3.1.1 Exercise: Invertible matrices.

In some of the questions below, you will need the respective notions of idempotency, involutoricy, polynomial of a square matrix. Their respective definitions are given below:-

- Let C be a square matrix.
(1) We say that C is idempotent if and only if $C^{2}=C$.
(2) We say that C is involutoric if and only if C^{2} is the identity matrix.
- Suppose B is a $(p \times p)$-square matrix, and $a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}, a_{n}$ be numbers.

Then the $(p \times p)$-square matrix given by

$$
a_{0} I_{p}+a_{1} B+a_{2} B^{2}+\cdots+a_{n-1} B^{n-1}+a_{n} B^{n}
$$

is called the polynomial of B with respective coefficients $a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}, a_{n}$.
For convenience of notations, if $f(x)$ is the polynomial with variable x given by $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+$ $a_{n-1} x^{n-1}+a_{n} x^{n}$, then we agree to write

$$
f(B)=a_{0} I_{p}+a_{1} B+a_{2} B^{2}+\cdots+a_{n-1} B^{n-1}+a_{n} B^{n} .
$$

1. Let α, β be numbers. Suppose $\alpha^{2}+\beta^{2}=1$.

Define the (3×3)-square matrix A by

$$
A=\left[\begin{array}{ccc}
0 & 1 & \alpha \\
-1 & 0 & \beta \\
\alpha & \beta & 0
\end{array}\right]
$$

(a) Compute A^{2}, A^{3}.
(b) For each number x, define the (3×3)-square matrix C_{x} by

$$
C_{x}=I_{3}+x A+\frac{1}{2} x^{2} A^{2}
$$

i. Show that $C_{s+t}=C_{s} C_{t}$ for any numbers s, t.
ii. Hence, or otherwise, show that C_{s} is invertible for each number s. What is the matrix inverse of C_{s} ?
2. Prove the statements below:-
(a) Every involutary matrix is invertible, and its matrix inverse is itself.
(b) I_{n} is the one and only one idempotent $(n \times n)$-square matrix which is invertible.
3. Let A, B be $(p \times p)$-square matrices. Suppose A is invertible.
(a) Verify that $(A+B) A^{-1}(A-B),(A-B) A^{-1}(A+B)$ are equal to each other, and they are equal to $\alpha A+\beta B A^{-1} B$, in which α, β are some appropriate integers that you have to name explicitly.
(b) Suppose $(A+B) A^{-1}(A-B)=\mathcal{O}_{p \times p}$. Show that B is invertible. (Hint. First show that $A^{-1} B$ is invertible.)
4. (a) Apply mathematical induction to prove the statement (\sharp): :
(\sharp) Let $A_{1}, A_{2}, \cdots, A_{n}$ be $(p \times p)$-square matrices. Suppose $A_{1}, A_{2}, \cdots, A_{n}$ are invertible.
Then the product $A_{1} A_{2} \cdots A_{n}$ is invertible with matrix inverse given by

$$
\left(A_{1} A_{2} \cdots A_{n}\right)^{-1}=A_{n}^{-1} \cdots A_{2}^{-1} A_{1}{ }^{-1} .
$$

(b) Hence, or otherwise, prove the statement (b):-
(দ) Let A be a $(p \times p)$-square matrix. Suppose A is invertible.
Then, for each positive integer n, the matrix A^{n} is invertible with matrix inverse given by $\left(A^{n}\right)^{-1}=\left(A^{-1}\right)^{n}$.
5. For each of the statements below, provide a dis-proof against it by giving an appropriate counter-example:-
(a) Suppose A, B are invertible (2×2)-square matrices. Then $A+B$ is invertible.
(b) Suppose A, B are invertible (2×2)-square matrices. Then $A+B$ is not invertible.
6. Prove the statements below:-
(a) Let A be a square matrix. Suppose A is symmetric and A is invertible. Then A^{-1} is symmetric.
(b) Let A be a square matrix. Suppose A is skew-symmetric and A is invertible. Then A^{-1} is skew-symmetric.
7. (a) Let A, B be $(p \times p)$-square matrices. Suppose A, B are invertible. Further suppose A, B are symmetric, and A, B commute with each other. Prove the statements below:-
i. A^{-1}, B commute with each other.
ii. A, B^{-1} commute with each other.
iii. A^{-1}, B^{-1} commute with each other.
iv. $A B, A^{-1} B, A B^{-1}, A^{-} B^{-1}$ are symmetric.
(b) Dis-prove the statements below by providing appropriate counter-examples respectively:-

