1. (a) Coefficient matrix:
$$\begin{bmatrix} 0 & 1 & 1 & -1 \\ 2 & -1 & -1 & 1 \\ 3 & 0 & -2 & -2 \end{bmatrix}$$
.
Vector of constants:
$$\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$
.
(b) ' $x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1$ ' is a solution of the system (S).
(c) (S) is consistent.
(d) (S) has two or more solutions.
2. (a) $A = \begin{bmatrix} 0 & 1 & -2 & 1 & 0 \\ 1 & -1 & 2 & -2 & 2 \\ 2 & 1 & -3 & 2 & -2 \\ 1 & 1 & 2 & -4 & 2 \end{bmatrix}$.
 $\mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 3 \\ -1 \end{bmatrix}$.
 $C = \begin{bmatrix} 0 & 1 & -2 & 1 & 0 \\ -1 & 2 & -2 & 2 \\ 2 & 1 & -3 & 2 & -2 \\ 1 & 1 & 2 & -4 & 2 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 3 \\ -1 \end{bmatrix}$.

(b)
$$x_1 = 1, x_2 = 2, x_3 = 1, x_4 = 2, x_5 = 1$$
 is a solution of the system (S).

- (c) i. (S) is not homogeneous.
 - ii. (S) is consistent.
 - iii. (S) has two or more solutions solutions.

3. (a)
$$A = \begin{bmatrix} 1 & 3 & 1 & -2 & -2 \\ -1 & 1 & 0 & 2 & 4 \\ 3 & 1 & 2 & 2 & 4 \\ 2 & 0 & 2 & -2 & -6 \end{bmatrix}.$$

(b)
$$\mathbf{b} = \begin{bmatrix} -1 \\ 0 \\ 6 \\ 0 \end{bmatrix}$$

- (c) $\mathcal{LS}(A, \mathbf{b})$ is consistent.
- (d) $g_0 = 1, g_1 = g_2 = g_3 = g_4 = g_5 = g_6 = 0.$

(e)
$$h_1 = 1, h_2 = 1, h_3 = -2, h_4 = 2.$$

4. (a)
$$C_b = \begin{bmatrix} 1 & 1 & 3 & 0 & | & 2 \\ 0 & 1 & 2 & 1 & | & 2 \\ -1 & 2 & 3 & 1 & | & b \\ 2 & -1 & 0 & 4 & | & 5 \end{bmatrix}$$
.
(b)

$$C_{b} = \begin{bmatrix} 1 & 1 & 3 & 0 & | & 2 \\ 0 & 1 & 2 & 1 & | & 2 \\ -1 & 2 & 3 & 1 & | & b \\ 2 & -1 & 0 & 4 & | & 5 \end{bmatrix} \xrightarrow{1R_{1}+R_{3}} \xrightarrow{-2R_{1}+R_{4}} \begin{bmatrix} 1 & 1 & 3 & 0 & | & 2 \\ 0 & 1 & 2 & 1 & | & 2 \\ 0 & 3 & 6 & 1 & | & 2+b \\ 0 & -3 & -6 & 4 & | & 1 \end{bmatrix}$$

$$\xrightarrow{-3R_{2}+R_{3}} \xrightarrow{3R_{2}+R_{4}} \begin{bmatrix} 1 & 1 & 3 & 0 & | & 2 \\ 0 & 1 & 2 & 1 & | & 2 \\ 0 & 0 & 0 & -2 & | & -4+b \\ 0 & 0 & 0 & -2 & | & -4+b \\ 0 & 0 & 0 & 0 & | & -2+b \end{bmatrix} \xrightarrow{\frac{1}{7}R_{4}} \xrightarrow{R_{3}\leftrightarrow R_{4}} \xrightarrow{2R_{3}+R_{4}} \begin{bmatrix} 1 & 1 & 3 & 0 & | & 2 \\ 0 & 1 & 2 & 1 & | & 2 \\ 0 & 0 & 0 & 0 & | & -2+b \end{bmatrix}$$

$$\xrightarrow{-1R_{2}+R_{1}} \xrightarrow{-1R_{3}+R_{2}} \begin{bmatrix} 1 & 0 & 1 & 0 & | & 1 \\ 0 & 1 & 2 & 0 & | & 1 \\ 0 & 0 & 0 & 0 & | & -2+b \end{bmatrix}$$

(c) Suppose the system (S_b) is consistent. Then b = 2. A full description of all solutions of the system (S_2) is given by:— • **t** is a solution of (S_2) if and only if there is some number u such that $\mathbf{t} = \begin{bmatrix} 1\\1\\0\\1\\0 \end{bmatrix} + u \begin{bmatrix} -2\\1\\0\\0\\1\\0 \end{bmatrix}$.

5. (a) The augmented matrix representation of $\mathcal{LS}(A, \mathbf{b})$ is given by $C = \begin{bmatrix} 1 & 2 & 2 & | & 4 \\ 1 & 3 & 3 & | & 5 \\ 2 & 6 & 5 & | & 6 \end{bmatrix}$. A row-echelon form C^{\sharp} which is row-equivalent to C is given by $C^{\sharp} = \begin{bmatrix} 1 & 2 & 2 & | & 4 \\ 0 & 1 & 1 & | & 1 \\ 0 & 0 & -1 & | & -4 \end{bmatrix}$. The last column of C^{\sharp} is a free column. Therefore $\mathcal{LS}(A, \mathbf{b})$ is consistent.

