1.8.1 Exercise: Row operations and matrix multiplication.

1. Let A_1, A_2, A_3, A_4 be (3×5) -matrices and suppose they are row-equivalent under the sequence of row operations below:

$$A_1 \xrightarrow{2R_1 + R_3} A_2 \xrightarrow{R_2 \leftrightarrow R_3} A_3 \xrightarrow{3R_1} A_4.$$

- (a) Write down a (3×3) -matrix J_1 for which $A_2 = J_1 A_1$.
- (b) Write down a (3×3) -matrix J_2 for which $A_3 = J_2 A_2$.
- (c) Write down a (3×3) -matrix J_3 for which $A_4 = J_3 A_3$.
- (d) Write down a (3×3) -matrix J for which the equality $A_4 = JA_1$ holds.
- (e) Write down a (3×3) -matrix J' for which the equality $A_1 = J'A_4$ holds.
- 2. A sequence of row operations $\rho_1, \rho_2, \rho_3, \rho_4, \rho_5$ joining two (4×6) -matrices A, A' is given below:—

$$A = \begin{bmatrix} 2 & 1 & -1 & 4 & 3 & 8 \\ 1 & 3 & 0 & 8 & -4 & -4 \\ 0 & 1 & 1 & 4 & -3 & -4 \\ -1 & -2 & 3 & 0 & 0 & -1 \end{bmatrix} \xrightarrow{\rho_1} \begin{bmatrix} 1 & 3 & 0 & 8 & -4 & -4 \\ 2 & 1 & -1 & 4 & 3 & 8 \\ 0 & 1 & 1 & 4 & -3 & -4 \\ -1 & -2 & 3 & 0 & 0 & -1 \end{bmatrix}$$
$$\xrightarrow{\rho_2} \begin{bmatrix} 1 & 3 & 0 & 8 & -4 & -4 \\ 0 & -5 & -1 & -12 & 11 & 16 \\ 0 & 1 & 1 & 4 & -3 & -4 \\ -1 & -2 & 3 & 0 & 0 & -1 \end{bmatrix} \xrightarrow{\rho_3} \begin{bmatrix} 1 & 3 & 0 & 8 & -4 & -4 \\ 0 & -5 & -1 & -12 & 11 & 16 \\ 0 & 1 & 3 & 8 & -4 & -5 \end{bmatrix}$$
$$\xrightarrow{\rho_4} \begin{bmatrix} 1 & 3 & 0 & 8 & -4 & -4 \\ 0 & 1 & 1 & 4 & -3 & -4 \\ 0 & -5 & -1 & -12 & 11 & 16 \\ 0 & -5 & -1 & -12 & 11 & 16 \\ 0 & 1 & 3 & 8 & -4 & -5 \end{bmatrix} \xrightarrow{\rho_5} \begin{bmatrix} 1 & 3 & 0 & 8 & -4 & -4 \\ 0 & 1 & 1 & 4 & -3 & -4 \\ 0 & 1 & 1 & 4 & -3 & -4 \\ 0 & 1 & 1 & 4 & -3 & -4 \\ 0 & 1 & 1 & 5 & 12/5 & -11/5 & -16/5 \\ 0 & 1 & 3 & 8 & -4 & -5 \end{bmatrix} = A'$$

- (a) Provide appropriate labels for the row operations $\rho_1, \rho_2, \rho_3, \rho_4, \rho_5$.
- (b) Write down an appropriate (4×4) -square matrix H for which the equality A' = HA holds.
- 3. A sequence of row operations joining the (5×7) -matrices $A, B_1, B_2, B_3, B_4, B_5, B_6$ is given below. The symbols ρ_1, ρ_2, ρ_3 stands for some row operations in this sequence.

