2.5.1 Exercise: Linear combinations from the point of view of systems of linear equations.

1. For each part below, consider the column/row vectors denoted by $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \cdots$ and \mathbf{v} here.

- Determine whether \mathbf{v} is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \cdots$, and
- when it is, write down a linear relation relating \mathbf{v} with $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \cdots$.

(a)
$$\mathbf{u}_{1} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}, \mathbf{u}_{2} = \begin{bmatrix} 2\\ 3\\ 2 \end{bmatrix}, \mathbf{u}_{3} = \begin{bmatrix} 2\\ -1\\ 1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1\\ -2\\ 5 \end{bmatrix}.$$

(b) $\mathbf{u}_{1} = \begin{bmatrix} 1\\ -3\\ 2 \end{bmatrix}, \mathbf{u}_{2} = \begin{bmatrix} 2\\ -4\\ -1 \end{bmatrix}, \mathbf{u}_{3} = \begin{bmatrix} 1\\ -5\\ 7 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2\\ -5\\ 3 \end{bmatrix}.$
(c) $\mathbf{u}_{1} = \begin{bmatrix} 1\\ 2\\ 0\\ 3 \end{bmatrix}, \mathbf{u}_{2} = \begin{bmatrix} 2\\ 3\\ 0\\ -1 \end{bmatrix}, \mathbf{u}_{3} = \begin{bmatrix} 2\\ -1\\ 2\\ 1\\ -1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 3\\ 9\\ -4\\ -2 \end{bmatrix}.$
(d) $\mathbf{u}_{1} = \begin{bmatrix} 1\\ 3\\ 1\\ 1\\ 1 \end{bmatrix}, \mathbf{u}_{2} = \begin{bmatrix} 2\\ 2\\ 1\\ -1 \end{bmatrix}, \mathbf{u}_{3} = \begin{bmatrix} 7\\ 5\\ 3\\ -5 \end{bmatrix}, \mathbf{u}_{4} = \begin{bmatrix} 1\\ -1\\ 1\\ 2\\ -2 \end{bmatrix}.$
(e) $\mathbf{u}_{1} = \begin{bmatrix} 2 & 4 & 6 \end{bmatrix}, \mathbf{u}_{2} = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}, \mathbf{u}_{3} = \begin{bmatrix} 6 & 10 & 20 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 4 & 13 & 19 \end{bmatrix}.$
(f) $\mathbf{u}_{1} = \begin{bmatrix} 1\\ 0\\ 0\\ 0\\ \end{bmatrix}, \mathbf{u}_{2} = \begin{bmatrix} -2\\ 3\\ 9\\ -3\\ 9\\ \end{bmatrix}, \mathbf{u}_{3} = \begin{bmatrix} 3\\ 1\\ 3\\ 1\\ 3\\ \end{bmatrix}, \mathbf{u}_{4} = \begin{bmatrix} 1\\ -2\\ -4\\ 4\\ \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2\\ 1\\ 4\\ \end{bmatrix}.$
(g) $\mathbf{u}_{1} = \begin{bmatrix} 1 & 2 & 2 & 1 \end{bmatrix}, \mathbf{u}_{2} = \begin{bmatrix} 3 & 5 & 4 & 5 \end{bmatrix}, \mathbf{u}_{3} = \begin{bmatrix} 2 & 3 & -1 & 7 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 3 & 5 & -2 & 11 \end{bmatrix}.$
(h) $\mathbf{u}_{1} = \begin{bmatrix} 1 & 2 & 7 & 1 & -1 \end{bmatrix}, \mathbf{u}_{2} = \begin{bmatrix} 3 & 2 & 5 & -1 & 9 \end{bmatrix}, \mathbf{u}_{3} = \begin{bmatrix} 1 & 1 & 3 & 1 & 0 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1 & -1 & -5 & 2 & 0 \end{bmatrix}.$

2. (a) Let α be a number, and let $\mathbf{u}_1 = \begin{bmatrix} 3\\0\\-2 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 2\\-1\\-5 \end{bmatrix}$, $\mathbf{v}(\alpha) = \begin{bmatrix} 1\\-2\\\alpha \end{bmatrix}$.