Let A, B be (2×2)-square matrices. Suppose A, B are invertible. Further suppose A, B are symmetric. Then $A^{-1} B$ is symmetric.
8. (a) Prove the statement below:-
i. Let A be a square matrix. Suppose some entire column of A is a column of zeros. Then A is not invertible.
ii. Let B be a square matrix. Suppose some entire row of B is a row of zeros. Then B is not invertible.
(b) Explain why the square matrices below are not invertible.
i. $\left[\begin{array}{llllll}1 & 2 & 1 & 0 & 1 & 0 \\ 2 & 3 & 3 & 1 & 2 & 0 \\ 3 & 4 & 5 & 0 & 4 & 0 \\ 4 & 5 & 9 & 1 & 8 & 0 \\ 5 & 6 & 7 & 0 & 4 & 0 \\ 6 & 7 & 5 & 1 & 2 & 0\end{array}\right]$
ii. $\left[\begin{array}{llllll}1 & 2 & 1 & 2 & 1 & 2 \\ 4 & 2 & 4 & 2 & 4 & 2 \\ 4 & 4 & 4 & 8 & 8 & 8 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 5 & 6 & 7 & 3 & 2 & 1 \\ 6 & 7 & 8 & 7 & 8 & 9\end{array}\right]$
(c) Prove the statement (\sharp) :-
(\sharp) Let C, D be $(p \times p)$-square matrices. Suppose some column of $C D$ is a column of zeros, or some row of $C D$ is a row of zeros. Then at least one of C, D is not invertible.

Remark. As a consequence of the statement (\sharp), the statement ($\left.\not \sharp^{\prime}\right)$ holds:-
Let C, D be $(p \times p)$-square matrices. Suppose $C D=\mathcal{O}_{p \times p}$. Then at least one of C, D is not invertible.
9. Let A be a $(p \times p)$-square matrix, and let $f(x)$ be the polynomial with variable x, of degree n greater than 1 , given by $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n}$. (So $a_{n} \neq 0$.)
Suppose $f(A)=\mathcal{O}_{p \times p}$.
Suppose $a_{0} \neq 0$. Prove that B is invertible. Also write down the matrix inverse of B in terms of the coefficients of the polynomial $f(x)$.
10. Let $P=\left[\begin{array}{rrr}2 & 4 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & -5\end{array}\right]$. Take for granted that $P^{2}=\left[\begin{array}{rrr}9 & 19 & 9 \\ 7 & 17 & -8 \\ 0 & -5 & 35\end{array}\right]$ and $P^{3}=\left[\begin{array}{rrr}46 & 101 & 21 \\ 23 & 38 & \alpha \\ 30 & \beta & -190\end{array}\right]$.
(a) What are the values of α, β ?
(b) Show that there are some numbers a, b, c such that $P^{3}+a P^{2}+b P+c I_{3}=\mathcal{O}_{3 \times 3}$.
(c) Show P is invertible, and express the matrix inverse of P in the form $\kappa I_{3}+\lambda P+\mu P^{2}$ for some appropriate numbers κ, λ, μ.
11. Let $B=\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
(a) Compute the matrices B^{2}, B^{3}, and $B^{3}-2 B$.
(b) Applying the result of the previous part, or otherwise, show that B is invertible and find its matrix inverse.
(c) Is B^{t} invertible? Justify your answer.

If yes, find its matrix inverse.
(d) Let C be the square matrix given by $C=B^{t} B$.

Is C invertible? Justify your answer.
If yes, find its matrix inverse.
(e) Let D be the square matrix given by $D=B-\sqrt{2} I_{4}$.
i. Write down a square matrix \widetilde{D} in terms of B for which $D \widetilde{D}=B^{3}-2 B$. Justify your answer.
ii. Is D invertible? Justify your answer.

If yes, find its matrix inverse.
12. Let A be a (9×9)-square matrix, and c be a real number.

Suppose the equality $A^{5}-4 A^{3}-c I=\mathcal{O}$ holds.
(Here I stands for the (9×9)-identity matrix and \mathcal{O} stands for the (9×9)-zero matrix.)
(a) Suppose $c \neq 0$.
i. Is A invertible? Justify your answer.
ii. Is $c I+4 A^{3}$ invertible? Justify your answer.