$$\begin{split} A &= \begin{bmatrix} 3 & 2 & 1 & -2 & 1 & -2 & -3 \\ 1 & 1 & 1 & 0 & 3 & -1 & 1 \\ 1 & 2 & 3 & -1 & 2 & -2 & 1 \\ -1 & -1 & -1 & -1 & -2 & -9 & 2 & -2 \\ 4 & 3 & 2 & -2 & 4 & -3 & -2 \end{bmatrix} \xrightarrow{\rho_1} \begin{bmatrix} 1 & 1 & 1 & 0 & 3 & -1 & 1 \\ 3 & 2 & 1 & -2 & 1 & -2 & -3 \\ -1 & -1 & -1 & -2 & -9 & 2 & -2 \\ 4 & 3 & 2 & -2 & 4 & -3 & -2 \end{bmatrix} \\ & \longrightarrow \cdots \longrightarrow \begin{bmatrix} 1 & 1 & 1 & 0 & 3 & -1 & 1 \\ 0 & -1 & -2 & -2 & -8 & 1 & -6 \\ 0 & 1 & 2 & -1 & -1 & -1 & 0 \\ 0 & 0 & 0 & -2 & -6 & 1 & -1 \\ 4 & 3 & 2 & -2 & 4 & -3 & -2 \end{bmatrix} \xrightarrow{\rho_2} \begin{bmatrix} 1 & 1 & 1 & 0 & 3 & -1 & 1 \\ 0 & -1 & -2 & -2 & -8 & 1 & -6 \\ 0 & 0 & 0 & -2 & -6 & 1 & -1 \\ 0 & -1 & -2 & -2 & -8 & 1 & -6 \\ 0 & 0 & 0 & -2 & -6 & 1 & -1 \\ 0 & 0 & 0 & -2 & -6 & 1 & -1 \\ 0 & 0 & 0 & -2 & -6 & 1 & -1 \\ 0 & 0 & 0 & -2 & -6 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\rho_3} B_1 = \begin{bmatrix} 1 & 1 & 1 & 0 & 3 & -1 & 1 \\ 0 & 1 & 2 & 2 & 8 & -1 & 6 \\ 0 & 0 & 0 & 1 & 3 & 0 & 2 \\ 0 & 0 & 0 & -2 & -6 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\rho_3} B_1 = \begin{bmatrix} 1 & 0 & -1 & -2 & -5 & 0 & -5 \\ 0 & 1 & 2 & 2 & 8 & -1 & 6 \\ 0 & 0 & 0 & 1 & 3 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{P_3} B_1 = \begin{bmatrix} 1 & 0 & -1 & -2 & -5 & 0 & -5 \\ 0 & 1 & 2 & 2 & 8 & -1 & 6 \\ 0 & 0 & 0 & 1 & 3 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{P_3} B_1 = \begin{bmatrix} 1 & 0 & -1 & -2 & -5 & 0 & -5 \\ 0 & 1 & 2 & 2 & 8 & -1 & 6 \\ 0 & 0 & 0 & 1 & 3 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{P_3} B_1 = \begin{bmatrix} 1 & 0 & -1 & -2 & -5 & 0 & -5 \\ 0 & 1 & 2 & 2 & 8 & -1 & 6 \\ 0 & 0 & 0 & 1 & 3 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{P_3} B_1 = \begin{bmatrix} 1 & 0 & -1 & -2 & -5 & 0 & -5 \\ 0 & 1 & 2 & 2 & 8 & -1 & 6 \\ 0 & 0 & 0 & 1 & 3 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{P_3} B_1 = \begin{bmatrix} 1 & 0 & -1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 2 & 0 & 2 & -1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{P_3} B_1 = \begin{bmatrix} 1 & 0 & -1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 2 & 0 & 2 & -1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{P_3} B_1 = \begin{bmatrix} 1 & 0 & -1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 2 & 0 & 2 & -1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{P_3} B_1 = \begin{bmatrix} 1 & 0 & -1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 2 & 0 & 2 & -1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{P_3} B_1 = \begin{bmatrix} 1 & 0 & -1 & 0 & -1 \\ 0 & 1 & 2 & 0 & 2 & -1$$

(a) Provide appropriate labels for the row operations ρ_1, ρ_2, ρ_3 .

(b) Fill in the blanks (I), (III) with row operations and the blank (II) with a matrix so as to give a sequence of row operations which starts from B_3 and ends at B_1 :

$$B_3$$
 _____ (I) ____ (II) ____ B_1

- (c) Write down an appropriate (5×5) -square matrix K for which the equality $B_5 = KB_4$ holds.
- (d) Is there a sequence of row operations which joins I_5 and some (5×5) -square matrix H for which the equality $B_6 = HB_1$ holds?

If yes, write down one such sequence, giving all row operations and matrices (including H of course) in the sequence explicitly.

If no, simply write 'there is no such sequence'.

- 4. For the matrices labelled A, B in each part below, find an appropriate square matrix H for which B = HA.
 - (a) Here A, B are (3×4) -matrices, and are row-equivalent under the sequence of row operations:

$$A \xrightarrow{-1R_1+R_2} \xrightarrow{-2R_1+R_3} \xrightarrow{-2R_2+R_3} \xrightarrow{-1R_3} \xrightarrow{-2R_2+R_1} \xrightarrow{-1R_3+R_2} B$$

(b) Here A, B are (3×4) -matrices, and are row-equivalent under the sequence of row operations:

$$A \xrightarrow{R_1 \leftrightarrow R_2} \xrightarrow{-1R_1} \xrightarrow{-2R_1 + R_3} \xrightarrow{-3R_2 + R_3} \xrightarrow{-2R_2 + R_1} B$$

