
3.3 Various necessary and sufficient conditions for invertibility.

0. Assumed background.

• What has been covered in Topics 1-2.
• 3.1 Invertible matrices.
• 3.2 Invertibility and row operations.

Abstract. We introduce:—

• various re-formulations of invertibility, and the reasons behind.

1. Earlier we have introduced a result about necessary and sufficient conditions for invertibility in terms of row oper-
ations. It is in fact a ‘baby version’ of a more extensive result, which is Theorem (1) below.
Theorem (1).
Suppose A is a (p× p)-square matrix. Then the statements below are logically equivalent:—

(a) A is invertible.
(b) A is row-equivalent to Ip.
(c) A is a product of (p× p)-row-operation matrices.
(d) A has a left inverse.
(e) A has a right inverse.
(f) The homogeneous system LS(A, 0p) has no non-trivial solution.
(g) For any column vector b with p entries, the system LS(A, b) is consistent.

Now suppose any one of the above holds (and hence all hold). Then the statements below hold:—

(α) [ A Ip ] is row-equivalent to [ Ip A−1 ].
(β) Ip is the only reduced row-echelon form which is row-equivalent to A.

(γ) For any column vector b with p entries, the system LS(A, b) has a unique solution, namely A−1b.

2. Comments on Theorem (1).

(a) Theorem (1) incorporates the claim (⋆) we have made earlier but are yet to justify:—
(⋆) Any given square matrix has both left and right inverses, or neither.
By proving Theorem (1), we can justify the claim (⋆)

(b) The full argument for Theorem (1) is lengthy.
A scheme of argument, to be followed by the detail for the various parts of the scheme, will be given later.

For the moment we will explore various theoretical consequences of Theorem (1) in the light of other established
results concerned with:—

• the (algebraic properties) of matrix inverses (Theorem (2), Theorem (3), Theorem (4), Theorem (5)),
• the notions of linear combinations, linear dependence, and linear independence for column vectors and row

vectors (Theorem (6), Theorem (7), Theorem (8)).

3. Recall the result below, labelled Theorem (♯) here, that has been already proved (and applied in other situations):
Theorem (♯).
Let A,B be (p× p)-matrices. Suppose each of A,B is invertible. Then AB is invertible.

4. With the help of Theorem (1), we are going to prove the converse of Theorem (♯):
Theorem (2). (Converse of Theorem (♯))
Let A,B be (p× p)-matrices.
Suppose AB is invertible.
Then each of A,B is invertible.
Remark. Theorem (2) is not obvious, and when only rudimentary tools are allowed to be used, the argument
for Theorem (2) will be non-trivial.
However, with the help of Theorem (1), the argument for Theorem (2) is little more than simple matrix algebra.

1



5. Proof of Theorem (2).
Let A,B be (p× p)-matrices.
Suppose AB is invertible. Denote the matrix inverse of AB by C.
By definition, we have (AB)C = Ip and C(AB) = Ip.

We have A(BC) = (AB)C = Ip. Then A has a right inverse, namely BC. Hence, by Theorem (1), A is invertible.

We also have (CA)B = C(AB) = Ip. Then B has a left inverse, namely, CA. Hence, by Theorem (1), B is invertible.

6. We may combine Theorem (♯) and Theorem (2) together to obtain Theorem (3). Further applying mathematical
induction, we can deduce Theorem (4). A special case of Theorem (4) is Theorem (5).
Theorem (3). (Invertibility of individual square matrices and their products.)
Suppose A,B are (p× p)-matrices.
Then AB is invertible if and only if each of A,B is invertible.
Theorem (4). (Corollary (1) to Theorem (3).)
Suppose A1, A2, · · · , An are (p× p)-matrices.
Then A1A2 · · ·An is invertible if and only if each of A1, A2, · · · , An is invertible.
Theorem (5). (Corollary (2) to Theorem (3).)
Suppose A is a (p× p)-matrix, and n is a positive integer.
Then An is invertible if and only if A is invertible.

7. We recall the theoretical result below, labelled Theorem (♮1), about linear independence.
Theorem (♮1).
Suppose u1,u2, · · · ,uq are column vectors with p entries, and U is the (p×q)-matrix given by U = [ u1 u2 · · · uq ].
(Here p, q are not assumed to be the same.)
Then the statements (LI), (LI0) are logically equivalent:—

(LI) u1,u2, · · · ,uq are linearly independent.
(Or equivalently: For any numbers α1, α2, · · · , αq, if α1u1+α2u2+· · ·+αquq = 0p then α1 = α2 = · · · = αq = 0.
Or further equivalently: For any column vector t with q entries, if Ut = 0p then t = 0q.)

