2.6.1 Answers to Exercise.

1. (a) Linearly independent.
(b) Linearly independent.
(c) Linearly independent.
(d) Linearly independent.
(e) Linearly dependent.
$-3 \mathbf{u}_{1}-2 \mathbf{u}_{2}+\mathbf{u}_{3}=\mathbf{0}_{3}$.
(There are infinitely many non-trivial linear relations.)
(f) Linearly independent.
(g) Linearly independent.
(h) Linearly dependent.
$2 \mathbf{u}_{1}-\mathbf{u}_{2}+\mathbf{u}_{3}=\mathbf{0}_{4}{ }^{t}$.
(There are infinitely many non-trivial linear relations.)
(i) Linearly independent.
(j) Linearly independent.
(k) Linearly independent.
(l) Linearly dependent.
$\mathbf{u}_{1}+\mathbf{u}_{2}+\mathbf{u}_{3}+\mathbf{u}_{4}=\mathbf{0}_{4}$.
(There are infinitely many non-trivial linear relations.)
(m) Linearly independent.
(n) Linearly dependent.
$-2 \mathbf{u}_{1}+\mathbf{u}_{2}+\mathbf{u}_{3}=\mathbf{0}_{6}$.
(There are infinitely many non-trivial linear relations.)
2. (a) $\alpha=-6$.
$-3 \mathbf{u}_{1}+2 \mathbf{u}_{2}+\mathbf{u}_{3}=\mathbf{0}_{5}$.
(b) $\alpha=2$.
$\mathbf{u}_{1}-3 \mathbf{u}_{2}+2 \mathbf{u}_{3}+\mathbf{u}_{4}=\mathbf{0}_{4}$.
(c) $\alpha=-2$ and $(\beta=2$ or $\beta=-2)$.

In each case, $\frac{3}{2} \mathbf{u}_{1}-\mathbf{u}_{2}-\frac{1}{2} \mathbf{u}_{3}+\mathbf{u}_{4}=\mathbf{0}_{5}{ }^{t}$.
(d) $\alpha=-2$ and $(\beta=2$ or $\beta=-2)$.

In each case, $3 \mathbf{u}_{1}-2 \mathbf{u}_{2}-\mathbf{u}_{3}+2 \mathbf{u}_{4}(\alpha, \beta)=\mathbf{0}_{5}{ }^{t}$.
3. Comment.

The key is to make use the 'dictionary' between linear combinations and matrix-vector product to translate the assumption

$$
\left\{\begin{array}{l}
\mathbf{u}_{1}=a_{11} \mathbf{t}_{1}+a_{21} \mathbf{t}_{2}+a_{31} \mathbf{t}_{3}+a_{41} \mathbf{t}_{4}+a_{51} \mathbf{t}_{5} \\
\mathbf{u}_{2}=a_{12} \mathbf{t}_{1}+a_{22} \mathbf{t}_{2}+a_{32} \mathbf{t}_{3}+a_{42} \mathbf{t}_{4}+a_{52} \mathbf{t}_{5} \\
\mathbf{u}_{3}=a_{13} \mathbf{t}_{1}+a_{23} \mathbf{t}_{2}+a_{33} \mathbf{t}_{3}+a_{43} \mathbf{t}_{4}+a_{53} \mathbf{t}_{5}
\end{array}\right.
$$

as

$$
\left\{\begin{array}{l}
\mathbf{u}_{1}=T \mathbf{a}_{1}, \\
\mathbf{u}_{2}=T \mathbf{a}_{2} \\
\mathbf{u}_{3}=T \mathbf{a}_{3}
\end{array}\right.
$$

and further as

$$
U=T A
$$

in which $U=\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \mathbf{u}_{3}\right], T=\left[\mathbf{t}_{1}\left|\mathbf{t}_{2}\right| \mathbf{t}_{3}\left|\mathbf{t}_{4}\right| \mathbf{t}_{5}\right]$, and $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ are the three columns of A from left to right.

