2.4.1 Answers to Exercise.

1. (a) Coefficient matrix: $\left[\begin{array}{cccc}0 & 1 & 1 & -1 \\ 2 & -1 & -1 & 1 \\ 3 & 0 & -2 & -2\end{array}\right]$.

Vector of constants: $\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$.
(b) ' $x_{1}=1, x_{2}=1, x_{3}=1, x_{4}=1$ ' is a solution of the system (S).
(c) (S) is consistent.
(d) (S) has two or more solutions.
2. (a) $A=\left[\begin{array}{rrrrr}0 & 1 & -2 & 1 & 0 \\ 1 & -1 & 2 & -2 & 2 \\ 2 & 1 & -3 & 2 & -2 \\ 1 & 1 & 2 & -4 & 2\end{array}\right]$.
$\mathbf{b}=\left[\begin{array}{c}2 \\ -1 \\ 3 \\ -1\end{array}\right]$.
$C=\left[\begin{array}{rrrrr|r}0 & 1 & -2 & 1 & 0 & 2 \\ 1 & -1 & 2 & -2 & 2 & -1 \\ 2 & 1 & -3 & 2 & -2 & 3 \\ 1 & 1 & 2 & -4 & 2 & -1\end{array}\right]$.
(b) ' $x_{1}=1, x_{2}=2, x_{3}=1, x_{4}=2, x_{5}=1$ ' is a solution of the system (S).
(c) i. (S) is not homogeneous.
ii. (S) is consistent.
iii. (S) has two or more solutions solutions.
3. (a) $A=\left[\begin{array}{rrrrr}1 & 3 & 1 & -2 & -2 \\ -1 & 1 & 0 & 2 & 4 \\ 3 & 1 & 2 & 2 & 4 \\ 2 & 0 & 2 & -2 & -6\end{array}\right]$.
(b) $\mathbf{b}=\left[\begin{array}{c}-1 \\ 0 \\ 6 \\ 0\end{array}\right]$
(c) $\mathcal{L S}(A, \mathbf{b})$ is consistent.
(d) $g_{0}=1, g_{1}=g_{2}=g_{3}=g_{4}=g_{5}=g_{6}=0$.
(e) $h_{1}=1, h_{2}=1, h_{3}=-2, h_{4}=2$.
4. (a) $C_{b}=\left[\begin{array}{rrrr|r}1 & 1 & 3 & 0 & 2 \\ 0 & 1 & 2 & 1 & 2 \\ -1 & 2 & 3 & 1 & b \\ 2 & -1 & 0 & 4 & 5\end{array}\right]$.
(b)

$$
\begin{aligned}
& C_{b}=\left[\begin{array}{rrrr|r}
1 & 1 & 3 & 0 & 2 \\
0 & 1 & 2 & 1 & 2 \\
-1 & 2 & 3 & 1 & b \\
2 & -1 & 0 & 4 & 5
\end{array}\right] \xrightarrow{1 R_{1}+R_{3}} \xrightarrow{-2 R_{1}+R_{4}}\left[\begin{array}{rrrr|r}
1 & 1 & 3 & 0 & 2 \\
0 & 1 & 2 & 1 & 2 \\
0 & 3 & 6 & 1 & 2+b \\
0 & -3 & -6 & 4 & 1
\end{array}\right] \\
& \xrightarrow{-3 R_{2}+R_{3}} \xrightarrow{3 R_{2}+R_{4}}\left[\begin{array}{rrrr|r}
1 & 1 & 3 & 0 & 2 \\
0 & 1 & 2 & 1 & 2 \\
0 & 0 & 0 & -2 & -4+b \\
0 & 0 & 0 & 7 & 7
\end{array}\right] \xrightarrow{\frac{1}{7} R_{4}} \xrightarrow{R_{3} \leftrightarrow R_{4}} \xrightarrow{2 R_{3}+R_{4}}\left[\begin{array}{llll|r}
1 & 1 & 3 & 0 & 2 \\
0 & 1 & 2 & 1 & 2 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & -2+b
\end{array}\right] \\
& \xrightarrow{-1 R_{2}+R_{1}} \xrightarrow{-1 R_{3}+R_{2}}\left[\begin{array}{llll|r}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 2 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & -2+b
\end{array}\right]
\end{aligned}
$$

(c) Suppose the system $\left(S_{b}\right)$ is consistent.

Then $b=2$.
A full description of all solutions of the system $\left(S_{2}\right)$ is given by:-

- \mathbf{t} is a solution of $\left(S_{2}\right)$ if and only if there is some number u such that $\mathbf{t}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right]+u\left[\begin{array}{c}-1 \\ -2 \\ 1 \\ 0\end{array}\right]$.

