3.2.1 Exercise: Invertibility and row operations.

Unless otherwise stated, you may use the validity of the result below, labeled (\star) (which is yet to be proved, but will be proved very soon):-
(\star) Suppose A is a $(p \times p)$-square matrix. Then the statements below are logically equivalent:-
(a) A is invertible.
(b) A is row-equivalent to I_{p}.
(c) A is a product of $(p \times p)$-row-operation matrices.

1. For each of the $(p \times p)$-square matrices below, denoted by A here:-

- obtain, through the application of some appropriate sequence of row operations starting from [$A \mid I_{p}$], some $(p \times p)$-square matrices A^{\sharp}, B^{\sharp} for which $\left[A^{\sharp} \mid B^{\sharp}\right]$ is a row-echelon form row-equivalent to [$A \mid I_{p}$], and
- hence decide whether A is invertible.

Where A is invertible, further obtain the matrix inverse A^{-1} through the application of some appropriate sequence of row operations starting from $\left[A^{\sharp} \mid B^{\sharp}\right]$.
(a) $A=\left[\begin{array}{ll}3 & 5 \\ 2 & 3\end{array}\right]$
(e) $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8\end{array}\right]$.
(h) $A=\left[\begin{array}{ccc}1 & 3 & -4 \\ 1 & 5 & -1 \\ 3 & 13 & 6\end{array}\right]$.
(b) $A=\left[\begin{array}{ll}5 & 3 \\ 4 & 2\end{array}\right]$
(f) $A=\left[\begin{array}{ccc}1 & -2 & 2 \\ 2 & -3 & 6 \\ 1 & 1 & 7\end{array}\right]$.
(i) $A=\left[\begin{array}{cccc}1 & 1 & 1 & 5 \\ 1 & 3 & 2 & 9 \\ 1 & 1 & -1 & 1 \\ 1 & 2 & 1 & 6\end{array}\right]$.
(c) $A=\left[\begin{array}{cc}2 & -3 \\ 1 & 3\end{array}\right]$
(j) $A=\left[\begin{array}{cccc}1 & 1 & 2 & 1 \\ 0 & -2 & 0 & 0 \\ 1 & 2 & 1 & -2 \\ 0 & 3 & 2 & 1\end{array}\right]$.
(d) $A=\left[\begin{array}{cc}-2 & 6 \\ 3 & -9\end{array}\right]$
(g) $A=\left[\begin{array}{ccc}1 & 2 & -4 \\ -1 & -1 & 5 \\ 2 & 7 & -3\end{array}\right]$.
2. Let $\alpha_{12}, \alpha_{13}, \alpha_{14}, \alpha_{23}, \alpha_{24}, \alpha_{34}$ be numbers.

Let $L\left(\alpha_{21}, \alpha_{31}, \alpha_{41}, \alpha_{32}, \alpha_{42}, \alpha_{43}\right)$ be the (4×4)-square matrix given by

$$
L\left(\alpha_{21}, \alpha_{31}, \alpha_{41}, \alpha_{32}, \alpha_{42}, \alpha_{43}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\alpha_{21} & 1 & 0 & 0 \\
\alpha_{31} & \alpha_{32} & 1 & 0 \\
\alpha_{41} & \alpha_{42} & \alpha_{43} & 1
\end{array}\right] .
$$

(a) Write down an appropriate sequence of 6 row operations joining an appropriate reduced row-echelon form to $L\left(\alpha_{21}, \alpha_{31}, \alpha_{41}, \alpha_{32}, \alpha_{42}, \alpha_{43}\right)$
(b) Hence, or otherwise, show that $L\left(\alpha_{21}, \alpha_{31}, \alpha_{41}, \alpha_{32}, \alpha_{42}, \alpha_{43}\right)$ is a product of 6 row-operation matrices.
(c) Is $L\left(\alpha_{21}, \alpha_{31}, \alpha_{32}, \alpha_{41}, \alpha_{42}, \alpha_{43}\right)$ invertible? Justify your answer, with reference to your answer for the previous part.
3. Let A be an (4×4)-upper triangular matrix, whose (i, j)-th entry is denoted by $a_{i j}$ for each i, j. Suppose all the diagonal entries of A are non-zero.
(a) Prove that there are some square-matrices B, C such that $A=B C$ and B is a diagonal matrix whose diagonal entries are all non-zero and C is an upper uni-triangular matrix.
(Hint. It may be best to conceive B as a product of some appropriate row-operation matrices.)
(b) Hence, or otherwise, deduce that A is invertible.
4. Let $A=\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6 & 0\end{array}\right]$.
(a) Write down an appropriate sequence of row operations joining A to a reduced row-echelon form which is row-equivalent to A.
(b) Hence, or otherwise, express A as a product of row-operation matrices.
(c) Is A invertible? Justify your answer, with reference to your answer for the previous part. If A is invertible, also give the matrix inverse of A explicitly.
5. Let A, B, C, D be some (4×4)-square matrices.

Suppose $C=\left[\begin{array}{cccc}-1 & 1 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ -6 & 3 & 1 & 0 \\ 24 & -12 & -4 & 1\end{array}\right],[B \mid C]$ is a reduced row-echelon form, and $[A \mid D]$ is row-equivalent to [$B \mid C$], being joint by the sequence of row operations below:

$$
[A \mid D] \xrightarrow{-2 R_{1}+R_{2}} \xrightarrow{-1 R_{2}} \xrightarrow{-3 R_{2}+R_{3}} \xrightarrow{-4 R_{3}+R_{4}} \xrightarrow{-1 R_{2}+R_{1}}[B \mid C]
$$

(a) What is B ?
(b) Compute A, D.
(c) Is A invertible? If yes, also give the matrix inverse of A.
6. Let $A=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 \\ 2 & 0 & 0 & 1 \\ -1 & 1 & 1 & 1\end{array}\right]$.
(a) Find a reduced row-echelon form which is row-equivalent to [$\left.A \mid I_{4}\right]$.
(b) Is A invertible? Justify your answer. If A is invertible, also write down the matrix inverse of A.
(c) Let \mathbf{b} be a column vector with 4 entries, whose j-th entry is b_{j} for each j .

Solve the system $\mathcal{L S}(A, \mathbf{b})$, expressing the solutions in terms of $b_{1}, b_{2}, b_{3}, b_{4}$.
(d) Let $\mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$.

Solve the system $\mathcal{L S}\left(A^{2}, \mathbf{e}_{2}\right)$.
7. Let A be a (4×4)-square matrix. Suppose that there is a sequence of row operations

$$
\left[A \mid I_{4}\right] \longrightarrow \cdots \longrightarrow\left[\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 0 & 0 & 0 & 1 & \beta \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & -\alpha & \alpha & 0 & 0 & 0 \\
0 & 0 & 0 & \beta & -\beta & \beta & -\beta & \beta
\end{array}\right]
$$

in which α, β are some numbers.
(a) Name all possible values of β for which A is invertible.
(b) Suppose A is invertible.
i. Write down the matrix inverse of A. Leave your answer in terms of α, β.
ii. Is it possible for α to be any number?

- If your answer is yes, write ' α can be any number'.
- If your answer is no, write down any one number which α cannot equal.

8. Prove the statements below:-
(a) Let B, C be $(p \times p)$-square matrices. Suppose B, C are invertible. Then B is row-equivalent to C.
(b) Let B, C be $(p \times p)$-square matrices. Suppose B is invertible, and B is row-equivalent to C. Then C is invertible.
