2.1.1 Exercise: Systems of linear equations.

1. For each part below, consider the given system of linear equations, which is denoted by (S) here.

- Display (S) in its respective matrix presentation. Identify its coefficient matrix A and vector of constants \mathbf{b}. Also give its augmented matrix representation and vector presentation.
- For the given vectors \mathbf{t}, \mathbf{u} in each part whether they are solutions of the system (S).
(a) $(S):\left\{\begin{aligned} x_{1} & +2 x_{2} \\ x_{1} & + \\ x_{2} & + \\ x_{1} & + \\ x_{3} & = \\ x_{4} & = \\ x_{4} & =3 \\ & \end{aligned}\right.$

$$
\mathbf{t}=\left[\begin{array}{c}
-1 \\
4 \\
0 \\
0
\end{array}\right], \mathbf{u}=\left[\begin{array}{c}
-1 \\
4 \\
1 \\
0
\end{array}\right]
$$

(b) (S) : $\left\{\begin{array}{r}x_{1}+2 x_{2}+2 x_{3}=4 \\ x_{1}+3 x_{2}+3 x_{3}=5 \\ 2 x_{1}+6 x_{2}+5 x_{3}=6\end{array}\right.$.

$$
\mathbf{t}=\left[\begin{array}{c}
2 \\
-3 \\
4
\end{array}\right], \mathbf{u}=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]
$$

(c) $(S):\left\{\begin{array}{rl}x_{2} & +x_{3}+2 x_{4}+2 x_{5}=2 \\ x_{1} & +2 x_{2}+3 x_{3}+2 x_{4}+3 x_{5}=4 \\ -2 x_{1}-2 & x_{2}\end{array} \quad 3 x_{3}+3 x_{4}+x_{5}=3 . ~ . ~\right.$.

$$
\mathbf{t}=\left[\begin{array}{c}
8 \\
-9 \\
1 \\
4 \\
1
\end{array}\right], \mathbf{u}=\left[\begin{array}{c}
10 \\
-9 \\
1 \\
6 \\
-1
\end{array}\right]
$$

$$
\mathbf{t}=\left[\begin{array}{l}
1 \\
0 \\
3 \\
2 \\
0 \\
0
\end{array}\right], \mathbf{u}=\left[\begin{array}{l}
1 \\
1 \\
3 \\
0 \\
4 \\
2
\end{array}\right]
$$

2. For each part below, consider the given homogeneous system of equations, which is denoted by (H) here.

- Display (H) in its respective matrix presentation. Identify its coefficient matrix A.
- For the given vectors \mathbf{t}, \mathbf{u} in each part whether they are non-trivial solutions of the system (H).

$$
\mathbf{t}=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right], \mathbf{u}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

$$
\mathbf{t}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1 \\
1
\end{array}\right], \mathbf{u}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

3. Let A be an $(m \times n)$-matrix, $\mathbf{b}, \mathbf{b}^{\prime}$ be vectors with m entries, and c be a number.

Prove the statements below, with direct reference to the appropriate definitions:-
(a) Suppose \mathbf{t} is a solution of $\mathcal{L S}(A, \mathbf{b})$, and \mathbf{t}^{\prime} is a solution of $\mathcal{L S}\left(A, \mathbf{b}^{\prime}\right)$. Then $\mathbf{t}+\mathbf{t}^{\prime}$ is a solution of $\mathcal{L S}\left(A, \mathbf{b}+\mathbf{b}^{\prime}\right)$.
(b) Suppose \mathbf{u} is a solution of $\mathcal{L S}(A, \mathbf{b})$. Then $c \mathbf{u}$ is a solution of $\mathcal{L S}(A, c \mathbf{b})$.
4. Let A be an $(m \times n)$-matrix.

Prove the statements below, with direct reference to the appropriate definitions:-
(a) The homogeneous system $\mathcal{L S}\left(A, \mathbf{0}_{m}\right)$ has a solution.
(b) Suppose $\mathbf{t}, \mathbf{t}^{\prime}$ are solutions of the homogeneous system $\mathcal{L S}\left(A, \mathbf{0}_{m}\right)$, and c, c^{\prime} are numbers. Then $c \mathbf{t}+c^{\prime} \mathbf{t}^{\prime}$ is a solution of $\mathcal{L S}\left(A, \mathbf{0}_{m}\right)$.
5. (a) Let A be an $(m \times n)$-matrix, and \mathbf{b} be a column vector with m entries.

