2.2.2 Answers to Exercise.

1. (a) $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & 1 & -3\end{array}\right], \mathbf{b}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$
$\mathcal{L S}(A, \mathbf{b})$ reads: $\left\{\begin{array}{lll}x_{1} & & +2 x_{3}=3 \\ & x_{2} & -3 x_{3}=4\end{array}\right.$
$\mathcal{L S}(A, \mathbf{b})$ is consistent.
\mathbf{t} is a solution of $\mathcal{L S}(A, \mathbf{b})$ if and only if there exists some number u such that $\mathbf{t}=\left[\begin{array}{l}3 \\ 4 \\ 0\end{array}\right]+u\left[\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right]$.
(b) $A=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right], \mathbf{b}=\left[\begin{array}{c}3 \\ 4 \\ -1\end{array}\right]$.
$\mathcal{L S}(A, \mathbf{b})$ reads: $\left\{\begin{array}{rlrl}x_{1} & & & \\ & x_{2}-2 x_{3} & & \\ & & & \\ & & & \\ & & -1\end{array}\right.$
$\mathcal{L S}(A, \mathbf{b})$ is consistent.
\mathbf{t} is a solution of $\mathcal{L S}(A, \mathbf{b})$ if and only if there exists some number u such that $\mathbf{t}=\left[\begin{array}{c}3 \\ 4 \\ 0 \\ -1\end{array}\right]+u\left[\begin{array}{l}0 \\ 2 \\ 1 \\ 0\end{array}\right]$.
(c) $A=\left[\begin{array}{llll}1 & 0 & 2 & 0 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right], \mathbf{b}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$.
$\mathcal{L S}\left(A\right.$, b) reads: $\left\{\begin{array}{rlrl}x_{1} & +2 x_{3} & & =0 \\ & x_{2}+5 x_{3} & =0 \\ & & x_{4} & =0 \\ & & 0 & =1\end{array}\right.$
$\mathcal{L S}(A, \mathbf{b})$ is inconsistent.
(d) $A=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right], \mathbf{b}=\left[\begin{array}{c}-1 \\ -2 \\ 2 \\ 3 \\ 4 \\ 0\end{array}\right]$.
$\mathcal{L S}(A, \mathbf{b})$ reads: $\left\{\begin{array}{llllll}x_{1} & & & & & \\ & x_{2} & & & -1 \\ & & x_{3} & & & \\ & & = & -2 \\ & & & x_{4} & & 2 \\ & & & & 3 \\ & & & & x_{5} & = \\ & & & 4 \\ & & & & 0\end{array}\right.$
$\mathcal{L S}(A, \mathbf{b})$ is consistent.
The only solution of $\mathcal{L S}(A, \mathbf{b})$ is given by $\left[\begin{array}{c}-1 \\ -2 \\ 2 \\ 3 \\ 4\end{array}\right]$.
(e) $A=\left[\begin{array}{llllcc}1 & 2 & 0 & 0 & -2 & 3 \\ 0 & 0 & 1 & 0 & 0 & -2 \\ 0 & 0 & 0 & 1 & -3 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right], \mathbf{b}=\left[\begin{array}{c}4 \\ 3 \\ -1 \\ 0\end{array}\right]$.
$\mathcal{L S}(A, \mathbf{b})$ reads: $\left\{\begin{array}{rlrl}x_{1}+2 x_{2} & & -2 x_{5} & +3 x_{6}\end{array}=4 \begin{array}{rl} & \\ & \\ & x_{3} \\ & \end{array}\right.$
$\mathcal{L S}(A, \mathbf{b})$ is consistent.
\mathbf{t} is a solution of $\mathcal{L S}(A, \mathbf{b})$ if and only if there exist some numbers u, v, w such that $\mathbf{t}=\left[\begin{array}{c}4 \\ 0 \\ 3 \\ -1 \\ 0 \\ 0\end{array}\right]+u\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]+$
$v\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 3 \\ 1 \\ 0\end{array}\right]+w\left[\begin{array}{c}-3 \\ 0 \\ 2 \\ -5 \\ 0 \\ 1\end{array}\right]$.
(f) $A=\left[\begin{array}{cccccccc}1 & 0 & 2 & 0 & -2 & 0 & -1 & 4 \\ 0 & 1 & -3 & 0 & 4 & 0 & -5 & -1 \\ 0 & 0 & 0 & 1 & 1 & 0 & -3 & 2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 5 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right], \mathbf{b}=\left[\begin{array}{c}3 \\ -2 \\ -4 \\ 2 \\ 0 \\ 0\end{array}\right]$.

