2.5.1 Exercise: Linear combinations from the point of view of systems of linear equations.

1. For each part below, consider the column/row vectors denoted by $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \cdots$ and \mathbf{v} here.

- Determine whether \mathbf{v} is a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \cdots$, and
- when it is, write down a linear relation relating \mathbf{v} with $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \cdots$.
(a) $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right], \mathbf{v}=\left[\begin{array}{c}1 \\ -2 \\ 5\end{array}\right]$.
(b) $\mathbf{u}_{1}=\left[\begin{array}{c}1 \\ -3 \\ 2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}2 \\ -4 \\ -1\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}1 \\ -5 \\ 7\end{array}\right], \mathbf{v}=\left[\begin{array}{c}2 \\ -5 \\ 3\end{array}\right]$.
(c) $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 3\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}2 \\ 3 \\ 0 \\ -1\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}2 \\ -1 \\ 2 \\ 1\end{array}\right], \mathbf{v}=\left[\begin{array}{c}3 \\ 9 \\ -4 \\ -2\end{array}\right]$.
(d) $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 3 \\ 1 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}2 \\ 2 \\ 1 \\ -1\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}7 \\ 5 \\ 3 \\ -5\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 2\end{array}\right], \mathbf{v}=\left[\begin{array}{c}-1 \\ 9 \\ 0 \\ 0\end{array}\right]$.
(e) $\mathbf{u}_{1}=\left[\begin{array}{lll}2 & 4 & 6\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{lll}6 & 10 & 20\end{array}\right], \mathbf{v}=\left[\begin{array}{lll}4 & 13 & 19\end{array}\right]$.
(f) $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}-2 \\ 3 \\ 9\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}3 \\ 1 \\ 3\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{c}1 \\ -2 \\ 4\end{array}\right], \mathbf{v}=\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right]$.
(g) $\mathbf{u}_{1}=\left[\begin{array}{llll}1 & 2 & 2 & 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{llll}3 & 5 & 4 & 5\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{llll}2 & 3 & -1 & 7\end{array}\right], \mathbf{v}=\left[\begin{array}{llll}3 & 5 & -2 & 11\end{array}\right]$.
(h) $\mathbf{u}_{1}=\left[\begin{array}{lllll}1 & 2 & 7 & 1 & -1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{lllll}3 & 2 & 5 & -1 & 9\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{lllll}1 & 1 & 3 & 1 & 0\end{array}\right], \mathbf{v}=\left[\begin{array}{lllll}1 & -1 & -5 & 2 & 0\end{array}\right]$.

2. (a) Let α be a number, and let $\mathbf{u}_{1}=\left[\begin{array}{c}3 \\ 0 \\ -2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}2 \\ -1 \\ -5\end{array}\right], \mathbf{v}(\alpha)=\left[\begin{array}{c}1 \\ -2 \\ \alpha\end{array}\right]$.

For which value(s) of α is $\mathbf{v}(\alpha)$ a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}$? Justify your answer.
(b) Let α be a number, and let $\mathbf{u}_{1}=\left[\begin{array}{c}1 \\ -3 \\ 2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right], \mathbf{v}(\alpha)=\left[\begin{array}{l}1 \\ \alpha \\ 5\end{array}\right]$.

For which value(s) of α is $\mathbf{v}(\alpha)$ a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}$? Justify your answer.
(c) Let α be a number, and let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \mathbf{u}_{2}(\alpha)=\left[\begin{array}{l}2 \\ 3 \\ \alpha\end{array}\right], \mathbf{v}=\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$.

For which value(s) of α is \mathbf{v} a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}(\alpha)$? Justify your answer. For such value(s) of α, also write down a linear relation relating \mathbf{v} with $\mathbf{u}_{1}, \mathbf{u}_{2}(\alpha)$.
(d) Let α be a number, and let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{3}(\alpha)=\left[\begin{array}{l}0 \\ 1 \\ \alpha\end{array}\right], \mathbf{v}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.

For which value(s) of α is \mathbf{v} a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}(\alpha)$? Justify your answer. For such value(s) of α, also write down a linear relation relating \mathbf{v} with $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}(\alpha)$.
(e) Let $\mathbf{u}_{1}=\left[\begin{array}{lll}1 & 1 & 2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{lll}1 & 3 & 4\end{array}\right], \mathbf{v}(\alpha)=\left[\begin{array}{lll}1 & \alpha & 1\end{array}\right]$.

For which value(s) of α is $\mathbf{v}(\alpha)$ a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$? Justify your answer. For such value(s) of α, also write down a linear relation relating $\mathbf{v}(\alpha)$ with $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.
(f) Let α be a number, and let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right], \mathbf{u}_{3}(\alpha)=\left[\begin{array}{l}0 \\ 0 \\ \alpha \\ 1\end{array}\right], \mathbf{v}(\alpha)=\left[\begin{array}{l}3 \\ 3 \\ 0 \\ \alpha\end{array}\right]$.

For which value(s) of α is $\mathbf{v}(\alpha)$ a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}(\alpha)$? Justify your answer. For such value(s) of α, also write down a linear relation relating $\mathbf{v}(\alpha)$ with $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}(\alpha)$.
(g) Let α, β be numbers, and let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 3\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 6\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}2 \\ 5 \\ 3 \\ 10\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{c}0 \\ 2 \\ -1 \\ 1\end{array}\right], \mathbf{v}(\alpha, \beta)=\left[\begin{array}{c}\alpha \\ 0 \\ \beta \\ \alpha+\beta\end{array}\right]$

For which value(s) of α, β is $\mathbf{v}(\alpha, \beta)$ a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$? Justify your answer. For such value(s) of α, β, also write down a linear relation relating $\mathbf{v}(\alpha, \beta)$ with $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$.
3. Let $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}$ be column vectors with 4 entries, and $A=\left[\mathbf{a}_{1}\left|\mathbf{a}_{2}\right| \mathbf{a}_{3}\left|\mathbf{a}_{4}\right| \mathbf{a}_{5}\right]$.

Suppose the reduced row-echelon form A^{\prime}, given by

$$
A^{\prime}=\left[\begin{array}{lllll}
1 & 0 & 2 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

is resultant from the application on A of the sequence of row operations $R_{1} \leftrightarrow R_{2},-1 R_{1}+R_{2}, 2 R_{1}+R_{3}, 3 R_{2}+R_{4}$:

$$
A \xrightarrow{R_{1} \leftrightarrow R_{2}} \xrightarrow{-1 R_{1}+R_{2}} \xrightarrow{2 R_{1}+R_{3}} \xrightarrow{3 R_{2}+R_{4}} A^{\prime}
$$

(a) Write down a column vector \mathbf{b}^{\prime} with 4 entries for which $\mathcal{L S}\left(A^{\prime}, \mathbf{b}^{\prime}\right)$ is inconsistent. Justify your answer.
(b) Hence, or otherwise, find a column vector \mathbf{b} with 4 entries which is not a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}$. Justify your answer.