A reduced row-echelon form C' which is row-equivalent to C is given by $C' = \begin{bmatrix} 1 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & | & -3 \\ 0 & 0 & 1 & | & 4 \end{bmatrix}$. The one and only one solution of $\mathcal{LS}(A, \mathbf{b})$ is given by $\begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix}$.

- (b) The augmented matrix representation of $\mathcal{LS}(A, \mathbf{b})$ is given by $C = \begin{bmatrix} 1 & -1 & 1 & | & 2 \\ 3 & -2 & 1 & | & 7 \\ -1 & 3 & -5 & | & 3 \end{bmatrix}$. A row-echelon form C^{\sharp} which is row-equivalent to C is given by $C^{\sharp} = \begin{bmatrix} 1 & -1 & 1 & | & 2 \\ 0 & 1 & -2 & | & 1 \\ 0 & 0 & 0 & | & 3 \end{bmatrix}$. The last column of C^{\sharp} is a pivot column. Therefore $\mathcal{LS}(A, \mathbf{b})$ is inconsistent.
- (c) The augmented matrix representation of $\mathcal{LS}(A, \mathbf{b})$ is given by $C = \begin{bmatrix} 0 & 1 & -2 & | & 1 \\ -1 & -2 & 3 & | & -4 \\ 2 & 7 & -12 & | & 11 \end{bmatrix}$. A row-echelon form C^{\sharp} which is row-equivalent to C is given by $C^{\sharp} = \begin{bmatrix} 1 & 2 & -3 & | & 4 \\ 0 & 1 & -2 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$.

The last column of C^{\sharp} is a free column. Therefore $\mathcal{LS}(A, \mathbf{b})$ is consistent.

A reduced row-echelon form C' which is row-equivalent to C is given by $C' = \begin{bmatrix} 1 & 0 & 1 & | & 2 \\ 0 & 1 & -2 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$. **t** is a solution of $\mathcal{LS}(A, \mathbf{b})$ if and only if there is some number u such that $\mathbf{t} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + u \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$.

(d) The augmented matrix representation of $\mathcal{LS}(A, \mathbf{b})$ is given by $C = \begin{bmatrix} 1 & 2 & 0 & 1 & | & 7 \\ 1 & 1 & 1 & -1 & | & 3 \\ 3 & 1 & 5 & -7 & | & 1 \end{bmatrix}$. A row-echelon form C^{\sharp} which is row-equivalent to C is given by $C^{\sharp} = \begin{bmatrix} 1 & 2 & 0 & 1 & | & 7 \\ 0 & 1 & -1 & 2 & | & 4 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$. The last column of C^{\sharp} is a free column. Therefore $\mathcal{LS}(A, \mathbf{b})$ is consistent.

A reduced row-echelon form C' which is row-equivalent to C is given by $C' = \begin{bmatrix} 1 & 0 & 2 & -3 & | & -1 \\ 0 & 1 & -1 & 2 & | & 4 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$. **t** is a solution of $\mathcal{LS}(A, \mathbf{b})$ if and only if there are some numbers u, v such that

$$\mathbf{t} = \begin{bmatrix} -1\\4\\0\\0 \end{bmatrix} + u \begin{bmatrix} -2\\1\\1\\0 \end{bmatrix} + v \begin{bmatrix} 3\\-2\\0\\1 \end{bmatrix}.$$

(e) The augmented matrix representation of $\mathcal{LS}(A, \mathbf{b})$ is given by $C = \begin{bmatrix} 0 & 1 & 1 & 2 & 2 & | & 2 \\ 1 & 2 & 3 & 2 & 3 & | & 4 \\ -2 & -1 & -3 & 3 & 1 & | & 3 \end{bmatrix}$. A row-echelon form C^{\sharp} which is row-equivalent to C is given by $C^{\sharp} = \begin{bmatrix} 1 & 2 & 3 & 2 & 3 & | & 4 \\ 0 & 1 & 1 & 2 & 2 & | & 2 \\ 0 & 0 & 0 & 1 & 1 & | & 5 \end{bmatrix}$. The last column of C^{\sharp} is a free column. Therefore $\mathcal{LS}(A, \mathbf{b})$ is consistent.