$\mathcal{L S}(A, \mathbf{b})$ is consistent.
\mathbf{t} is a solution of $\mathcal{L S}(A, \mathbf{b})$ if and only if there exist some numbers $u_{1}, u_{2}, u_{3}, u_{4}$ such that $\mathbf{t}=\left[\begin{array}{c}3 \\ -2 \\ 0 \\ -4 \\ 0 \\ 2 \\ 0 \\ 0\end{array}\right]+u_{1}\left[\begin{array}{c}-2 \\ 3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]+$
$u_{2}\left[\begin{array}{c}2 \\ -4 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+u_{3}\left[\begin{array}{c}1 \\ 5 \\ 0 \\ 3 \\ 0 \\ -5 \\ 1 \\ 0\end{array}\right]+u_{4}\left[\begin{array}{c}-4 \\ 1 \\ 0 \\ -2 \\ 0 \\ -3 \\ 0 \\ 1\end{array}\right]$.
(g) $A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right], \mathbf{b}=\left[\begin{array}{l}3 \\ 5 \\ 7 \\ 0 \\ 0 \\ 0\end{array}\right]$
$\mathcal{L S}(A, \mathbf{b})$ reads: $\left\{\begin{array}{llll}x_{1} & & & \\ & x_{2} & & 3 \\ & & x_{3} & = \\ & & & 7 \\ & & & 0 \\ & & & 0 \\ & & & 0\end{array}\right.$
$\mathcal{L S}(A, \mathbf{b})$ is consistent.
\mathbf{t} is a solution of $\mathcal{L S}(A, \mathbf{b})$ if and only if there exist some number u such that $\mathbf{t}=\left[\begin{array}{l}3 \\ 5 \\ 7 \\ 0\end{array}\right]+u\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$.
2. (a) $\mathcal{L S}\left(A, \mathbf{0}_{2}\right)$ reads: $\left\{\begin{array}{llll}x_{1} & & +2 x_{3}+3 x_{4}=0 \\ & x_{2} & -3 x_{3}+4 x_{4}=0\end{array}\right.$
\mathbf{t} is a solution of $\mathcal{L S}\left(A, \mathbf{0}_{2}\right)$ if and only if there exist some number u, v such that $\mathbf{t}=u\left[\begin{array}{c}-2 \\ 3 \\ 1 \\ 0\end{array}\right]+v\left[\begin{array}{c}-3 \\ -4 \\ 0 \\ 1\end{array}\right]$. $\mathcal{L S}\left(A, \mathbf{0}_{2}\right)$ has some non-trivial solution.
(b) $\mathcal{L S}\left(A, \mathbf{0}_{3}\right)$ reads: $\left\{\begin{array}{rlll}x_{1} & & & +3 x_{5}\end{array}=0 \begin{array}{l}+2 x_{3} \\ \\ \\ \end{array}\right.$ $\mathcal{L S}\left(A, \mathbf{0}_{3}\right)$ has some non-trivial solution.
\mathbf{t} is a solution of $\mathcal{L S}\left(A, \mathbf{0}_{3}\right)$ if and only if there exist some number u, v such that $\mathbf{t}=u\left[\begin{array}{l}0 \\ 2 \\ 1 \\ 0 \\ 0\end{array}\right]+v\left[\begin{array}{c}-3 \\ -4 \\ 0 \\ 1 \\ 1\end{array}\right]$.
(c) $\mathcal{L S}\left(A, \mathbf{0}_{8}\right)$ reads: $\left\{\begin{array}{llllll}x_{1} & & & & & \\ & x_{2} & & & 0 \\ & & x_{3} & & & \\ & & =0 \\ & & & x_{4} & & =0 \\ & & & & & 0 \\ & & & x_{5} & =0 \\ & & & 0 & =0 \\ & & & 0 & = & 0 \\ & & & & = & 0\end{array}\right.$
$\mathcal{L S}\left(A, \mathbf{0}_{8}\right)$ has no non-trivial solution.
 $\mathcal{L S}\left(A, \mathbf{0}_{4}\right)$ has some non-trivial solution.
\mathbf{t} is a solution of $\mathcal{L S}\left(A, \mathbf{0}_{3}\right)$ if and only if there exist some number $u_{1}, u_{2}, u_{3}, u_{4}$ such that $\mathbf{t}=u_{1}$
$u_{2}\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 3 \\ 1 \\ 0 \\ 0\end{array}\right]+u_{3}\left[\begin{array}{c}-3 \\ 0 \\ 2 \\ -5 \\ 0 \\ 1 \\ 0\end{array}\right]+u_{4}\left[\begin{array}{c}-4 \\ 0 \\ -3 \\ 1 \\ 0 \\ 0 \\ 1\end{array}\right]$.

