2.2.2 Exercise: Row-echelon forms and reduced row-echelon forms.

1. For each part below, consider the reduced row-echelone form denoted by C here. Such a C is supposed to be the augmented matrix representation of some system of linear equations $\mathcal{L} \mathcal{S}(A, \mathbf{b})$, in which A is some ($m \times n$)-matrix.

- Identify its coefficient matrix A and vector of constants \mathbf{b}.
- Present the system $\mathcal{L S}(A, \mathbf{b})$ explicitly, displaying all m individual equations in the system, and the n unknowns $x_{1}, x_{2}, \cdots, x_{n}$.
- Determine whether the system $\mathcal{L S}(A, \mathbf{b})$ is consistent.
- Where the system $\mathcal{L S}(A, \mathbf{b})$ is consistent, give a full description of all solutions of $\mathcal{L S}(A, \mathbf{b})$.
(a) $C=\left[\begin{array}{ccc|c}1 & 0 & 2 & 3 \\ 0 & 1 & -3 & 4\end{array}\right]$.
(b) $C=\left[\begin{array}{cccc|c}1 & 0 & 0 & 0 & 3 \\ 0 & 1 & -2 & 0 & 4 \\ 0 & 0 & 0 & 1 & -1\end{array}\right]$.
(e) $C=\left[\begin{array}{cccccc|c}1 & 2 & 0 & 0 & -2 & 3 & 4 \\ 0 & 0 & 1 & 0 & 0 & -2 & 3 \\ 0 & 0 & 0 & 1 & -3 & 5 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(c) $C=\left[\begin{array}{llll|l}1 & 0 & 2 & 0 & 0 \\ 0 & 1 & 5 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.
(f) $C=\left[\begin{array}{cccccccc|c}1 & 0 & 2 & 0 & -2 & 0 & -1 & 4 & 3 \\ 0 & 1 & -3 & 0 & 4 & 0 & -5 & -1 & -2 \\ 0 & 0 & 0 & 1 & 1 & 0 & -3 & 2 & -4 \\ 0 & 0 & 0 & 0 & 0 & 1 & 5 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(d) $C=\left[\begin{array}{ccccc|c}1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(g) $C=\left[\begin{array}{llll|l}1 & 0 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 & 5 \\ 0 & 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.

2. For each part below, consider the $(m \times n)$-reduced row-echelon form denoted by A here. Such an A is supposed to be the coefficient matrix of some homogeneous system $\mathcal{L S}\left(A, \mathbf{0}_{m}\right)$.

- Present the system $\mathcal{L S}\left(A, \mathbf{0}_{m}\right)$ explicitly, displaying all m individual equations in the system, and the n unknowns $x_{1}, x_{2}, \cdots, x_{n}$.
- Determine whether the system $\mathcal{L S}(A, \mathbf{b})$ has any non-trivial solutions.
- Where the system $\mathcal{L S}(A, \mathbf{b})$ has some non-trivial solution, give a full description of all solutions of $\mathcal{L S}(A, \mathbf{b})$.
(a) $A=\left[\begin{array}{cccc}1 & 0 & 2 & 3 \\ 0 & 1 & -3 & 4\end{array}\right]$.
(d) $A=\left[\begin{array}{ccccccc}1 & 2 & 0 & 0 & -2 & 3 & 4 \\ 0 & 0 & 1 & 0 & 0 & -2 & 3 \\ 0 & 0 & 0 & 1 & -3 & 5 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(b) $A=\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 3 \\ 0 & 1 & -2 & 0 & 4 \\ 0 & 0 & 0 & 1 & -1\end{array}\right]$.
(e) $A=\left[\begin{array}{ccccccccc}1 & 0 & 2 & 0 & -2 & 0 & -1 & 4 & 3 \\ 0 & 1 & -3 & 0 & 4 & 0 & -5 & -1 & -2 \\ 0 & 0 & 0 & 1 & 1 & 0 & -3 & 2 & -4 \\ 0 & 0 & 0 & 0 & 0 & 1 & 5 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(c) $A=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(f) $A=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.