Prove the statements below, with direct reference to the appropriate definitions:-
i. Suppose $\mathcal{L S}(A, \mathbf{b})$ has two distinct solutions. Then the homogeneous system $\mathcal{L S}\left(A, \mathbf{0}_{m}\right)$ has a non-trivial solution.
ii. Suppose $\mathcal{L S}(A, \mathbf{b})$ is consistent. Further suppose the homogeneous system $\mathcal{L S}\left(A, \mathbf{0}_{m}\right)$ has a non-trivial solution. Then $\mathcal{L S}(A, \mathbf{b})$ has two distinct solutions.
iii. Suppose $\mathcal{L S}(A, \mathbf{b})$ is consistent. Further suppose the homogeneous system $\mathcal{L S}\left(A, \mathbf{0}_{m}\right)$ has a non-trivial solution. Then $\mathcal{L S}(A, \mathbf{b})$ has infinitely many distinct solutions, in the sense of (\sharp) :
(\sharp) There is an infinite sequence of column vectors $\left\{\mathbf{t}_{(\nu)}\right\}_{\nu=0}^{\infty}$, so that each $\mathbf{t}_{(\nu)}$ is a solution of $\mathcal{L S}(A, \mathbf{b})$ and the terms in the sequence $\left\{\mathbf{t}_{(\nu)}\right\}_{\nu=0}^{\infty}$ are pairwise distinct.
Remark. Note that in this course the word 'number' is understood as 'real number' or 'complex number'.
(b) Provide a counter-example against the statement below (and justify your answer):-

Let A be an (3×4)-matrix, b be a column vector with 3 entries.
Suppose the homogeneous system $\mathcal{L S}\left(A, \mathbf{0}_{3}\right)$ has a non-trivial solution.
Then $\mathcal{L S}(A, \mathbf{b})$ has two distinct solutions.
6. In this question, $(S),(T),(U)$ respectively stand for some linear systems, which, when written out explicitly, read as:-

$$
\begin{aligned}
& (S):\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+a_{14} x_{4}+a_{15} x_{5}+a_{16} x_{6}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+a_{24} x_{4}+a_{25} x_{5}+a_{26} x_{6}=b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+a_{34} x_{4}+a_{35} x_{5}+a_{36} x_{6}=b_{3} \\
a_{41} x_{1}+a_{42} x_{2}+a_{43} x_{3}+a_{44} x_{4}+a_{45} x_{5}+a_{46} x_{6}=b_{4}
\end{array},\right. \\
& (T):\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+a_{14} x_{4}+a_{15} x_{5}+a_{16} x_{6}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+a_{24} x_{4}+a_{25} x_{5}+a_{26} x_{6}=b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+a_{34} x_{4}+a_{35} x_{5}+a_{36} x_{6}=b_{3}
\end{array},\right. \\
& (U):\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+a_{14} x_{4}+a_{15} x_{5}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+a_{24} x_{4}+a_{25} x_{5}=b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+a_{34} x_{4}+a_{35} x_{5}=b_{3} \\
a_{41} x_{1}+a_{42} x_{2}+a_{43} x_{3}+a_{44} x_{4}+a_{45} x_{5}=b_{4}
\end{array}\right.
\end{aligned}
$$

The $a_{i j}$'s and the b_{i} 's in the respective systems are the same numbers.
Which of the statements below are true? Which of them false.
Provide an appropriate justification for each answer (by giving a proof, or providing a counter-example, as appropriate).
(a) Suppose (S) is consistent. Then (T) is consistent.
(b) Suppose (T) is consistent. Then (S) is consistent.
(c) Suppose (S) is consistent. Then (U) is consistent.
(d) Suppose (U) is consistent. Then (S) is consistent.
7. For each statement below, determine whether it is true or false. If it is true, give a proof. If it is false, give a counter-example (and justify your answer).
(a) Let A be an $(m \times n)$-matrix, C be a $(p \times m)$-matrix, and \mathbf{d} be a column vector with m entries.

Suppose $\mathcal{L} \mathcal{S}(A, \mathbf{d})$ is consistent.
Then $\mathcal{L S}(C A, C \mathbf{d})$ is consistent.
(b) Let A, B be $(m \times n)$-matrices, and \mathbf{c}, \mathbf{d} be column vectors with m entries.

