2.5.1 Answers to Exercise.

1. (a) Yes.
$\mathbf{v}=-6 \mathbf{u}_{1}+3 \mathbf{u}_{2}+2 \mathbf{u}_{3}$.
(This is the only possible way to express \mathbf{v} as a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.)
(b) No.
(c) Yes.
$\mathbf{v}=\mathbf{u}_{1}+3 \mathbf{u}_{2}-2 \mathbf{u}_{3}$.
(There are infinitely many possible ways to express \mathbf{v} as a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.)
(d) Yes.
$\mathbf{v}=\mathbf{u}_{1}-4 \mathbf{u}_{2}+\mathbf{u}_{3}$.
(There are infinitely many possible ways to express \mathbf{v} as a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.)
(e) Yes.
$\mathbf{v}=\frac{3}{2} \mathbf{u}_{1}+2 \mathbf{u}_{2}+\frac{1}{2} \mathbf{u}_{3}$.
(There are infinitely many possible ways to express \mathbf{v} as a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.)
(f) Yes.
$\mathbf{v}=\frac{17}{6} \mathbf{u}_{1}+\frac{2}{3} \mathbf{u}_{2}+0 \cdot \mathbf{u}_{3}+\frac{1}{2} \mathbf{u}_{4}$.
(There are infinitely many possible ways to express \mathbf{v} as a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$.)
(g) Yes. $2 \mathbf{u}_{1}-\mathbf{u}_{2}+2 \mathbf{u}_{3}=\mathbf{v}$
(There are infinitely many possible ways to express \mathbf{v} as a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.)
(h) Yes. $-\frac{9}{4} \mathbf{u}_{1}-\frac{1}{4} \mathbf{u}_{2}+4 \mathbf{u}_{3}=\mathbf{v}$
(There are infinitely many possible ways to express \mathbf{v} as a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.)
2. (a) $\alpha=-8$ only.
$\mathbf{v}(-8)=-\mathbf{u}_{1}+2 \mathbf{u}_{2}$.
(b) $\alpha=-6$ only.
$\mathbf{v}(-6)=\frac{11}{5} \mathbf{u}_{1}-\frac{3}{5} \mathbf{u}_{2}$.
(c) $\alpha=4$ only.
$-\mathbf{u}_{1}+2 \mathbf{u}_{2}=\mathbf{v}(4)$.
(d) α can be any number not equal to -1 .

When $\alpha \neq-1, \mathbf{v}=\frac{1}{1+\alpha} \mathbf{u}_{1}+\frac{1}{1+\alpha} \mathbf{u}_{2}-\frac{1}{1+\alpha} \mathbf{u}_{3}(\alpha)$
(e) $\alpha=0$ only.
$\mathbf{v}(0)=2 \mathbf{u}_{1}-\mathbf{u}_{2}$.
(f) α can be any number not equal to $\frac{1}{2}$.

When $\alpha \neq \frac{1}{2} \mathbf{v}(\alpha)=\frac{\alpha^{2}}{2 \alpha-1} \mathbf{u}_{1}+\frac{-\alpha^{2}+6 \alpha-3}{2 \alpha-1} \mathbf{u}_{2}-\frac{\alpha}{2 \alpha-1} \mathbf{u}_{3}(\alpha)$.
(g) For any numbers $\alpha, \beta, \mathbf{v}$ is a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$.
$\mathbf{v}(\alpha, \beta)=\frac{9 \alpha-\beta}{5} \mathbf{u}_{1}+\frac{-2 \alpha+3 \beta}{5} \mathbf{u}_{2}+\frac{-\alpha-\beta}{5} \mathbf{u}_{3}$.
3. (a) One possible choice of \mathbf{b}^{\prime} is given by $\mathbf{b}^{\prime}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$
(b) A choice of \mathbf{B} corresponding to the choice of \mathbf{b}^{\prime} above is given by $\mathbf{b}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$.
(Such abse is obtained when we apply on \mathbf{b}^{\prime} the sequence of reverse row operations

$$
-3 R_{2}+R_{4}-2 R_{1}+R_{3}, 1 R_{1}+R_{2}, R_{1} \leftrightarrow R_{2}
$$

that 'un-does' what the sequence of row operations joining A to A^{\prime} will do to arbitrary matrices with 4 rows.)