(LI0) The homogeneous system LS(U, 0p) has no non-trivial solution.

8. Combining Theorem (1) and Theorem (♮1), we obtain the re-formulation of invertibility in terms of linear indepen-
dence.
Theorem (6). (Re-formulation of invertibility in terms of linear independence.)
Suppose A is a (p× p)-square matrix. Then the statements below are logically equivalent:—

(a) A is invertible.
(d) A has a left inverse.
(f) The homogeneous system LS(A, 0p) has no non-trivial solution.

(h) For any column vector t with p entries, if At = 0p then t = 0p.

(j) The columns of A are linearly independent.

9. Now recall the theoretical result below, labelled Theorem (♮2), about linear combinations.
Theorem (♮2).
Suppose u1,u2, · · · ,uq are column vectors with p entries, and U is the (p×q)-matrix given by U = [ u1 u2 · · · uq ].
(Here p, q are not assumed to be the same.)
Suppose v is a column vector with p entries. Then the statements (LC), (LC0) are logically equivalent:—

(LC) v is a linear combination of u1,u2, · · · ,uq.
(Or equivalently: There exist some numbers α1, α2, · · · , αq such that v = α1u1 + α2u2 + · · ·+ αquq.
Or further equivalently: There exists some column vector t with q entries such that v = Ut.)

(LC0) The system LS(U, v) is consistent.
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10. Combining Theorem (1) and Theorem (♮2), we obtain the re-formulation of invertibility in terms of linear combina-
tions.
Theorem (7). (Re-formulation of invertibility in terms of linear combinations.)
Suppose A is a (p× p)-square matrix. Then the statements below are logically equivalent:—

(a) A is invertible.
(e) A has a right inverse.
(g) For any column vector b with p entries, the system LS(A, b) is consistent.
(i) For any column vector b with p entries, there exists some column vector t with p entries such that At = b.
(k) Every column vector with p entries is a linear combination of the columns of A.

11. We next recall the theoretical results below, labelled Theorem (♭), about transpose and invertibility.
Theorem (♭).
Suppose B is a (p× p)-square matrix. Then the statements (♭1), (♭2) hold:

(♭1) The equality (Bt)t = B holds.

(♭2) Suppose B is invertible. Then Bt is invertible, and the matrix inverse of Bt is given by (Bt)−1 = (B−1)t.

12. Combining Theorem (1), Theorem (6), Theorem (7) and Theorem (♭), we obtain the result below, which gives a
vastly expanded list of possible re-formulations (some of them highly non-obvious at first sight) for the notion of
invertibility.
Theorem (8). (Various re-formulations for the notion of invertibiltiy.)
Suppose A is a (p× p)-square matrix. Then the statements below are logically equivalent:—

(a) A is invertible.

(b) A is row-equivalent to Ip.

(c) A is a product of (p× p)-row-operation matrices.

(d) A has a left inverse.

(e) A has a right inverse.

(a∗) At is invertible.

(b∗) At is row-equivalent to Ip.

(c∗) At is a product of (p× p)-row-operation matrices.

(d∗) At has a left inverse.

(e∗) At has a right inverse.

(f) The homogeneous system LS(A, 0p) has no non-
trivial solution.

(f∗) The homogeneous system LS(At, 0p) has no non-
trivial solution.

(g) For any column vector b with p entries, the system
LS(A, b) is consistent.

(g∗) For any column vector c with p entries, the system
LS(At, c) is consistent.

(h) For any column vector t with p entries, if At = 0p

then t = 0p.
(h∗) For any row vector u with p entries, if uA = 0p

t

then u = 0p
t.

(i) For any column vector b with p entries, there is some
column vector t with p entries such that At = b.

(i∗) For any row vector c with p entries, there is some
row vector u with p entries such that uA = c.

(j) The columns of A are linearly independent. (j∗) The rows of A are linearly independent.

(k) Every column vector with p entries is a linear com-
bination of the columns of A.

(k∗) Every row vector with p entries is a linear combina-
tion of the rows of A.

Now suppose any one of the above holds (and hence all hold). Then the statements below hold:—

(α) [ A Ip ] is row-equivalent to [ Ip A−1 ]. (α∗) [ At Ip ] is row-equivalent to [ Ip (At)−1 ].

(β) Ip is the only reduced row-echelon form which is
row-equivalent to A.

(β∗) Ip is the only reduced row-echelon form which is
row-equivalent to At.

(γ) For any column vector b with p entries, the system
LS(A, b) has a unique solution, namely A−1b.

