x_{42} & x_{43} & x_{44}
\end{array}\right]=I_{4}
$$

with the 16 unknowns which are the $x_{i j}$'s.)
8. Let $A=\left[\begin{array}{lllll}1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 3 & 0 \\ 1 & 1 & 3 & 4 & 1 \\ 2 & 1 & 4 & 5 & 0 \\ 3 & 0 & 3 & 3 & 1\end{array}\right]$.
(a) Find a reduced row-echelon form A^{\prime} which is row-equivalent to A.
(b) Hence, or otherwise, determine whether A is invertible. Justify your answer with reference to any equivalent formulation for the notion of invertibility.
(c) Hence, or otherwise, determine whether the rows of A are linearly independent.
9. Let $\mathbf{t}_{1}, \mathbf{t}_{2}$ be column vectors with m entries.

Let A be a (2×2)-square matrix, whose (i, j)-th entry is $a_{i j}$.
Define $\mathbf{u}_{1}=a_{11} \mathbf{t}_{1}+a_{21} \mathbf{t}_{2}$ and $\mathbf{u}_{2}=a_{12} \mathbf{t}_{1}+a_{22} \mathbf{t}_{2}$.
(a) Define $U=\left[\mathbf{u}_{1} \mid \mathbf{u}_{2}\right]$, and $T=\left[\mathbf{t}_{1} \mid \mathbf{t}_{2}\right]$.

Verify that $U=T A$.
(b) Suppose $\mathbf{t}_{1}, \mathbf{t}_{2}$ are linearly independent.

Prove that the statements below are logically equivalent:-
(1) The column vectors $\mathbf{u}_{1}, \mathbf{u}_{2}$ are linearly independent.
(2) The matrix A is invertible.
10. Let $\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}$ be row vectors with m entries.

Let A be a (4×4)-square matrix, whose (i, j)-th entry is $a_{i j}$.
For each $j=1,2,3,4$, define $\mathbf{u}_{j}=a_{1 j} \mathbf{t}_{1}+a_{2 j} \mathbf{t}_{2}+a_{3 j} \mathbf{t}_{3}+a_{4 j} \mathbf{t}_{4}$.
(a) Define $U=\left[\begin{array}{l}\frac{\mathbf{u}_{1}}{\mathbf{u}_{2}} \\ \hline \frac{\mathbf{u}_{3}}{\mathbf{u}_{4}}\end{array}\right]$, and $T=\left[\begin{array}{l}\frac{\mathbf{t}_{1}}{\mathbf{t}_{2}} \\ \hline \frac{\mathbf{t}_{3}}{\mathbf{t}_{4}}\end{array}\right]$.

Verify that $U=A^{t} T$.
(b) Suppose $\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \mathbf{t}_{4}$ are linearly independent.

Prove that the statements below are logically equivalent:-
(1) The row vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$ are linearly independent.
(2) The matrix A is invertible.
11. Prove the statement below:-

Let B, C be $(m \times n)$-matrices. Define the $(n \times n)$-matrix A by $A=B^{t} C$.
Suppose $m<n$. Then A is not invertible.
12. By considering the re-formulation of invertibility in terms of linear dependence/independence, or otherwise, prove the statement (\sharp): -
(\sharp) Let A be a (4×4)-square matrix, and \mathbf{u} be a column vector with 4 entries.
Suppose $A^{4} \mathbf{u}=\mathbf{0}_{4}$ and $A^{3} \mathbf{u} \neq \mathbf{0}_{4}$.
Then the (4×4)-square matrix $\left[\mathbf{u}|A \mathbf{u}| A^{2} \mathbf{u} \mid A^{3} \mathbf{u}\right]$ is invertible.