5. (a) The augmented matrix representation of $\mathcal{L S}(A, \mathbf{b})$ is given by $C=\left[\begin{array}{lll|l}1 & 2 & 2 & 4 \\ 1 & 3 & 3 & 5 \\ 2 & 6 & 5 & 6\end{array}\right]$.

A row-echelon form C^{\sharp} which is row-equivalent to C is given by $C^{\sharp}=\left[\begin{array}{ccc|c}1 & 2 & 2 & 4 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & -1 & -4\end{array}\right]$.
The last column of C^{\sharp} is a free column. Therefore $\mathcal{L S}(A, \mathbf{b})$ is consistent.
A reduced row-echelon form C^{\prime} which is row-equivalent to C is given by $C^{\prime}=\left[\begin{array}{lll|c}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 4\end{array}\right]$.
The one and only one solution of $\mathcal{L S}(A, \mathbf{b})$ is given by $\left[\begin{array}{c}2 \\ -3 \\ 4\end{array}\right]$.
(b) The augmented matrix representation of $\mathcal{L S}(A, \mathbf{b})$ is given by $C=\left[\begin{array}{ccc|c}1 & -1 & 1 & 2 \\ 3 & -2 & 1 & 7 \\ -1 & 3 & -5 & 3\end{array}\right]$.

A row-echelon form C^{\sharp} which is row-equivalent to C is given by $C^{\sharp}=\left[\begin{array}{ccc|c}1 & -1 & 1 & 2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 3\end{array}\right]$.
The last column of C^{\sharp} is a pivot column. Therefore $\mathcal{L S}(A, \mathbf{b})$ is inconsistent.
(c) The augmented matrix representation of $\mathcal{L S}(A, \mathbf{b})$ is given by $C=\left[\begin{array}{ccc|c}0 & 1 & -2 & 1 \\ -1 & -2 & 3 & -4 \\ 2 & 7 & -12 & 11\end{array}\right]$. A row-echelon form C^{\sharp} which is row-equivalent to C is given by $C^{\sharp}=\left[\begin{array}{ccc|c}1 & 2 & -3 & 4 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$. The last column of C^{\sharp} is a free column. Therefore $\mathcal{L S}(A, \mathbf{b})$ is consistent.
A reduced row-echelon form C^{\prime} which is row-equivalent to C is given by $C^{\prime}=\left[\begin{array}{ccc|c}1 & 0 & 1 & 2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$.
\mathbf{t} is a solution of $\mathcal{L S}(A, \mathbf{b})$ if and only if there is some number u such that $\mathbf{t}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]+u\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$.
(d) The augmented matrix representation of $\mathcal{L S}(A, \mathbf{b})$ is given by $C=\left[\begin{array}{cccc|c}1 & 2 & 0 & 1 & 7 \\ 1 & 1 & 1 & -1 & 3 \\ 3 & 1 & 5 & -7 & 1\end{array}\right]$. A row-echelon form C^{\sharp} which is row-equivalent to C is given by $C^{\sharp}=\left[\begin{array}{cccc|c}1 & 2 & 0 & 1 & 7 \\ 0 & 1 & -1 & 2 & 4 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. The last column of C^{\sharp} is a free column. Therefore $\mathcal{L S}(A, \mathbf{b})$ is consistent.
A reduced row-echelon form C^{\prime} which is row-equivalent to C is given by $C^{\prime}=\left[\begin{array}{cccc|c}1 & 0 & 2 & -3 & -1 \\ 0 & 1 & -1 & 2 & 4 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. \mathbf{t} is a solution of $\mathcal{L S}(A, \mathbf{b})$ if and only if there are some numbers u, v such that

$$
\mathbf{t}=\left[\begin{array}{c}
-1 \\
4 \\
0 \\
0
\end{array}\right]+u\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0
\end{array}\right]+v\left[\begin{array}{c}
3 \\
-2 \\
0 \\
1
\end{array}\right]
$$

(e) The augmented matrix representation of $\mathcal{L S}(A, \mathbf{b})$ is given by $C=\left[\begin{array}{ccccc|c}0 & 1 & 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 2 & 3 & 4 \\ -2 & -1 & -3 & 3 & 1 & 3\end{array}\right]$.

