2.1.1 Answers to Exercise.

1. (a) $A=\left[\begin{array}{cccc}1 & 2 & 0 & 1 \\ 1 & 1 & 1 & -1 \\ 3 & 1 & 5 & -7\end{array}\right], \mathbf{b}=\left[\begin{array}{l}7 \\ 3 \\ 1\end{array}\right]$.

The matrix presentation of (S) reads: $\left[\begin{array}{cccc}1 & 2 & 0 & 1 \\ 1 & 1 & 1 & -1 \\ 3 & 1 & 5 & -7\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}7 \\ 3 \\ 1\end{array}\right]$.
The augmented matrix representation of (S) reads: $\left[\begin{array}{cccc|c}1 & 2 & 0 & 1 & 7 \\ 1 & 1 & 1 & -1 & 3 \\ 3 & 1 & 5 & -7 & 1\end{array}\right]$.
The vector presentation of (S) reads: $x_{1}\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]+x_{2}\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]+x_{3}\left[\begin{array}{l}0 \\ 1 \\ 5\end{array}\right]+x_{4}\left[\begin{array}{c}1 \\ -1 \\ -7\end{array}\right]=\left[\begin{array}{l}7 \\ 3 \\ 1\end{array}\right]$.
t is a solution.
\mathbf{u} is not a solution.
(b) $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 1 & 3 & 3 \\ 2 & 6 & 5\end{array}\right], \mathbf{b}=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$.

The matrix presentation of (S) reads: $\left[\begin{array}{lll}1 & 2 & 2 \\ 1 & 3 & 3 \\ 2 & 6 & 5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$.
The augmented matrix representation of (S) reads: $\left[\begin{array}{lll|l}1 & 2 & 2 & 4 \\ 1 & 3 & 3 & 5 \\ 2 & 6 & 5 & 6\end{array}\right]$.
The vector presentation of (S) reads: $x_{1}\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]+x_{2}\left[\begin{array}{l}2 \\ 3 \\ 6\end{array}\right]+x_{3}\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$.
t is a solution.
\mathbf{u} is not a solution.
(c) $A=\left[\begin{array}{ccccc}0 & 1 & 1 & 2 & 2 \\ 1 & 2 & 3 & 2 & 3 \\ -2 & -1 & -3 & 3 & 1\end{array}\right], \mathbf{b}=\left[\begin{array}{l}2 \\ 4 \\ 3\end{array}\right]$.

The matrix presentation of (S) reads: $\left[\begin{array}{ccccc}0 & 1 & 1 & 2 & 2 \\ 1 & 2 & 3 & 2 & 3 \\ -2 & -1 & -3 & 3 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{l}2 \\ 4 \\ 3\end{array}\right]$.
The augmented matrix representation of (S) reads: $\left[\begin{array}{ccccc|c}0 & 1 & 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 2 & 3 & 4 \\ -2 & -1 & -3 & 3 & 1 & 3\end{array}\right]$.
The vector presentation of (S) reads: $x_{1}\left[\begin{array}{c}0 \\ 1 \\ -2\end{array}\right]+x_{2}\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]+x_{3}\left[\begin{array}{c}1 \\ 3 \\ -3\end{array}\right]+x_{4}\left[\begin{array}{l}2 \\ 2 \\ 3\end{array}\right]+x_{5}\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 4 \\ 3\end{array}\right]$
\mathbf{t} is a solution.
\mathbf{u} is a solution.
(d) $A=\left[\begin{array}{cccccc}0 & 0 & 2 & 3 & 5 & -7 \\ -1 & 2 & 1 & -1 & 0 & -2 \\ 2 & -4 & -1 & 3 & 2 & 1 \\ 3 & -6 & -1 & 5 & 4 & 0\end{array}\right], \mathbf{b}=\left[\begin{array}{c}12 \\ 0 \\ 5 \\ 10\end{array}\right]$.