3. The two parts of this question is un-related to each other, though the hidden agenda in part (a) is to provide you some feeling on how you may approach part (b).
(a) Let $C=\left[\begin{array}{ccccccc}1 & 0 & -3 & 0 & 2 & 0 & -1 \\ 0 & 1 & -4 & 0 & 5 & 0 & 6 \\ 0 & 0 & 0 & 1 & 8 & 0 & -7 \\ 0 & 0 & 0 & 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.

Note that C is a reduced row-echelon form.
Denote the columns of C, from left to right, by $\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{3}, \mathbf{c}_{4}, \mathbf{c}_{5}, \mathbf{c}_{6}, \mathbf{c}_{7}$, and denote the rows of C, from top to bottom, by $\hat{\mathbf{c}}_{1}, \hat{\mathbf{c}}_{2}, \hat{\mathbf{c}}_{3}, \hat{\mathbf{c}}_{4}$.
i. Name the pivot columns of C.
ii. Verify that the pivot columns of C are linearly independent over the reals.
iii. Verify that the non-zero rows of C are linearly independent over the reals.
iv. Verify that each free column is a linear combination of the pivot columns strictly to its left over the reals.
v. Verify that every linear combination of the columns of C over the reals is a linear combination of the pivot columns of C over the reals.
(b) Let B be a (9×63)-matrix. Suppose B is a reduced row-echelon form.

Denote the columns of B, from left to right, by $\mathbf{b}_{1}, \mathbf{b}_{2}, \cdots, \mathbf{b}_{63}$, and denote the rows of B, from top to bottom, by $\hat{\mathbf{b}}_{1}, \hat{\mathbf{b}}_{2}, \cdots, \hat{\mathbf{b}}_{9}$.
Suppose that the pivot columns of B are the 1 -st, 2 -nd, 4 -th, 8 -th, 16 -th, 32 -nd columns of B.
i. Describe the column vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{4}, \mathbf{b}_{8}, \mathbf{b}_{16}, \mathbf{b}_{32}$, by explicitly giving their entries.
ii. Show that the pivot columns of B are linearly independent over the reals.
iii. Name the non-zero rows of B.
iv. Show that the non-zero rows of B are linearly independent over the reals.
v. Show that \mathbf{b}_{15} is a linear combination of $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{4}, \mathbf{b}_{8}$ over the reals.
vi. Show that each linear combination of the columns of B over the reals is a linear combination of $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{4}, \mathbf{b}_{8}, \mathbf{b}_{16}, \mathbf{b}_{32}$ over the reals.
4. For each of the statements below, determine whether it is true or false. If it is true, provide a proof. If it is false, provide a counter-example against it.
(a) Let C be an $(n \times n)$-square matrix. Suppose C is a reduced-row echelon form, and every column of C is a pivot column. Then $C=I_{n}$.
(b) Let C be an $(n \times n)$-square matrix. Suppose C is a reduced-row echelon form, and every row of C is a non-zero row. Then $C=I_{n}$.
(c) Let C be an $(m \times n)$-matrix. Suppose C is a reduced-row echelon form, and every column of C is a pivot column. Then $m \geq n$.
(d) Let C be an $(m \times n)$-matrix. Suppose C is a reduced-row echelon form, and every row of C is a non-zero row. Then $m \leq n$.
(e) Let C be an $(m \times n)$-matrix. Suppose C is a reduced-row echelon form, and every column of C is a pivot column. Then $C=\left[\frac{I_{n}}{\mathcal{O}}\right]$.
(f) Let C be an $(m \times n)$-matrix. Suppose C is a reduced-row echelon form, and every row of C is a non-zero. Then $C=\left[I_{m} \mid \mathcal{O}\right]$.