A row-echelon form C^{\sharp} which is row-equivalent to C is given by $C^{\sharp}=\left[\begin{array}{lllll|l}1 & 2 & 3 & 2 & 3 & 4 \\ 0 & 1 & 1 & 2 & 2 & 2 \\ 0 & 0 & 0 & 1 & 1 & 5\end{array}\right]$.
The last column of C^{\sharp} is a free column. Therefore $\mathcal{L S}(A, \mathbf{b})$ is consistent.
A reduced row-echelon form C^{\prime} which is row-equivalent to C is given by $C^{\prime}=\left[\begin{array}{lllll|c}1 & 0 & 1 & 0 & 1 & 10 \\ 0 & 1 & 1 & 0 & 0 & -8 \\ 0 & 0 & 0 & 1 & 1 & 5\end{array}\right]$.
\mathbf{t} is a solution of $\mathcal{L S}(A, \mathbf{b})$ if and only if there are some numbers u, v such that

$$
\mathbf{t}=\left[\begin{array}{c}
10 \\
-8 \\
0 \\
5 \\
0
\end{array}\right]+u\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0 \\
0
\end{array}\right]+v\left[\begin{array}{c}
-1 \\
0 \\
0 \\
-1 \\
1
\end{array}\right]
$$

(f) The augmented matrix representation of $\mathcal{L S}(A, \mathbf{b})$ is given by $C=\left[\begin{array}{cccc|c}1 & 2 & 7 & 1 & -1 \\ 1 & 1 & 3 & 1 & 0 \\ 3 & 2 & 5 & -1 & 9 \\ 1 & -1 & -5 & 2 & 0\end{array}\right]$. A row-echelon form C^{\sharp} which is row-equivalent to C is given by $C^{\sharp}=\left[\begin{array}{cccc|c}1 & 2 & 7 & 1 & -1 \\ 0 & 1 & 4 & 0 & -1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. The last column of C^{\sharp} is a free column. Therefore $\mathcal{L S}(A, \mathbf{b})$ is consistent.
A reduced row-echelon form C^{\prime} which is row-equivalent to C is given by $C^{\prime}=\left[\begin{array}{cccc|c}1 & 0 & -1 & 0 & 3 \\ 0 & 1 & 4 & 0 & -1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
\mathbf{t} is a solution of $\mathcal{L S}(A, \mathbf{b})$ if and only if there is some number u such that $\mathbf{t}=\left[\begin{array}{c}3 \\ -1 \\ 0 \\ -2\end{array}\right]+u\left[\begin{array}{c}1 \\ -4 \\ 1 \\ 0\end{array}\right]$.
(g) The augmented matrix representation of $\mathcal{L S}(A, \mathbf{b})$ is given by $C=\left[\begin{array}{cccccc|c}5 & 5 & 4 & 13 & 9 & 2 & 16 \\ 1 & 1 & 0 & 1 & 1 & 0 & 2 \\ 2 & 2 & 2 & 6 & 4 & 1 & 7 \\ 2 & 2 & 1 & 4 & 3 & 1 & 6\end{array}\right]$. A row-echelon form C^{\sharp} which is row-equivalent to C is given by $C^{\sharp}=\left[\begin{array}{rrrrrr|r}1 & 1 & 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$. The last column of C^{\sharp} is a free column. Therefore $\mathcal{L S}(A, \mathbf{b})$ is consistent. A reduced row-echelon form C^{\prime} which is row-equivalent to C is given by $C^{\prime}=\left[\begin{array}{llllll|l}1 & 1 & 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$ \mathbf{t} is a solution of $\mathcal{L S}(A, \mathbf{b})$ if and only if there are some numbers u, v, w such that

$$
\mathbf{t}=\left[\begin{array}{l}
2 \\
0 \\
1 \\
0 \\
0 \\
1
\end{array}\right]+u\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+v\left[\begin{array}{c}
-1 \\
0 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+w\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
0 \\
1 \\
0
\end{array}\right]
$$

6. (a) A reduced row-echelon form A^{\prime} which is row-equivalent to A is given by $A^{\prime}=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 3\end{array}\right]$.

A full description of the solutions of the homogeneous system $\mathcal{L S}\left(A, \mathbf{0}_{2}\right)$ is given by:

- \mathbf{t} is a solution of $\mathcal{L S}\left(A, \mathbf{0}_{2}\right)$ if and only if there is some number u such that $\mathbf{t}=u\left[\begin{array}{c}-2 \\ -3 \\ 1\end{array}\right]$.
(b) A reduced row-echelon form A^{\prime} which is row-equivalent to A is given by $A^{\prime}=\left[\begin{array}{lllc}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1\end{array}\right]$.

