3.3.1 Exercise: Various necessary and sufficient conditions for invertibility.

Unless otherwise stated, you may take for granted the validity of any re-formulation for the notion of invertibility. (However, for the purpose of this exercise, do not use the re-formulation in terms of basis, nor the re-formulation in terms of determinants.)

1. By using some appropriate equivalent formulation(s) for the notion of invertibility, or otherwise, show that each of the square matrices below is not invertible:—

	г1	8	9	1	0	0 7		гξ	3	8	8	4	4	4 J
(a)	3	6	9	0	1	0			1	2	3	3	2	1
	5	4	9	0	0	1	(1-)		7	6	5	1	2	3
	2	6	8	1	0	0	(b)	1	1	0	0	0	0	$\begin{array}{c c}3\\1\end{array}$
	4	4	8	0	1	0								0
	6							[()		1			0]

2. Let A, B be square matrices of size n. Let a, b be numbers. Suppose $AB + bA + aB = \mathcal{O}_{n \times n}$. Suppose a, b are both non-zero.

- (a) Is $A + aI_n$ invertible? Justify your answer. If $A + aI_n$ is invertible, also find its matrix inverse and express it in terms of a, b and B.
- (b) Do A, B commute with each other? Justify your answer.
- 3. Let A, B be $(n \times n)$ -square matrices. Suppose $AB I_n$ is invertible.
 - (a) Verify that $(BA I_n)[B(AB I_n)^{-1}A I_n] = \alpha I_n$, in which α is a number whose value is independent of A, B, n and which you have to give explicitly.
 - (b) Is $BA I_n$ invertible? Justify your answer. If $BA I_n$ is invertible, also write down the matrix inverse of $BA I_n$ in terms of A, B.
- 4. Let A be a $(p \times p)$ -square matrix, B be a $(q \times q)$ -square matrix, U be a $(p \times q)$ -matrix, and V be a $(q \times p)$ -matrix. Suppose A is invertible. Further suppose $B + BVA^{-1}UB$ is also invertible.
 - (a) Show that A + UBV is invertible, and that its matrix inverse is given by

$$(A + UBV)^{-1} = A^{-1} - A^{-1}UB(B + BVA^{-1}UB)^{-1}BVA^{-1}.$$

(b) Now also suppose that *B* is invertible. Show that

$$(A + UBV)^{-1} = A^{-1} - A^{-1}U(B^{-1} + VA^{-1}U)^{-1}VA^{-1}.$$

- 5. Let $\alpha, \beta, \gamma, \delta$ be numbers.
 - (a) Let A be the (3×3) -square matrix given by $A = \begin{bmatrix} 1 & \alpha & \alpha^2 \\ 1 & \beta & \beta^2 \\ 1 & \gamma & \gamma^2 \end{bmatrix}$.
 - Prove the statement (\sharp_3) :—
 - (\sharp_3) A is invertible if and only if α, β, γ are pairwise distinct.
 - (b) Let *B* be the (4 × 4)-square matrix given by $A = \begin{bmatrix} 1 & \alpha & \alpha^2 & \alpha^3 \\ 1 & \beta & \beta^2 & \beta^3 \\ 1 & \gamma & \gamma^2 & \gamma^3 \\ 1 & \delta & \delta^2 & \delta^3 \end{bmatrix}$.

Prove the statement (\sharp_4) :—

- (\sharp_4) B is invertible if and only if α, β, γ are pairwise distinct.
- 6. Let α, β be numbers, and $C_{\alpha,\beta}$ be the matrix given by $C_{\alpha,\beta} = \begin{bmatrix} 1 & \alpha & \alpha^2 & \alpha^3 \\ 0 & 1 & 2\alpha & 3\alpha^2 \\ 1 & \beta & \beta^2 & \beta^3 \\ 0 & 1 & 2\beta & 3\beta^2 \end{bmatrix}$.

Prove the statement (\natural) :—

(a) $C_{\alpha,\beta}$ is invertible if and only if α, β are distinct.

7. Let a, b, c be numbers, and A be the (4×4) -square matrix given by

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ a & 1 & 0 & 0 \\ 0 & b & 1 & 0 \\ 0 & 0 & c & 1 \end{bmatrix}.$$

- (a) By considering whether the columns of A are linearly independent or linear dependent, or otherwise, show that A is invertible.
- (b) Determine the matrix inverse of A by finding a reduced row-echelon form which is row-equivalent to $[A | I_4]$. **Remark.** This method is the same as solving the system of linear equations encoded in the matrix equation

$$A\begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \\ x_{41} & x_{42} & x_{43} & x_{44} \end{bmatrix} = I_4$$

with the 16 unknowns which are the x_{ij} 's.)

8. Let $A = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 3 & 0 \\ 1 & 1 & 3 & 4 & 1 \\ 2 & 1 & 4 & 5 & 0 \\ 3 & 0 & 3 & 3 & 1 \end{bmatrix}$.

- (a) Find a reduced row-echelon form A' which is row-equivalent to A.
- (b) Hence, or otherwise, determine whether A is invertible. Justify your answer with reference to any equivalent formulation for the notion of invertibility.
- (c) Hence, or otherwise, determine whether the rows of A are linearly independent.
- 9. Let $\mathbf{t}_1, \mathbf{t}_2$ be column vectors with m entries.

Let A be a (2×2) -square matrix, whose (i, j)-th entry is a_{ij} .

Define $\mathbf{u}_1 = a_{11}\mathbf{t}_1 + a_{21}\mathbf{t}_2$ and $\mathbf{u}_2 = a_{12}\mathbf{t}_1 + a_{22}\mathbf{t}_2$.

- (a) Define $U = [\mathbf{u}_1 | \mathbf{u}_2]$, and $T = [\mathbf{t}_1 | \mathbf{t}_2]$. Verify that U = TA.
- (b) Suppose t₁, t₂ are linearly independent.
 Prove that the statements below are logically equivalent:—
 - (1) The column vectors $\mathbf{u}_1, \mathbf{u}_2$ are linearly independent.
 - (2) The matrix A is invertible.
- 10. Let $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3, \mathbf{t}_4$ be row vectors with *m* entries.

Let A be a (4×4) -square matrix, whose (i, j)-th entry is a_{ij} .

For each j = 1, 2, 3, 4, define $\mathbf{u}_j = a_{1j}\mathbf{t}_1 + a_{2j}\mathbf{t}_2 + a_{3j}\mathbf{t}_3 + a_{4j}\mathbf{t}_4$.

(a) Define
$$U = \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \mathbf{u}_3 \\ \mathbf{u}_4 \end{bmatrix}$$
, and $T = \begin{bmatrix} \mathbf{t}_1 \\ \mathbf{t}_2 \\ \mathbf{t}_3 \\ \mathbf{t}_4 \end{bmatrix}$

Verify that $U = A^t T$.

- (b) Suppose $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3, \mathbf{t}_4$ are linearly independent. Prove that the statements below are logically equivalent:—
 - (1) The row vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ are linearly independent.
 - (2) The matrix A is invertible.
- 11. Prove the statement below:—

Let B, C be $(m \times n)$ -matrices. Define the $(n \times n)$ -matrix A by $A = B^t C$. Suppose m < n. Then A is not invertible.

- 12. By considering the re-formulation of invertibility in terms of linear dependence/independence, or otherwise, prove the statement (\$\$):---
 - (#) Let A be a (4 × 4)-square matrix, and u be a column vector with 4 entries. Suppose A⁴u = 0₄ and A³u ≠ 0₄. Then the (4 × 4)-square matrix [u | Au | A²u | A³u] is invertible.