If this matrix is invertible, also express its matrix inverse in the form

$$
\alpha I+\beta A+\gamma A^{2}+\delta A^{3}+\varepsilon A^{4}
$$

for some appropriate real numbers $\alpha, \beta, \gamma, \delta, \varepsilon$.
(b) Suppose $c=0$, and $\frac{1}{2} A$ is not a matrix inverse of itself. Is A invertible? Justify your answer.
13. (a) Prove the statements below, with direct reference to the definition of invertibility:-
i. Let A be a $(p \times p)$-square matrix, and D be a $(q \times q)$-square matrix. Suppose A, D are invertible. Then the $((p+q) \times(p+q))$-square matrix $\left[\begin{array}{c|c}A & \mathcal{O}_{p \times q} \\ \hline \mathcal{O}_{q \times p} & D\end{array}\right]$ is invertible.
ii. Suppose B is a $(p \times q)$-matrix. Then the $((p+q) \times(p+q))$-square matrix $\left[\begin{array}{c|c}I_{p} & B \\ \hline \mathcal{O}_{q \times p} & I_{q}\end{array}\right]$ is invertible.
iii. Let A be a $(p \times p)$-square matrix, B be a $(p \times q)$-matrix and D be a $(q \times q)$-square matrix. Suppose A, D are invertible. Then the $((p+q) \times(p+q))$-square matrix $\left[\begin{array}{c|c}A & B \\ \mathcal{O}_{q \times p} & D\end{array}\right]$ is invertible.
Remark. For the last statement, one possible approach is to first ask the question what the matrix inverse of $\left[\begin{array}{c|c}A & B \\ \hline \mathcal{O}_{q \times p} & D\end{array}\right]$ will be like if it is invertible. More precisely, what can we say about the $(p \times p)$-square matrix G, the $(p \times q)$-matrix H, the $(q \times p)$-matrix K, and the $(q \times q)$-matrix L if the $((p+q) \times(p+q))$-square matrix $\left[\begin{array}{c|c}G & H \\ \hline K & L\end{array}\right]$ is a matrix inverse of $\left[\begin{array}{c|c}A & B \\ \mathcal{O}_{q \times p} & D\end{array}\right]$?
(b) Dis-prove the statements below by providing appropriate counter-examples.
i. Let A, B, C, D be (2×2)-square matrices. Suppose A, B, C, D are invertible. Then $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ is invertible.
ii. Let A, B, C, D be (2×2)-square matrices. Suppose A, B, C, D are not invertible. Then $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ is not invertible.
14. (a) Prove the statements below, with direct reference to the definition of invertibility:-
i. Let A be a (2×2)-square matrix whose (i, j)-th entry is $a_{i j}$ for each i, j. Suppose A is invertible. Then (for each positive integer n,) $\left[\begin{array}{l|l}a_{11} I_{n} & a_{12} I_{n} \\ \hline a_{21} I_{n} & a_{22} I_{n}\end{array}\right]$ is invertible.
ii. Let A be a (2×2)-square matrix whose (i, j)-th entry is $a_{i j}$ for each i, j, and C be an $(n \times n)$-square matrix. Suppose A, C are invertible. Then $\left[\begin{array}{c|c}a_{11} C & a_{12} C \\ \hline a_{21} C & a_{22} C\end{array}\right]$ is invertible.
Remark. Note that an assumption that reads ' A is invertible' allows you to infer that some square matrix B serves as the matrix inverse of A. It may be unnecessary to give the entries of B explicitly in terms of the entries of the A.
(b) Prove the statements below, with direct reference to the definition of invertibility:-
i. Let A be a (2×2)-square matrix whose (i, j)-th entry is $a_{i j}$ for each i, j. Suppose $\left[\begin{array}{l|l}a_{11} I_{3} & a_{12} I_{3} \\ \hline a_{21} I_{3} & a_{22} I_{3}\end{array}\right]$ is invertible. Then A is invertible.
ii. Let A be a (2×2)-square matrix whose (i, j)-th entry is $a_{i j}$ for each i, j, and C be (3×3)-square matrix. Suppose $\left[\begin{array}{c|c}a_{11} C & a_{12} C \\ \hline a_{21} C & a_{22} C\end{array}\right]$ is invertible. Then A is invertible, and C is invertible.

Remark. For the second statement, it may be easier to give a proof-by-contradiction argument. Such an argument should start in this way:-

Let A be a (2×2)-square matrix whose (i, j)-th entry is $a_{i j}$ for each i, j, and C be (3×3)-square matrix. Suppose $\left[\begin{array}{l|l}a_{11} C & a_{12} C \\ \hline a_{21} C & a_{22} C\end{array}\right]$ is invertible. Further suppose that A was not invertible, or C was not invertible.
15. Prove the statements $(\dagger),(\ddagger)$ below, with reference to the respective definitions for the notions of left inverse, right inverse:-
(\dagger) Let A be a $(p \times q)$-matrix. Suppose A has a left inverse. Then:-
(a) For any column vector \mathbf{b} with p entries, the system $\mathcal{L S}(A, \mathbf{b})$ has at most one solution.
(b) The homogeneous system $\mathcal{L S}\left(A, \mathbf{0}_{p}\right)$ has no non-trivial solution; its only solution is $\mathbf{0}_{q}$.
(\ddagger) Let A be a $(p \times q)$-matrix. Suppose A has a right inverse. Then, for any column vector \mathbf{b} with p entries, the system $\mathcal{L S}(A, \mathbf{b})$ is consistent.

