1.8.1 Answers to Exercise.

1. (a) $J_{1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right]$.
(b) $J_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$.
(c) $J_{3}=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
(d) $J=J_{3} J_{2} J_{1}=\left[\begin{array}{lll}3 & 0 & 0 \\ 2 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$.
(e) $J^{\prime}=\left[\begin{array}{ccc}1 / 3 & 0 & 0 \\ 0 & 0 & 1 \\ -2 / 3 & 1 & 0\end{array}\right]$.
2. (a) ρ_{1} is $R_{1} \longleftrightarrow R_{2}$.
ρ_{2} is $-2 R_{1}+R_{2}$.
ρ_{3} is $1 R_{1}+R_{4}$.
ρ_{4} is $R_{2} \longleftrightarrow R_{3}$.
ρ_{5} is $-\frac{1}{5} R_{3}$.
(b) A (4×4)-square matrix H for which the equality $A^{\prime}=H A$ holds is given by the sequence of row operations $I_{4} \xrightarrow{\rho_{1}} \xrightarrow{\rho_{2}} \xrightarrow{\rho_{3}} \xrightarrow{\rho_{4}} H$.
It is given by $H=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 / 5 & 2 / 5 & 0 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$.
3. (a) ρ_{1} is $R_{1} \leftrightarrow R_{2}$.

$$
\rho_{2} \text { is }-4 R_{1}+R_{5} \text {. }
$$

ρ_{3} is $-\frac{1}{3} R_{3}$.
(b) $B_{3} \xrightarrow{1 R_{2}+R_{1}} B_{2} \xrightarrow{-2 R_{3}+R_{4}} B_{1}$
(c) $K=\left[\begin{array}{rrrrr}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$
(d)

$$
\begin{aligned}
& I_{5} \xrightarrow{2 R_{3}+R_{4}}\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow{-1 R_{2}+R_{1}}\left[\begin{array}{rrrrr}
1 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow{2 R_{3}+R_{1}}\left[\begin{array}{rrrrr}
1 & -1 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{-2 R_{3}+R_{2}}\left[\begin{array}{rrrrr}
1 & -1 & 2 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow{1 R_{4}+R_{2}}\left[\begin{array}{rrrrr}
1 & -1 & 2 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]=H
\end{aligned}
$$

4. (a) $\left[\begin{array}{ccc}3 & -2 & 0 \\ -1 & -1 & 1 \\ 0 & 2 & -1\end{array}\right]$
(b) $\left[\begin{array}{ccc}-2 & -1 & 0 \\ 1 & 0 & 0 \\ -3 & 2 & 1\end{array}\right]$
(c) $\left[\begin{array}{ccc}-8 & 5 & 2 \\ 7 & -4 & -2 \\ -3 & 2 & 1\end{array}\right]$
(d) $\left[\begin{array}{cccc}-3 & 5 & 0 & -1 \\ 1 & -1 & 0 & 0 \\ 2 & -3 & 0 & 1 \\ 9 & -16 & 1 & 4\end{array}\right]$
5. (a) $J_{1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], J_{2}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1\end{array}\right], J_{3}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1\end{array}\right], J_{4}=\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
(b) $B_{4}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], B_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right], B_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 1 & 1\end{array}\right], B_{1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 1 & 1\end{array}\right]$.
(c) $B_{1} A_{1} \xrightarrow{-1 R_{1}+R_{2}} B_{2} A_{1} \xrightarrow{-2 R_{1}+R_{3}} B_{3} A_{1} \xrightarrow{-1 R_{2}+R_{3}} B_{4} A_{1} \xrightarrow{-1 R_{2}+R_{1}} A_{1} \xrightarrow{-1 R_{1}+R_{2}} A_{2} \xrightarrow{-2 R_{1}+R_{3}} A_{3} \xrightarrow{-1 R_{2}+R_{3}}$ $A_{4} \xrightarrow{-1 R_{2}+R_{1}} A_{5}$
6. (a) $G=\left[\begin{array}{cccc}1+\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}+\alpha_{3} \beta_{3} & \beta_{1} & \beta_{2} & \beta_{3} \\ \alpha_{1} & 1 & 0 & 0 \\ \alpha_{2} & 0 & 1 & 0 \\ \alpha_{3} & 0 & 0 & 1\end{array}\right]$.
(b) $H=\left[\begin{array}{cccc}1 & -\beta_{1} & -\beta_{2} & -\beta_{3} \\ -\alpha_{1} & 1+\alpha_{1} \beta_{1} & \alpha_{1} \beta_{2} & \alpha_{1} \beta_{3} \\ -\alpha_{2} & \alpha_{2} \beta_{1} & 1+\alpha_{2} \beta_{2} & \alpha_{3} \beta_{3} \\ -\alpha_{3} & \alpha_{3} \beta_{1} & \alpha_{3} \beta_{2} & 1+\alpha_{3} \beta_{3}\end{array}\right]$
7. Comment.

Contrast with the argument for proving the statement with row-operation matrices and that for proving the statement with row operations alone.
8. Outline of argument.

By assumption, there are some row-operation matrices, all of them $(m \times m)$-square matrices, say, $G_{1}, G_{2}, \cdots, G_{k}$ such that $A^{\prime}=G_{k} \cdots G_{2} G_{1} A$.
Also by assumption, there are some row-operation matrices, all of them $(p \times p)$-square matrices, say, $H_{1}, H_{2}, \cdots, H_{\ell}$ such that $B^{\prime}=H_{\ell} \cdots H_{2} H_{1} B$.
Define the $((m+p) \times(m+p))$-matrices $J_{1}, J_{2}, \cdots, J_{k}, J_{k+1}, J_{k+2}, \cdots, J_{k+\ell}$ by

$$
\begin{cases}J_{s}=\left[\begin{array}{c|c}
G_{s} & \mathcal{O}_{m \times p} \\
\hline \mathcal{O}_{p \times m} & I_{p}
\end{array}\right] \quad \text { for each } s=1,2, \cdots, k \\
J_{k+t}=\left[\begin{array}{c|c}
I_{m} & \mathcal{O}_{m \times p} \\
\hline \mathcal{O}_{p \times m} & H_{t}
\end{array}\right] \quad \text { for each } t=1,2, \cdots, \ell\end{cases}
$$

It follows that $\left[\frac{A^{\prime}}{B^{\prime}}\right]=J_{k+\ell} \cdots J_{k+2} J_{k+1} J_{k} \cdots J_{2} J_{1}\left[\frac{A}{B}\right]$.
Note that each of $J_{1}, J_{2}, \cdots, J_{k+\ell}$ is a row-operation matrix by construction.
9. (a)
(b) An appropriate choice is to take $A^{\prime}=\left[\begin{array}{l}1 \\ 0\end{array}\right], B^{\prime}=\left[\begin{array}{l}1 \\ 1\end{array}\right], A^{\prime \prime}=\left[\begin{array}{l}1 \\ 0\end{array}\right], B^{\prime \prime}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
(Note that $\left.A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right].\right)$