A full description of the solutions of the homogeneous system $\mathcal{L S}\left(A, \mathbf{0}_{3}\right)$ is given by:

- \mathbf{t} is a solution of $\mathcal{L S}\left(A, \mathbf{0}_{3}\right)$ if and only if there is some number u such that $\mathbf{t}=u\left[\begin{array}{c}-1 \\ -2 \\ 1 \\ 1\end{array}\right]$.
(c) A reduced row-echelon form A^{\prime} which is row-equivalent to A is given by $A^{\prime}=\left[\begin{array}{ccccc}1 & 0 & -5 & 0 & -3 \\ 0 & 1 & 7 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1\end{array}\right]$. A full description of the solutions of the homogeneous system $\mathcal{L S}\left(A, \mathbf{0}_{3}\right)$ is given by:
- \mathbf{t} is a solution of $\mathcal{L S}\left(A, \mathbf{0}_{3}\right)$ if and only if there are some numbers u, v such that $\mathbf{t}=u\left[\begin{array}{c}5 \\ -7 \\ 1 \\ 0 \\ 0\end{array}\right]+v\left[\begin{array}{c}3 \\ -1 \\ 0 \\ -1 \\ 1\end{array}\right]$.
(d) A reduced row-echelon form A^{\prime} which is row-equivalent to A is given by $A^{\prime}=\left[\begin{array}{cccccc}1 & 2 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 & 5 \\ 0 & 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.

A full description of the solutions of the homogeneous system $\mathcal{L S}\left(A, \mathbf{0}_{4}\right)$ is given by:

- \mathbf{t} is a solution of $\mathcal{L S}\left(A, \mathbf{0}_{4}\right)$ if and only if there are some numbers u, v, w such that

$$
\mathbf{t}=u\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+v\left[\begin{array}{c}
-1 \\
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right]+w\left[\begin{array}{c}
-1 \\
0 \\
-5 \\
0 \\
3 \\
1
\end{array}\right]
$$

7. (a) $C_{\mathbf{b}}=\left[\begin{array}{ccccc}1 & 2 & 1 & 1 & b_{1} \\ 2 & 1 & -1 & 3 & b_{2} \\ 4 & -1 & -5 & 7 & b_{3}\end{array}\right]$.
(b) $C_{\mathbf{b}}$ is row-equivalent to $C_{\mathbf{b}}^{\prime}=\left[\begin{array}{ccccc}1 & 2 & 1 & 1 & b_{1} \\ 0 & 1 & 1 & -1 / 3 & \left(-2 b_{1}+b_{2}\right) / 3 \\ 0 & 0 & 0 & 0 & 2 b_{1}-3 b_{2}+b_{3}\end{array}\right]$.
(c) Comment.
$\left(S_{\mathbf{b}}\right)$ is consistent if and only if the last column of $C_{\mathbf{b}}^{\prime}$ is not a pivot column.
(d) \mathbf{t} is a solution if there exists some u, v such that $\mathbf{t}=\left[\begin{array}{c}\left(-b_{1}-2 b_{2}\right) / 3 \\ \left(-2 b_{1}+b_{2}\right) / 3 \\ 0 \\ 0\end{array}\right]+u\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 0\end{array}\right]+v\left[\begin{array}{c}-5 / 3 \\ 1 / 3 \\ 0 \\ 1\end{array}\right]$.
8. (a)
(b)
(c) i. $\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & \beta-1\end{array}\right]$
ii. When $\beta \neq 1, \mathbf{t}$ is a solution of $A_{2, \beta}$ if and only if there exists some number c such that $\mathbf{t}=c\left[\begin{array}{c}-1 \\ -1 \\ 1 \\ 0\end{array}\right]$.
iii. \mathbf{t} is a solution of $A_{2,1}$ if and only if there exist some c_{1}, c_{2} such that $\mathbf{t}=c_{1}\left[\begin{array}{c}-1 \\ -1 \\ 1 \\ 0\end{array}\right]+c_{2}\left[\begin{array}{c}-1 \\ -1 \\ 0 \\ 1\end{array}\right]$.
9. (a)
(b) One possible choice is given by $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right], A^{\prime}=\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right]$, $\mathbf{b}=\mathbf{b}^{\prime}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
(c) i. $\mathbf{0}_{3}$ is a solution of the system whose augmented matrix representation is D.
$\mathbf{0}_{3}$ is not a solution of the system whose augmented matrix representation is C.
ii. $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ is a solution of the system whose augmented matrix representation is C.
$\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ is not a solution of the system whose augmented matrix representation is D.
(There are many valid answers. As long as a concrete vector \mathbf{t} is named for which \mathbf{t} is a solution of C and not a solution of D, or a concrete vector \mathbf{u} is named for which \mathbf{u} is a solution of D and not a solution of C, the answer is valid.)
iii. $\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 0 \\ 1\end{array}\right]$ is a solution of the system whose augmented matrix representation is D.

But it is not a solution of the system whose augmented matrix representation is C.

