2.3.2 Answers to Exercise.

1. (a) Comment.

Make use of the 'dictionary' betwen application of row operations and left-multiplication by row-operation matrices.
(b) Comment.

Make use of the 'dictionary' between application of a sequence of row operations and left multiplication by products of row operation matrices.
Also make use of the result on the existence of row-echelon forms and a reduced row-echelon form which are row-equivalent to an arbitrarily given matrix.
2. (a) $C^{\prime}=\left[\begin{array}{cccc}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 4\end{array}\right]$.
$H=\left[\begin{array}{ccc}3 & -2 & 0 \\ -1 & -1 & 1 \\ 0 & 2 & -1\end{array}\right]$.
(b) $C^{\prime}=\left[\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
$H=\left[\begin{array}{ccc}-9 & 3 & -1 \\ -16 / 3 & 5 / 3 & -1 / 3 \\ 7 / 3 & -2 / 3 & 1 / 3\end{array}\right]$.
(c) $C^{\prime}=\left[\begin{array}{cccc}1 & 0 & 1 & 2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$.
$H=\left[\begin{array}{ccc}-2 & -1 & 0 \\ 1 & 0 & 0 \\ -3 & 2 & 1\end{array}\right]$.
(d) $C^{\prime}=\left[\begin{array}{ccccc}1 & 0 & 2 & -3 & -1 \\ 0 & 1 & -1 & 2 & 4 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
$H=\left[\begin{array}{ccc}-1 & 2 & 0 \\ 1 & -1 & 0 \\ 2 & -5 & 1\end{array}\right]$.
(e) $C^{\prime}=\left[\begin{array}{llllcc}1 & 0 & 1 & 0 & 1 & 10 \\ 0 & 1 & 1 & 0 & 0 & -8 \\ 0 & 0 & 0 & 1 & 1 & 5\end{array}\right]$.
$H=\left[\begin{array}{ccc}-8 & 5 & 2 \\ 7 & -4 & -2 \\ -3 & 2 & 1\end{array}\right]$.
(f) $C^{\prime}=\left[\begin{array}{ccccc}1 & 0 & -1 & 0 & 3 \\ 0 & 1 & 4 & 0 & -1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
$H=\left[\begin{array}{cccc}-3 & 5 & 0 & -1 \\ 1 & -1 & 0 & 0 \\ 2 & -3 & 0 & 1 \\ 9 & -16 & 1 & 4\end{array}\right]$.
3. (a) $B^{\sharp}=\left[A^{\sharp} \mid A^{\sharp}\right]$.
$B^{\prime}=\left[A^{\prime} \mid A^{\prime}\right]$.
$B^{\sharp}=J B$.
$B^{\prime}=K B^{\sharp}$.
(b) $C^{\sharp}=\left[\frac{A^{\sharp}}{\mathcal{O}_{p \times q}}\right]$.
$C^{\prime}=\left[\frac{A^{\prime}}{\mathcal{O}_{p \times q}}\right]$.
$C^{\sharp}=\left[\begin{array}{c|c}J & \mathcal{O}_{p \times p} \\ \hline \mathcal{O}_{p \times p} & I_{p}\end{array}\right]\left[\begin{array}{c|c}I_{p} & \mathcal{O}_{p \times p} \\ \hline-I_{p} & I_{p}\end{array}\right] C$.
$C^{\prime}=\left[\begin{array}{c|c}K & \mathcal{O}_{p \times p} \\ \hline \mathcal{O}_{p \times p} & I_{p}\end{array}\right] C^{\sharp}$.
(c) $D^{\sharp}=\left[\begin{array}{c|c}A^{\sharp} & \mathcal{O}_{p \times q} \\ \hline \mathcal{O}_{p \times q} & A^{\sharp}\end{array}\right]$.

$$
\begin{aligned}
D^{\prime} & =\left[\begin{array}{c|c}
A^{\prime} & \mathcal{O}_{p \times q} \\
\hline \mathcal{O}_{p \times q} & A^{\prime}
\end{array}\right] . \\
D^{\sharp} & =\left[\begin{array}{c|c}
J & \mathcal{O}_{p \times p} \\
\hline \mathcal{O}_{p \times p} & J
\end{array}\right] D . \\
D^{\prime} & =\left[\begin{array}{c|c}
K & \mathcal{O}_{p \times p} \\
\hline \mathcal{O}_{p \times p} & K
\end{array}\right] D^{\sharp} .
\end{aligned}
$$

(d) $E^{\sharp}=\left[\begin{array}{c|c}A^{\sharp} & A^{\sharp} \\ \hline \mathcal{O}_{p \times q} & A^{\sharp}\end{array}\right]$.

$$
\left.\begin{array}{rl}
E^{\prime} & =\left[\begin{array}{c|c}
A^{\prime} & \mathcal{O}_{p \times q} \\
\hline \mathcal{O}_{p \times q} & A^{\prime}
\end{array}\right] . \\
E^{\sharp} & =\left[\begin{array}{c|c}
J & \mathcal{O}_{p \times p} \\
\hline \mathcal{O}_{p \times p} & J
\end{array}\right] E . \\
E^{\prime} & =\left[\begin{array}{c|c|c}
I_{p} & -I_{p} \\
\hline \mathcal{O}_{p \times p} & I_{p}
\end{array}\right]\left[\left.\begin{array}{c}
K \\
\mathcal{O}_{p \times p}
\end{array} \right\rvert\, \frac{K}{}\right.
\end{array}\right] E^{\sharp} .
$$

