3.1.1 Answers to Exercise.

1. (a) $A^{2}=\left[\begin{array}{ccc}-\beta^{2} & \alpha \beta & \beta \\ \alpha \beta & -\alpha^{2} & -\alpha \\ -\beta & \alpha & 1\end{array}\right], A^{3}=\mathcal{O}_{3 \times 3}$.
(b) i.
ii. $C_{s}{ }^{-1}=C_{-s}$ for each number s.
2. (a)
(b) Comment.

The argument should be made of two parts. You should argue for both (1) and (2):
(1) I_{n} is idempotent and invertible.
(2) For any $(n \times n)$-square matrix P, if P is idempotent and invertible, then $P=I_{n}$.
3. (a) $\alpha=1, \beta=-1$.
(b) Comment.

It will happen that $\left(A^{-1} B\right)^{2}=I_{p}$. (So $A^{-1} B$ is involutary.)
4. \qquad
5. (a) One possible choice is to take $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$.
(b) One possible choice is to take $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
6. \qquad
7. (a) -
(b) An appropriate choice is to take $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right], B=\left[\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right]$
8. \qquad
9. \qquad
10. (a) $\alpha=98, \beta=95$.
(b) One such choice of a, b, c is given by $a=1, b=-30, c=5$.
(c) $P^{-1}=-\frac{1}{5} P^{2}-\frac{1}{5} P+6 I_{3}$.
11. (a) $B^{2}=\left[\begin{array}{cccc}1 & 1 & 1 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ and $B^{3}=\left[\begin{array}{cccc}1 & 0 & 2 & 0 \\ 0 & -3 & 2 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
$B^{3}-2 B=-I_{4}$.
(b) $B^{-1}=-B^{2}+2 I_{4}=\left[\begin{array}{cccc}1 & -1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
(c) B^{t} is invertible.

$$
\left(B^{t}\right)^{-1}=\left(B^{-1}\right)^{t}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(d) C is invertible.

$$
C^{-1}=B^{-1}\left(B^{t}\right)^{-1}=\left[\begin{array}{cccc}
3 & -1 & -2 & 0 \\
-1 & 1 & 1 & 0 \\
-2 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(e) i. One approrpriate choice for \widetilde{D} is given by $\widetilde{D}=\left(B+\sqrt{2} I_{4}\right) B$.

For such a \widetilde{D}, it happens that $D \widetilde{D}=\left(B-\sqrt{2} I_{4}\right)\left(B+\sqrt{2} I_{4}\right) B=B^{3}-2 B$.
ii. D is invertible.

$$
D^{-1}=-\widetilde{D}=-\left(B+\sqrt{2} I_{4}\right) B=\left[\begin{array}{cccc}
-1-\sqrt{2} & -1 & -1-\sqrt{2} & 0 \\
0 & -2+\sqrt{2} & 1-\sqrt{2} & 0 \\
0 & 1-\sqrt{2} & -1 & 0 \\
0 & 0 & 0 & -1-\sqrt{2}
\end{array}\right]
$$

12. (a) i. A is invertible, and its matrix inverse is given by $\frac{1}{c} A^{4}-\frac{4}{c} A^{2}$.
ii. $c I+4 A^{3}$ invertible, and its matrix inverse is given by $-\frac{4}{c^{2}} A^{3}+\frac{16}{c^{2}} A+\frac{1}{c} I$.
(b) When $c=0, A$ is not invertible.
13. (a)
(b) i. One possible choice of counter-examples is to take $A=B=C=D=I_{2}$.
ii. One possible choice of counter-examples is to take $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right], C=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], D=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$.
14. \qquad
15. \qquad