The matrix presentation of S reads: $\left[\begin{array}{cccccc}0 & 0 & 2 & 3 & 5 & -7 \\ -1 & 2 & 1 & -1 & 0 & -2 \\ 2 & -4 & -1 & 3 & 2 & 1 \\ 3 & -6 & -1 & 5 & 4 & 0\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6}\end{array}\right]=\left[\begin{array}{c}12 \\ 0 \\ 5 \\ 10\end{array}\right]$.
The augmented matrix representation of (S) reads: $\left[\begin{array}{cccccc|c}0 & 0 & 2 & 3 & 5 & -7 & 12 \\ -1 & 2 & 1 & -1 & 0 & -2 & 0 \\ 2 & -4 & -1 & 3 & 2 & 1 & 5 \\ 3 & -6 & -1 & 5 & 4 & 0 & 10\end{array}\right]$.
The vector presentation of (S) reads:
$x_{1}\left[\begin{array}{c}0 \\ -1 \\ 2 \\ 3\end{array}\right]+x_{2}\left[\begin{array}{c}0 \\ 2 \\ -4 \\ -6\end{array}\right]+x_{3}\left[\begin{array}{c}2 \\ 1 \\ -1 \\ -1\end{array}\right]+x_{4}\left[\begin{array}{c}3 \\ -1 \\ 3 \\ 5\end{array}\right]+x_{5}\left[\begin{array}{l}5 \\ 0 \\ 2 \\ 4\end{array}\right]+x_{6}\left[\begin{array}{c}-7 \\ -2 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}12 \\ 0 \\ 5 \\ 10\end{array}\right]$.
\mathbf{t} is a solution.
\mathbf{u} is a solution.
2. (a) $A=\left[\begin{array}{cccc}2 & 1 & 3 & 0 \\ 0 & 1 & 3 & 2 \\ 1 & -5 & 0 & 4\end{array}\right]$

Matrix presentation of (H) reads: $\left[\begin{array}{cccc}2 & 1 & 3 & 0 \\ 0 & 1 & 3 & 2 \\ 1 & -5 & 0 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
\mathbf{t} is a non-trivial solution of $\mathcal{L S}\left(A, \mathbf{0}_{3}\right)$.
\mathbf{u} is not a non-trivial solution of $\mathcal{L} \mathcal{S}\left(A, \mathbf{0}_{3}\right)$.
(b) $A=\left[\begin{array}{ccccc}1 & -2 & 4 & 5 & 2 \\ -2 & 5 & -6 & -11 & -8 \\ 3 & -5 & 14 & 15 & 3 \\ 2 & -5 & 6 & 15 & 12\end{array}\right]$

Matrix presentation of (H) reads: $\left[\begin{array}{ccccc}1 & -2 & 4 & 5 & 2 \\ -2 & 5 & -6 & -11 & -8 \\ 3 & -5 & 14 & 15 & 3 \\ 2 & -5 & 6 & 15 & 12\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$
\mathbf{t} is a non-trivial solution of $\mathcal{L S}\left(A, \mathbf{0}_{4}\right)$.
\mathbf{u} is not a non-trivial solution of $\mathcal{L S}\left(A, \mathbf{0}_{4}\right)$.
3. (a) Comment.

When the 'cosmetics' in the language of systems of linear equations is stripped away, it is the 'algebraic identity' $A\left(\mathbf{u}+\mathbf{u}^{\prime}\right)=A \mathbf{u}+A \mathbf{u}^{\prime}=\mathbf{b}+\mathbf{b}^{\prime}$.
(b) Comment.

When the 'cosmetics' in the language of systems of linear equations is stripped away, it is the 'algebraic identity' $A(\mathbf{c u})=c A \mathbf{u}=c \mathbf{b}$.
4. Comment.

It is the pair of results described here that makes homogeneous systems special amongst all systems.
The second result says that there is a 'linear structure' inside the collection of all solutions of an arbitrary homogeneous system, in the sense that linear combinations of solutions of such a system are always solutions of this system again.
5. (a)
(b) One possible choice of counter-example is to take $A=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right], \mathbf{b}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$.
6. (a) True.
(b) False. A counter-example is obtained by placing the equation ' $0=1$ ' beneath the other three equations in a concrete consistent system (T).
(c) False. A counter-example is obtained by 'deleting' the terms involving ' x_{6} ' from a concrete consistent (S) which, amongst its four equations, includes the equation ' $x_{6}=1$ '.
(d) True.
7. (a) True.
(b) False. A counter-example is obtained by choosing $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, $\mathbf{c}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathbf{d}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
(c) True.
(d) False. A counter-example is obtained by choosing $A=\left[\begin{array}{ll}1 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 1\end{array}\right]$, $\mathbf{c}=[1], \mathbf{d}=[2]$.
(e) True.
(f) True.
8.
9. (a) -
(b) The converse of (\sharp) is true.
10. Comment.

The key is the identity ' $A(A \mathbf{b})=\mathbf{b}$ '.
11. (a) -
(b) The statement (\square) is false. A counter-example against (\square) is provided by $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$, $\mathbf{b}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