For which value(s) of α is $\mathbf{v}(\alpha)$ a linear combination of $\mathbf{u}_1, \mathbf{u}_2$? Justify your answer.

(b) Let
$$\alpha$$
 be a number, and let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$, $\mathbf{v}(\alpha) = \begin{bmatrix} 1 \\ \alpha \\ 5 \end{bmatrix}$.

For which value(s) of α is $\mathbf{v}(\alpha)$ a linear combination of $\mathbf{u}_1, \mathbf{u}_2$? Justify your answer.

(c) Let
$$\alpha$$
 be a number, and let $\mathbf{u}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$, $\mathbf{u}_2(\alpha) = \begin{bmatrix} 2\\3\\\alpha \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3\\4\\5 \end{bmatrix}$.

For which value(s) of α is **v** a linear combination of $\mathbf{u}_1, \mathbf{u}_2(\alpha)$? Justify your answer. For such value(s) of α , also write down a linear relation relating **v** with $\mathbf{u}_1, \mathbf{u}_2(\alpha)$.

F07

(d) Let α be a number, and let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_3(\alpha) = \begin{bmatrix} 0 \\ 1 \\ \alpha \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

For which value(s) of α is **v** a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3(\alpha)$? Justify your answer. For such value(s) of α , also write down a linear relation relating **v** with $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3(\alpha)$.

- (e) Let $\mathbf{u}_1 = \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 & 3 & 4 \end{bmatrix}$, $\mathbf{v}(\alpha) = \begin{bmatrix} 1 & \alpha & 1 \end{bmatrix}$. For which value(s) of α is $\mathbf{v}(\alpha)$ a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$? Justify your answer. For such value(s) of α , also write down a linear relation relating $\mathbf{v}(\alpha)$ with $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$.
- (f) Let α be a number, and let $\mathbf{u}_1 = \begin{bmatrix} 1\\1\\1\\2 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}$, $\mathbf{u}_3(\alpha) = \begin{bmatrix} 0\\0\\\alpha\\1 \end{bmatrix}$, $\mathbf{v}(\alpha) = \begin{bmatrix} 3\\3\\0\\\alpha \end{bmatrix}$.

For which value(s) of α is $\mathbf{v}(\alpha)$ a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3(\alpha)$? Justify your answer. For such value(s) of α , also write down a linear relation relating $\mathbf{v}(\alpha)$ with $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3(\alpha)$.

(g) Let α, β be numbers, and let $\mathbf{u}_1 = \begin{bmatrix} 1\\1\\1\\3 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 1\\2\\3\\6 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} 2\\5\\3\\10 \end{bmatrix}, \mathbf{u}_4 = \begin{bmatrix} 0\\2\\-1\\1 \end{bmatrix}, \mathbf{v}(\alpha, \beta) = \begin{bmatrix} \alpha\\0\\\beta\\\alpha+\beta \end{bmatrix}$

For which value(s) of α, β is $\mathbf{v}(\alpha, \beta)$ a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$? Justify your answer. For such value(s) of α, β , also write down a linear relation relating $\mathbf{v}(\alpha, \beta)$ with $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$.

3. Let $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5$ be column vectors with 4 entries, and $A = [\mathbf{a}_1 | \mathbf{a}_2 | \mathbf{a}_3 | \mathbf{a}_4 | \mathbf{a}_5]$. Suppose the reduced row-echelon form A', given by

$$A' = \begin{bmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

is resultant from the application on A of the sequence of row operations $R_1 \leftrightarrow R_2$, $-1R_1 + R_2$, $2R_1 + R_3$, $3R_2 + R_4$:

$$A \xrightarrow{R_1 \leftrightarrow R_2} \xrightarrow{-1R_1 + R_2} \xrightarrow{2R_1 + R_3} \xrightarrow{3R_2 + R_4} A'$$

- (a) Write down a column vector \mathbf{b}' with 4 entries for which $\mathcal{LS}(A', \mathbf{b}')$ is inconsistent. Justify your answer.
- (b) Hence, or otherwise, find a column vector **b** with 4 entries which is not a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5$. Justify your answer.