2.3.2. Exercise: Existence of reduced row-echelon form row-equivalent to given matrix, (and the uniqueness question).

- 1. (a) Prove the statement (\sharp) :
 - (#) Let A, B be $(p \times q)$ -matrices. Suppose B is resultant from the application of some row-operation ρ on A. Then $[B \mid M[\rho]] = M[\rho][A \mid I_p]$.
 - (b) Prove the statement (\natural) :
 - (\natural) Suppose A is a $(p \times q)$ -matrix. Then there exist some $(p \times q)$ -matrices A^{\sharp}, A' and some $(p \times p)$ -matrices G, H such that the statements (1), (2), (3), (4) hold simultaneously:
 - (1) A^{\sharp} is a row-echelon form.
 - (2) A' is a reduced row-echelon form.
 - (3) G, H are products of some row-operation matrices.
 - (4) The equalities $\begin{bmatrix} A^{\sharp} & G \end{bmatrix} = G \begin{bmatrix} A & I_p \end{bmatrix}, \begin{bmatrix} A' & H \end{bmatrix} = H \begin{bmatrix} A & I_p \end{bmatrix}$ hold.

2. For each part below, consider the given matrix, which is denoted by C here.

- Apply Gaussian elimination to obtain some reduced row-echelon form C' which is row-equivalent to C.
- Obtain some equality of the form C' = HC.

(a)
$$C = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 1 & 3 & 3 & 5 \\ 2 & 6 & 5 & 6 \end{bmatrix}$$
.
(b) $C = \begin{bmatrix} 1 & -1 & 1 & 2 \\ 3 & -2 & 1 & 7 \\ -1 & 3 & -5 & 3 \end{bmatrix}$.
(c) $C = \begin{bmatrix} 0 & 1 & -2 & 1 \\ -1 & -2 & 3 & -4 \\ 2 & 7 & -12 & 11 \end{bmatrix}$.
(d) $C = \begin{bmatrix} 1 & 2 & 0 & 1 & 7 \\ 1 & 1 & 1 & -1 & 3 \\ 3 & 1 & 5 & -7 & 1 \end{bmatrix}$.
(e) $C = \begin{bmatrix} 0 & 1 & 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 2 & 3 & 4 \\ -2 & -1 & -3 & 3 & 1 & 3 \end{bmatrix}$.
(f) $C = \begin{bmatrix} 1 & 2 & 7 & 1 & -1 \\ 1 & 1 & 3 & 1 & 0 \\ 3 & 2 & 5 & -1 & 9 \\ 1 & -1 & -5 & 2 & 0 \end{bmatrix}$.

3. Let A, A^{\sharp}, A' be $(p \times q)$ -matrices.

Suppose

• A^{\sharp} is a row-echelon form which is row-equivalent to A under some sequence of row operations

$$A \xrightarrow{\rho_1} \xrightarrow{\rho_2} \cdots \xrightarrow{\rho_m} A^{\sharp}$$

• A' is a reduced row-echelon form which is row-equivalent to A^{\sharp} under some sequence of row operations

$$A^{\sharp} \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \cdots \xrightarrow{\sigma_n} A'$$

Write $J = M[\rho_m] \cdots M[\rho_2]M[\rho_1]$ and $K = M[\sigma_n] \cdots M[\sigma_2]M[\sigma_1]$. (Note that $A^{\sharp} = JA$ and $A' = KA^{\sharp}$.)

Suppose the rank of A^{\sharp} , and that of A', are both p. (So all rows of A^{\sharp} are non-zero rows, and all rows of A' are non-zero rows.)

(a) Let B be the (p × 2q)-matrix given by B = [A | A].
Give, in terms of A[♯], A', some row-echelon form B[♯] and some reduced row-echelon form B' which are row-equivalent to B.

Give some appropriate equalities which relate B, B^{\sharp}, B' , and J, K.

(b) Let C be the $(2p \times q)$ -matrix given by $C = \left[\frac{A}{A}\right]$.

Give, in terms of A^{\sharp}, A' , some row-echelon form C^{\sharp} and some reduced row-echelon form C' which are row-equivalent to C.

Give some appropriate equalities which relate C, C^{\sharp}, C' , and J, K.

(c) Let *D* be the $(2p \times 2q)$ -matrix given by $D = \begin{bmatrix} A & \mathcal{O}_{p \times q} \\ \mathcal{O}_{p \times q} & A \end{bmatrix}$.

Give, in terms of A^{\sharp}, A' , some row-echelon form D^{\sharp} and some reduced row-echelon form D' which are row-equivalent to D.

Give some appropriate equalities which relate D, D^{\sharp}, D' , and J, K.

(d) Let *E* be the $(2p \times 2q)$ -matrix given by $E = \begin{bmatrix} A & | A \\ \mathcal{O}_{p \times q} & | A \end{bmatrix}$.

Give, in terms of A^{\sharp}, A' , some row-echelon form E^{\sharp} and some reduced row-echelon form E' which are row-equivalent to E.

Give some appropriate equalities which relate E, E^{\sharp}, E' , and J, K.