Suppose $\mathcal{L S}(A, \mathbf{c})$ and $\mathcal{L S}(B, \mathbf{d})$ are consistent.
Then $\mathcal{L S}(A+B, \mathbf{c}+\mathbf{d})$ is consistent.
(c) Let A be an $(m \times n)$-matrix, B be a $(p \times n)$-matrix, \mathbf{c} be a column vector with m entries, and \mathbf{d} be a column vector with p entries.
Suppose $\mathcal{L S}\left(\left[\frac{A}{B}\right],\left[\frac{\mathbf{c}}{\mathbf{d}}\right]\right)$ is consistent.
Then each of $\mathcal{L S}(A, \mathbf{c}), \mathcal{L S}(B, \mathbf{d})$ is consistent.
(d) Let A be an $(m \times n)$-matrix, B be a $(p \times n)$-matrix, \mathbf{c} be a column vector with m entries, and \mathbf{d} be a column vector with p entries.
Suppose each of $\mathcal{L S}(A, \mathbf{c}), \mathcal{L S}(B, \mathbf{d})$ is consistent.
Then $\mathcal{L S}\left(\left[\frac{A}{B}\right],\left[\frac{\mathbf{c}}{\mathbf{d}}\right]\right)$ is consistent.
(e) Let A be an $(m \times n)$-matrix, B be an $(m \times p)$-matrix, and \mathbf{c}, \mathbf{d} be column vectors with m entries.

Suppose $\mathcal{L S}(A, \mathbf{c})$ and $\mathcal{L S}(B, \mathbf{d})$ are consistent.
Then $\mathcal{L S}([A \mid B], \mathbf{c}+\mathbf{d})$ is consistent.
(f) Let A be an $(m \times n)$-matrix, B be an $(p \times q)$-matrix, and \mathbf{c} be a column vector with m entries, and \mathbf{d} be a column vector with p entries.
Suppose $\mathcal{L S}(A, \mathbf{c})$ and $\mathcal{L S}(B, \mathbf{d})$ are consistent.
Then $\mathcal{L S}\left(\left[\begin{array}{c|c}A & \mathcal{O}_{m \times q} \\ \hline \mathcal{O}_{p \times n} & B\end{array}\right],\left[\begin{array}{c}\mathbf{c} \\ \hline \mathbf{d}\end{array}\right]\right)$ is consistent.
8. Let A, B be $(n \times n)$-square matrices, and \mathbf{c} is a column vector with n entries.

Suppose A, B are commuting, and $\mathcal{L S}(A B, \mathbf{c})$ is consistent.
Show that $\mathcal{L S}(A, \mathbf{c})$ and $\mathcal{L S}(B, c)$ are consistent.
9. Recall the notion of idempotency, whose definition is given below:-

Let C be a square matrix.
We say that C is idempotent if and only if $C^{2}=C$.
(a) Prove the statement (\sharp), with direct reference to the relevant definitions:-
(\sharp) Let A be an idempotent $(n \times n)$-square matrix, and \mathbf{c} be a column vector with n entries. Suppose the system $\mathcal{L S}(A, \mathbf{c}-A \mathbf{c})$ is consistent. Then $\mathcal{L S}(A, \mathbf{c})$ is consistent.
(b) Is the converse of (\sharp) true? Justify your answer.

Remark. The converse of ($\#$) reads:-
Let A be an idempotent $(n \times n)$-square matrix, and \mathbf{c} be a column vector with n entries. Suppose $\mathcal{L S}(A, \mathbf{c})$ is consistent. Then the system $\mathcal{L S}(A, \mathbf{c}-A \mathbf{c})$ is consistent.
10. Recall the notion of involutoricy, whose definition is given below:-

Let C be a square matrix.
We say that C is involutoric if and only if C^{2} is the identity matrix.
Prove the statement below, with direct reference to the relevant definitions:-
Let A be an $(n \times n)$-square matrix. Suppose A is involutory. Then, for any column vector b with n entries, the system $\mathcal{L S}(A, \mathbf{b})$ has one and only one solution.
11. (a) Prove the statement (\sharp) :-
(\sharp) Let A be an $(m \times n)$-matrix with real entries, and \mathbf{b} be a column vector with m real entries.
Suppose $\mathcal{L S}(A, \mathbf{b})$ is consistent and \mathbf{b} is a solution of $\mathcal{L S}\left(A^{t}, \mathbf{0}_{n}\right)$.
Then $\mathbf{b}=\mathbf{0}_{m}$.
Remark. At some point of your argument you may need to use the following property of the real number system:

- Suppose c, \cdots, d are non-negative real numbers, and $c+\cdots+d=0$. Then $c=\cdots=d=0$.
(b) Is the statement (\bigsqcup) true or false? Justify your answer.
(\llcorner) Let A be a symmetric $(p \times p)$-square matrix with real entries, and \mathbf{b} be a column vector with p real entries. Suppose \mathbf{b} is a non-trivial solution of the homogeneous system $\mathcal{L S}\left(A, \mathbf{0}_{p}\right)$.
Then $\mathcal{L S}(A, \mathbf{b})$ is inconsistent.