$\mathcal{L S}\left(A, \mathbf{0}_{6}\right)$ has some non-trivial solution.
\mathbf{t} is a solution of $\mathcal{L S}\left(A, \mathbf{0}_{3}\right)$ if and only if there exist some number $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ such that $\mathbf{t}=u_{1}$
$u_{2}\left[\begin{array}{c}2 \\ -4 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]+u_{3}\left[\begin{array}{c}1 \\ 5 \\ 0 \\ 3 \\ 0 \\ -5 \\ 1 \\ 0 \\ 0\end{array}\right]+u_{4}\left[\begin{array}{c}-4 \\ 1 \\ 0 \\ -2 \\ 0-3 \\ 0 \\ 1 \\ 0\end{array}\right]+u_{5}\left[\begin{array}{c}-3 \\ 2 \\ 0 \\ 4 \\ 0 \\ -2 \\ 0 \\ 0 \\ 1\end{array}\right]$.
(f) $\mathcal{L S}\left(A, \mathbf{0}_{6}\right)$ reads: $\left\{\begin{array}{rllll}x_{1} & & & & \\ & x_{2} & & 0 \\ & & x_{4} & 0 \\ & & & =0 \\ & & x_{5} & = & 0 \\ & & 0 & =0 \\ & & & = & 0\end{array}\right.$
$\mathcal{L S}\left(A, \mathbf{0}_{6}\right)$ has some non-trivial solution.
\mathbf{t} is a solution of $\mathcal{L S}\left(A, \mathbf{0}_{6}\right)$ if and only if there exists some number u such that $\mathbf{t}=u\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right]$.
3. (a) i. 1-st, 2-nd, 4-th, 6 -th columns.
ii. Comment.

Note that the j-th entry of the j-th pivot column from left to right in C is 1 , and every other entry of such a pivot column is 0 . This is the key to the issue of linear independence.
iii. Comment.

Note that whenever $i>\ell$, the first non-zero entry in the i-th non-zero row in C is strictly to the left of the first non-zero entry in the ℓ-th non-zero row in C. This is the key to the issue of linear independence.
iv. Comment.

Each free column in C is a linear combination of the pivot columns in C strictly to its left.
v. -
(b)
4. (a) True.
(b) True.
(c) True.
(d) True.
(e) True.
(f) False.