(γ∗) For any column vector c with p entries, the system
LS(At, c) has a unique solution, namely (At)−1c.

13. Scheme of argument for Theorem (1).
Suppose A is a (p× p)-square matrix.
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I. Observations, on where we do not have to do anything.
I.1. From what we have learnt about row operations and row-operation matrices, we know that the statement

(b) and the statement (c) are logically equivalent:—
A is row-equivalent to Ip︸ ︷︷ ︸

Statement (b)

if and only if A is a product of (p× p)-row-operation matrices︸ ︷︷ ︸
Statement (c)

.

I.2. According to definition for the notion of invertibility, we know that the statement (a) implies the statement
(d) and the statement (e):—

If A is invertible︸ ︷︷ ︸
Statement (a)

, then A has a left inverse︸ ︷︷ ︸
Statement (d)

and A has a right inverse︸ ︷︷ ︸
Statement (e)

.

I.3. We have already known that the statement (a) implies the statement (γ):—
If A is invertible︸ ︷︷ ︸

Statement (a)

then

for any column vector b with p entries, the system LS(A, b) has a unique solution, namely A−1b︸ ︷︷ ︸
Statement (γ)

.

I.4. We have also known that the statement (d) implies the statement (f):—
If A has a left inverse︸ ︷︷ ︸

Statement (d)

then The homogeneous system LS(A, 0p) has no non-trivial solution︸ ︷︷ ︸
Statement (f)

.

I.5. We have further known that the statement (e) implies the statement (g):—
If A has a right inverse︸ ︷︷ ︸

Statement (e)

then

for any column vector b with p entries, the system LS(A, b) is consistent︸ ︷︷ ︸
Statement (g)

.

II. Observations, on where we need to do something.
In the light of the above observations, we only have to prove three results, to be labelled Theorem (9), Theorem
(10) and Theorem (11), whose purposes are explained below:—

II.1. In Theorem (9), we deduce that the statement (b) implies the statement (a) and the statement (α):—
If A is row-equivalent to Ip︸ ︷︷ ︸

Statement (b)

, then A is invertible︸ ︷︷ ︸
Statement (a)

and [ A Ip ] is row-equivalent to [ Ip A−1 ]︸ ︷︷ ︸
Statement (α)

.

II.2. In Theorem (10), we deduce that that the statement (f) implies the statement (b):—
If the homogeneous system LS(A, 0p) has no non-trivial solution︸ ︷︷ ︸

Statement (f)

then

A is row-equivalent to Ip︸ ︷︷ ︸
Statement (b)

.

II.3. By making a slight adapation to the argument for Theorem (10), we also deduce that the statement (f)
implies the statement (β):—

If the homogeneous system LS(A, 0p) has no non-trivial solution︸ ︷︷ ︸
Statement (f)

then

Ip is the only reduced row-echelon form which is row-equivalent to A︸ ︷︷ ︸
Statement (β)

.

II.4. In Theorem (11), we deduce that the statement (g) implies the statement (b):—
If for any column vector b with p entries, the system LS(A, b) is consistent︸ ︷︷ ︸

Statement (g)

then

A is row-equivalent to Ip︸ ︷︷ ︸
Statement (b)

.

14. Theorem (9).
Let A be a (p× p)-square matrix. Suppose A is row-equivalent to Ip.
Then the statements below hold:

(1) A is invertible.
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(2) [ A Ip ] is row-equivalent to [ Ip A−1 ].

15. Proof of Theorem (9).
Let A be a (p× p)-square matrix. Suppose A is row-equivalent to Ip.
Then A is a product of row-operation matrices, say, G1, G2, · · · , Gk−1, Gk, giving some equality, say,

A = G1G2 · · ·Gk−1Gk.

Each of G1, G2, · · · , Gk−1, Gk is invertible. Then, since the equality A = G1G2 · · ·Gk−1Gk holds, A is also invertible.

Moreover, Ip = G1G2 · · ·Gk−1GkA
−1.

Hence we have

[ A Ip ] = [ AIp AA−1 ] = A[ Ip A−1 ] = G1G2 · · ·Gk−1Gk[ Ip A−1 ]

For each j = 1, 2, · · · , k, k − 1, denote by ρj the row-operation to which the row-operation matrix Gj is associated.

Then we have the sequence of row operations joining [ Ip A−1 ] to [ A Ip ] below:

[ Ip A−1 ]
ρk−→

ρ
k−1−−−→

ρ
k−2−−−→ · · · · · · · · · ρ2−→ ρ3−→ ρ1−→ [ A Ip ]

Therefore [ Ip A−1 ] is row-equivalent to [ A Ip ].