A reduced row-echelon form C' which is row-equivalent to C is given by $C' = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & | & 10 \\ 0 & 1 & 1 & 0 & 0 & | & -8 \\ 0 & 0 & 0 & 1 & 1 & | & 5 \end{bmatrix}$.

t is a solution of $\mathcal{LS}(A, \mathbf{b})$ if and only if there are some numbers u, v such that

$$\mathbf{t} = \begin{bmatrix} 10 \\ -8 \\ 0 \\ 5 \\ 0 \end{bmatrix} + u \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + v \begin{bmatrix} -1 \\ 0 \\ 0 \\ -1 \\ 1 \end{bmatrix}.$$

$$\mathbf{t} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} + u \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + v \begin{bmatrix} 0 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + w \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}.$$

6. (a) A reduced row-echelon form A' which is row-equivalent to A is given by $A' = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix}$. A full description of the solutions of the homogeneous system $\mathcal{LS}(A, \mathbf{0}_2)$ is given by:

- **t** is a solution of $\mathcal{LS}(A, \mathbf{0}_2)$ if and only if there is some number u such that $\mathbf{t} = u \begin{bmatrix} -2 \\ -3 \\ 1 \end{bmatrix}$.
- (b) A reduced row-echelon form A' which is row-equivalent to A is given by $A' = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \end{bmatrix}$. A full description of the solutions of the homogeneous system $\mathcal{LS}(A, \mathbf{0}_3)$ is given by:
 - **t** is a solution of $\mathcal{LS}(A, \mathbf{0}_3)$ if and only if there is some number u such that $\mathbf{t} = u \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$.
- (c) A reduced row-echelon form A' which is row-equivalent to A is given by $A' = \begin{bmatrix} 1 & 0 & -5 & 0 & -3 \\ 0 & 1 & 7 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$. A full description of the solutions of the homogeneous system $\mathcal{LS}(A, \mathbf{0}_3)$ is given by:
 - **t** is a solution of $\mathcal{LS}(A, \mathbf{0}_3)$ if and only if there are some numbers u, v such that $\mathbf{t} = u \begin{bmatrix} 3 \\ -7 \\ 1 \\ 0 \\ -1 \end{bmatrix} + v \begin{bmatrix} 3 \\ -1 \\ 0 \\ -1 \\ 1 \\ 1 \end{bmatrix}$.

(d) A reduced row-echelon form A' which is row-equivalent to A is given by $A' = \begin{bmatrix} 1 & 2 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 & 5 \\ 0 & 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

A full description of the solutions of the homogeneous system $\mathcal{LS}(A, \mathbf{0}_4)$ is given by:

• **t** is a solution of $\mathcal{LS}(A, \mathbf{0}_4)$ if and only if there are some numbers u, v, w such that

$$\mathbf{t} = u \begin{bmatrix} -2\\1\\0\\0\\0\\0 \end{bmatrix} + v \begin{bmatrix} -1\\0\\1\\1\\0\\0 \end{bmatrix} + w \begin{bmatrix} -1\\0\\-5\\0\\3\\1 \end{bmatrix}.$$

- 7. (a) $C_{\mathbf{b}} = \begin{vmatrix} 1 & 2 & 1 & 1 & b_1 \\ 2 & 1 & -1 & 3 & b_2 \\ 4 & -1 & -5 & 7 & b_3 \end{vmatrix}$. (b) $C_{\mathbf{b}}$ is row-equivalent to $C'_{\mathbf{b}} = \begin{bmatrix} 1 & 2 & 1 & 1 & b_1 \\ 0 & 1 & 1 & -1/3 & (-2b_1 + b_2)/3 \\ 0 & 0 & 0 & 0 & 2b_1 - 3b_2 + b_3 \end{bmatrix}$.
 - (c) Comment.

 $(S_{\mathbf{b}})$ is consistent if and only if the last column of $C'_{\mathbf{b}}$ is not a pivot column.

(d) **t** is a solution if there exists some
$$u, v$$
 such that $\mathbf{t} = \begin{bmatrix} (-b_1 - 2b_2)/3 \\ (-2b_1 + b_2)/3 \\ 0 \end{bmatrix} + u \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + v \begin{bmatrix} -5/3 \\ 1/3 \\ 0 \\ 1 \end{bmatrix}$

- 8. (a)
 - (b) (c) i. $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & \beta - 1 \end{bmatrix}$

ii. When $\beta \neq 1$, **t** is a solution of $A_{2,\beta}$ if and only if there exists some number c such that $\mathbf{t} = c \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. iii. **t** is a solution of $A_{2,1}$ if and only if there exist some c_1, c_2 such that $\mathbf{t} = c_1 \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$.

- 9. (a) —----
 - (b) One possible choice is given by $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $A' = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$, $\mathbf{b} = \mathbf{b}' = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
 - i. $\mathbf{0}_3$ is a solution of the system whose augmented matrix representation is D. (c) $\mathbf{0}_3$ is not a solution of the system whose augmented matrix representation is C. ii. $\begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix}$ is a solution of the system whose augmented matrix representation is C.

 $\begin{bmatrix} 1\\2\\0 \end{bmatrix}$ is not a solution of the system whose augmented matrix representation is D.

(There are many valid answers. As long as a concrete vector \mathbf{t} is named for which \mathbf{t} is a solution of C and not a solution of D, or a concrete vector **u** is named for which **u** is a solution of D and not a solution of C, the answer is valid.)

iii.
$$\begin{bmatrix} 1\\ -1\\ 0\\ 0\\ 1 \end{bmatrix}$$
 is a solution of the system whose augmented matrix representation is D .
But it is not a solution of the system whose augmented matrix representation is C .

ution of the system whose augmented matrix representation is C.