2.3.2. Exercise: Existence of reduced row-echelon form row-equivalent to given matrix, (and the uniqueness question).

1. (a) Prove the statement (\sharp):
(\sharp) Let A, B be $(p \times q)$-matrices. Suppose B is resultant from the application of some row-operation ρ on A. Then $[B \mid M[\rho]]=M[\rho]\left[A \mid I_{p}\right]$.
(b) Prove the statement ($\mathfrak{\square}$):
($\vdash)$ Suppose A is a $(p \times q)$-matrix. Then there exist some $(p \times q)$-matrices A^{\sharp}, A^{\prime} and some $(p \times p)$-matrices G, H such that the statements (1), (2), (3), (4) hold simultaneously:
(1) A^{\sharp} is a row-echelon form.
(2) A^{\prime} is a reduced row-echelon form.
(3) G, H are products of some row-operation matrices.
(4) The equalities $\left[A^{\sharp} \mid G\right]=G\left[A \mid I_{p}\right],\left[A^{\prime} \mid H\right]=H\left[A \mid I_{p}\right]$ hold.
2. For each part below, consider the given matrix, which is denoted by C here.

- Apply Gaussian elimination to obtain some reduced row-echelon form C^{\prime} which is row-equivalent to C.
- Obtain some equality of the form $C^{\prime}=H C$.
(a) $C=\left[\begin{array}{llll}1 & 2 & 2 & 4 \\ 1 & 3 & 3 & 5 \\ 2 & 6 & 5 & 6\end{array}\right]$.
(b) $C=\left[\begin{array}{cccc}1 & -1 & 1 & 2 \\ 3 & -2 & 1 & 7 \\ -1 & 3 & -5 & 3\end{array}\right]$.
(c) $C=\left[\begin{array}{cccc}0 & 1 & -2 & 1 \\ -1 & -2 & 3 & -4 \\ 2 & 7 & -12 & 11\end{array}\right]$.
(d) $C=\left[\begin{array}{lllcl}1 & 2 & 0 & 1 & 7 \\ 1 & 1 & 1 & -1 & 3 \\ 3 & 1 & 5 & -7 & 1\end{array}\right]$.
(e) $C=\left[\begin{array}{cccccc}0 & 1 & 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 2 & 3 & 4 \\ -2 & -1 & -3 & 3 & 1 & 3\end{array}\right]$.
(f) $C=\left[\begin{array}{ccccc}1 & 2 & 7 & 1 & -1 \\ 1 & 1 & 3 & 1 & 0 \\ 3 & 2 & 5 & -1 & 9 \\ 1 & -1 & -5 & 2 & 0\end{array}\right]$.

3. Let $A, A^{\sharp}, A^{\prime}$ be $(p \times q)$-matrices.

Suppose

- A^{\sharp} is a row-echelon form which is row-equivalent to A under some sequence of row operations

$$
A \xrightarrow{\rho_{1}} \xrightarrow{\rho_{2}} \cdots \xrightarrow{\rho_{m}} A^{\sharp}
$$

- A^{\prime} is a reduced row-echelon form which is row-equivalent to A^{\sharp} under some sequence of row operations

$$
A^{\sharp} \xrightarrow{\sigma_{1}} \xrightarrow{\sigma_{2}} \cdots \xrightarrow{\sigma_{n}} A^{\prime}
$$

Write $J=M\left[\rho_{m}\right] \cdots M\left[\rho_{2}\right] M\left[\rho_{1}\right]$ and $K=M\left[\sigma_{n}\right] \cdots M\left[\sigma_{2}\right] M\left[\sigma_{1}\right]$. (Note that $A^{\sharp}=J A$ and $A^{\prime}=K A^{\sharp}$.)
Suppose the rank of A^{\sharp}, and that of A^{\prime}, are both p. (So all rows of A^{\sharp} are non-zero rows, and all rows of A^{\prime} are non-zero rows.)
(a) Let B be the $(p \times 2 q)$-matrix given by $B=[A \mid A]$.

Give, in terms of A^{\sharp}, A^{\prime}, some row-echelon form B^{\sharp} and some reduced row-echelon form B^{\prime} which are rowequivalent to B.
Give some appropriate equalities which relate $B, B^{\sharp}, B^{\prime}$, and J, K.
(b) Let C be the $(2 p \times q)$-matrix given by $C=\left[\frac{A}{A}\right]$.

Give, in terms of A^{\sharp}, A^{\prime}, some row-echelon form C^{\sharp} and some reduced row-echelon form C^{\prime} which are rowequivalent to C.
Give some appropriate equalities which relate $C, C^{\sharp}, C^{\prime}$, and J, K.
(c) Let D be the $(2 p \times 2 q)$-matrix given by $D=\left[\begin{array}{c|c}A & \mathcal{O}_{p \times q} \\ \hline \mathcal{O}_{p \times q} & A\end{array}\right]$.

Give, in terms of A^{\sharp}, A^{\prime}, some row-echelon form D^{\sharp} and some reduced row-echelon form D^{\prime} which are rowequivalent to D.
Give some appropriate equalities which relate $D, D^{\sharp}, D^{\prime}$, and J, K.
(d) Let E be the $(2 p \times 2 q)$-matrix given by $E=\left[\begin{array}{c|c}A & A \\ \hline \mathcal{O}_{p \times q} & A\end{array}\right]$.

Give, in terms of A^{\sharp}, A^{\prime}, some row-echelon form E^{\sharp} and some reduced row-echelon form E^{\prime} which are rowequivalent to E.
Give some appropriate equalities which relate $E, E^{\sharp}, E^{\prime}$, and J, K.