(c) Here A, B are (3×6) -matrices, and are row-equivalent under the sequence of row operations:

$$A \xrightarrow{R_1 \leftrightarrow R_2} \xrightarrow{2R_1 + R_3} \xrightarrow{-3R_2 + R_3} \xrightarrow{-2R_2 + R_1} \xrightarrow{2R_3 + R_1} \xrightarrow{-2R_3 + R_2} B$$

(d) Here A, B are (4×5) -matrices, and are row-equivalent under the sequence of row operations:

$$A \xrightarrow{-1R_1+R_2} \xrightarrow{-3R_1+R_3} \xrightarrow{-1R_1+R_4} \xrightarrow{-1R_2} \xrightarrow{4R_2+R_3} \xrightarrow{3R_2+R_4} \xrightarrow{R_3 \leftrightarrow R_4} \xrightarrow{4R_3+R_4} \xrightarrow{-2R_2+R_1} \xrightarrow{-1R_3+R_1} B$$

5. Let A_1, A_2, A_3, A_4, A_5 be (3×4) -matrices, and suppose they are row-equivalent under the sequence of row operations below:

$$A_1 \xrightarrow{-1R_1+R_2} A_2 \xrightarrow{-2R_1+R_3} A_3 \xrightarrow{-1R_2+R_3} A_4 \xrightarrow{-1R_2+R_1} A_5$$

- (a) Write down appropriate (3×3) -square matrices J_1, J_2, J_3, J_4 for which the equalities $A_2 = J_1A_1, A_3 = J_2A_2, A_4 = J_3A_3, A_5 = J_4A_4.$
- (b) Let B_1, B_2, B_3, B_4 be (3×3) -square matrix, and suppose $[A_1 | B_1], [A_2 | B_2], [A_3 | B_3], [A_4 | B_4], [A_5 | I_3]$ are row-equivalent under the sequence of row operations below:

$$\begin{bmatrix} A_1 \mid B_1 \end{bmatrix} \xrightarrow{-1R_1+R_2} \begin{bmatrix} A_2 \mid B_2 \end{bmatrix} \xrightarrow{-2R_1+R_3} \begin{bmatrix} A_3 \mid B_3 \end{bmatrix} \xrightarrow{-1R_2+R_3} \begin{bmatrix} A_4 \mid B_4 \end{bmatrix} \xrightarrow{-1R_2+R_1} \begin{bmatrix} A_5 \mid I_3 \end{bmatrix}$$

Find B_1, B_2, B_3, B_4 explicitly.

(c) Is it true that B_1A_1 is row-equivalent to A_5 ? If yes, provide an appropriate sequence of row operations joining B_1A_1 and A_5 , giving the row operations involved in the sequence explicitly. If no, explain why B_1A_1 is not row-equivalent to A_5 .

6. Let A, B be matrices with four rows. Let $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3$ be numbers.

Suppose A, B are row-equivalent, and are joint by the sequence of row operations

$$A \xrightarrow{\alpha_1 R_1 + R_2} \xrightarrow{\alpha_2 R_1 + R_3} \xrightarrow{\alpha_3 R_1 + R_4} \xrightarrow{\beta_1 R_2 + R_1} \xrightarrow{\beta_2 R_3 + R_1} \xrightarrow{\beta_3 R_4 + R_1} B$$

- (a) Write down a (4×4) -matrix G (in terms of $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3$) for which the equality B = GA holds.
- (b) Write down a (4×4) -matrix H (in terms of $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3$) for which the equality A = HB holds.
- 7. Prove the statements below:—

Let A, A' be $(m \times n)$ -matrices. Suppose A is row-equivalent to A'. Then AB is row-equivalent to A'B for any $(n \times p)$ -matrix B. 8. Prove the statements below:—

Let A, A' be $(m \times n)$ -matrices, and B, B' be $(p \times n)$ -matrices. Suppose A is row-equivalent to A', and B is row-equivalent to B'.

Then
$$\begin{bmatrix} A \\ B \end{bmatrix}$$
 is row-equivalent to $\begin{bmatrix} A' \\ B' \end{bmatrix}$.

9. (a) Prove the statements below:—

Let A, B be $(m \times n)$ -matrices.

Suppose A = [A' | A''], and B = [B' | B''], in which:—

- A' are the first p columns of A, and A'' are the last n p columns of A, and
- B' are the first p columns of B, and B'' are the last n p columns of B.

Then A is row-equivalent to B if and only if A', A'' are row-equivalent to B', B'' under some common sequence of row operations.

(b) Give a counter-example against the statement below (and justify your answer).

Let A, B be $(m \times n)$ -matrices.

Suppose A = [A' | A''], and B = [B' | B''], in which:—

- A' are the first p columns of A, and A'' are the last n p columns of A, and
- B' are the first p columns of B, and B'' are the last n p columns of B.

Suppose A' is row-equivalent to B', and A'' is row-equivalent B''. Then A is row-equivalent to B.