Hence [ A Ip ] is row-equivalent to [ Ip A−1 ].

16. Recall the result below, denoted by Theorem (†) here, about systems of linear equations.
Theorem (†).
Let A,A′ be (p× q)-matrices, and b,b′ be column vectors with p entries.
Suppose A,b and A′,b′ are row-equivalent under the same sequence of row operations.
Suppose t is a column vector with q entries.
Then t is a solution of LS(A, b) if and only if t is a solution of LS(A′, b′).

17. With the help of Theorem (†), we establish Theorem (10).
Theorem (10).
Let A be a (p× p)-square matrix.
Suppose the homogenous system LS(A, 0p) has no non-trivial solution.
Then A is row-equivalent to Ip.

18. Proof of Theorem (10).
Let A be a (p× p)-square matrix.
Suppose the homogenous system LS(A, 0p) has no non-trivial solution.

For such a matrix A, there is some reduced row-echelon form A′ such that A′ is row-equivalent to A.
[We want to deduce that A′ = Ip.]

Note that A,0p are row-equivalent to A′,0p under the same sequence of row operations.

By Theorem (†), since LS(A, 0p) has no non-trivial solution, LS(A′, 0p) also has no non-trivial solution.

Then every column of A′ is a pivot column.
Therefore, for each j = 1, 2, · · · , p, the (j, j)-th entry of A′ is 1; all other entries of A′ are 0.
Since A′ is a square matrix, we have A′ = Ip.
It follows that A is row-equivalent to Ip.

19. Comment on the proof of Theorem (10).
By replacing the line

‘For such a matrix A, there is some reduced row-echelon form A′ such that A′ is row-equivalent to A’

with
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‘Suppose A′ a reduced row-echelon form which is row-equivalent to A’,

we obtain a passage which gives an argument for this result:—

‘Let A be a (p× p)-square matrix.
Suppose the homogenous system LS(A, 0p) has no non-trivial solution.
Then Ip is the only reduced row-echelon form which is row-equivalent to A.’

20. Recall the result below, denoted by Theorem (‡) here, about row operations and row-operation matrices.
Theorem (‡).
Let B,B′ be (p× q)-matrices.
Suppose B is row-equivalent to B′.
Then there are some (p× p)-row-operation matrices H1,H2, · · · ,Hk such that B′ = H1H2 · · ·HkB.

21. With the help of Theorem (‡), we establish Theorem (11).
Theorem (11).
Let A be a (p× p)-square matrix.
Suppose that for any column vector b with p entries, the system LS(A, b) is consistent.
Then A is row-equivalent to Ip.

22. Proof of Theorem (11).
Let A be a (p× p)-square matrix.
Suppose that for any column vector b with p entries, the system LS(A, b) is consistent.

• Preparation.
For each j = 1, 2, · · · , p, denote by ej the column vector with j-th entry being 1 and with all other entries
being 0.
Then by assumption, for each j = 1, 2, · · · , p, the system LS(A, ej) is consistent, say, with solution uj .
Define the (p× p)-matrix U by U = [ u1 u2 · · · up ].
We have the chain of equalities AU = A[ u1 u2 · · · up ] = [ Au1 Au2 · · · Aup ] = [ e1 e2 · · · ep ] =

Ip.
• More preparation.

There is some reduced row-echelon form A′, of rank, say, r, such that A′ is row-equivalent to A.
[We want to deduce that r = p and A′ = Ip.]
By Theorem (‡), since A is row-equivalent to A′, there are some (p×p)-row-operation matrices H1,H2, · · · ,Hk

such that A′ = H1H2 · · ·HkA.
Write H = H1H2 · · ·Hk. Then A′ = HA.
Each of H1,H2, · · · ,Hk is invertible. Then H is invertible.
Note that A′U = (HA)U = H(AU) = HIp = H.
Since H is invertible, we have A′UH−1 = HH−1 = Ip.

We claim that every row of A′ is a non-zero row.
This is justified, with the proof-by-contradiction argument:

• Suppose that not every row of A′ were a non-zero row.
Then the bottom row of A′ is a row of 0’s.
By the definition of matrix multiplication, the bottom row of A′UH−1 is also a row of 0’s.
But A′UH−1 = Ip. So the last entry of A′UH−1 is 1. This is impossible.

So we have shown that every row of A′ is a non-zero row. Then r = p.
Therefore all p columns of A′ are pivot columns. It follows that A′ = Ip.
Hence A is row-equivalent to Ip.
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