1.8.1 Exercise: Row operations and matrix multiplication.

1. Let $A_{1}, A_{2}, A_{3}, A_{4}$ be (3×5)-matrices and suppose they are row-equivalent under the sequence of row operations below:

$$
A_{1} \xrightarrow{2 R_{1}+R_{3}} A_{2} \xrightarrow{R_{2} \leftrightarrow R_{3}} A_{3} \xrightarrow{3 R_{1}} A_{4} .
$$

(a) Write down a (3×3)-matrix J_{1} for which $A_{2}=J_{1} A_{1}$.
(b) Write down a (3×3)-matrix J_{2} for which $A_{3}=J_{2} A_{2}$.
(c) Write down a (3×3)-matrix J_{3} for which $A_{4}=J_{3} A_{3}$.
(d) Write down a (3×3)-matrix J for which the equality $A_{4}=J A_{1}$ holds.
(e) Write down a (3×3)-matrix J^{\prime} for which the equality $A_{1}=J^{\prime} A_{4}$ holds.
2. A sequence of row operations $\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}, \rho_{5}$ joining two (4×6)-matrices A, A^{\prime} is given below:-

$$
\begin{aligned}
& A {\left[\begin{array}{rrrrrr}
2 & 1 & -1 & 4 & 3 & 8 \\
1 & 3 & 0 & 8 & -4 & -4 \\
0 & 1 & 1 & 4 & -3 & -4 \\
-1 & -2 & 3 & 0 & 0 & -1
\end{array}\right] \xrightarrow{\rho_{1}}\left[\begin{array}{rrrrrrr}
1 & 3 & 0 & 8 & -4 & -4 \\
2 & 1 & -1 & 4 & 3 & 8 \\
0 & 1 & 1 & 4 & -3 & -4 \\
-1 & -2 & 3 & 0 & 0 & -1
\end{array}\right] } \\
& \xrightarrow{\rho_{2}}\left[\begin{array}{rrrrrr}
1 & 3 & 0 & 8 & -4 & -4 \\
0 & -5 & -1 & -12 & 11 & 16 \\
0 & 1 & 1 & 4 & -3 & -4 \\
-1 & -2 & 3 & 0 & 0 & -1
\end{array}\right] \xrightarrow{\rho_{3}}\left[\begin{array}{rrrrrr}
1 & 3 & 0 & 8 & -4 & -4 \\
0 & -5 & -1 & -12 & 11 & 16 \\
0 & 1 & 1 & 4 & -3 & -4 \\
0 & 1 & 3 & 8 & -4 & -5
\end{array}\right] \\
& \xrightarrow{\rho_{4}}\left[\begin{array}{rrrrrrrr}
1 & 3 & 0 & 8 & -4 & -4 \\
0 & 1 & 1 & 4 & -3 & -4 \\
0 & -5 & -1 & -12 & 11 & 16 \\
0 & 1 & 3 & 8 & -4 & -5
\end{array}\right] \xrightarrow{\rho_{5}}\left[\begin{array}{rrrrrr}
1 & 3 & 0 & 8 & -4 & -4 \\
0 & 1 & 1 & 4 & -3 & -4 \\
0 & 1 & 1 / 5 & 12 / 5 & -11 / 5 & -16 / 5 \\
0 & 1 & 3 & 8 & -4 & -5
\end{array}\right]=A^{\prime}
\end{aligned}
$$

(a) Provide appropriate labels for the row operations $\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}, \rho_{5}$.
(b) Write down an appropriate (4×4)-square matrix H for which the equality $A^{\prime}=H A$ holds.
3. A sequence of row operations joining the (5×7)-matrices $A, B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}$ is given below. The symbols $\rho_{1}, \rho_{2}, \rho_{3}$ stands for some row operations in this sequence.

$$
\begin{aligned}
& A=\left[\begin{array}{ccccccc}
3 & 2 & 1 & -2 & 1 & -2 & -3 \\
1 & 1 & 1 & 0 & 3 & -1 & 1 \\
1 & 2 & 3 & -1 & 2 & -2 & 1 \\
-1 & -1 & -1 & -2 & -9 & 2 & -2 \\
4 & 3 & 2 & -2 & 4 & -3 & -2
\end{array}\right] \xrightarrow{\rho_{1}}\left[\begin{array}{ccccccc}
1 & 1 & 1 & 0 & 3 & -1 & 1 \\
3 & 2 & 1 & -2 & 1 & -2 & -3 \\
1 & 2 & 3 & -1 & 2 & -2 & 1 \\
-1 & -1 & -1 & -2 & -9 & 2 & -2 \\
4 & 3 & 2 & -2 & 4 & -3 & -2
\end{array}\right] \\
& \longrightarrow \cdots \longrightarrow\left[\begin{array}{ccccccc}
1 & 1 & 1 & 0 & 3 & -1 & 1 \\
0 & -1 & -2 & -2 & -8 & 1 & -6 \\
0 & 1 & 2 & -1 & -1 & -1 & 0 \\
0 & 0 & 0 & -2 & -6 & 1 & -1 \\
4 & 3 & 2 & -2 & 4 & -3 & -2
\end{array}\right] \xrightarrow{\rho_{2}}\left[\begin{array}{ccccccc}
1 & 1 & 1 & 0 & 3 & -1 & 1 \\
0 & -1 & -2 & -2 & -8 & 1 & -6 \\
0 & 1 & 2 & -1 & -1 & -1 & 0 \\
0 & 0 & 0 & -2 & -6 & 1 & -1 \\
0 & -1 & -2 & -2 & -8 & 1 & -6
\end{array}\right] \\
& \longrightarrow \cdots \longrightarrow\left[\begin{array}{ccccccc}
1 & 1 & 1 & 0 & 3 & -1 & 1 \\
0 & 1 & 2 & 2 & 8 & -1 & 6 \\
0 & 0 & 0 & -3 & -9 & 0 & -6 \\
0 & 0 & 0 & -2 & -6 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{\rho_{3}} B_{1}=\left[\begin{array}{ccccccc}
1 & 1 & 1 & 0 & 3 & -1 & 1 \\
0 & 1 & 2 & 2 & 8 & -1 & 6 \\
0 & 0 & 0 & 1 & 3 & 0 & 2 \\
0 & 0 & 0 & -2 & -6 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \xrightarrow{2 R_{3}+R_{4}} B_{2}=\left[\begin{array}{ccccccc}
1 & 1 & 1 & 0 & 3 & -1 & 1 \\
0 & 1 & 2 & 2 & 8 & -1 & 6 \\
0 & 0 & 0 & 1 & 3 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{-1 R_{2}+R_{1}} B_{3}=\left[\begin{array}{ccccccc}
1 & 0 & -1 & -2 & -5 & 0 & -5 \\
0 & 1 & 2 & 2 & 8 & -1 & 6 \\
0 & 0 & 0 & 1 & 3 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \xrightarrow{2 R_{3}+R_{1}} B_{4}=\left[\begin{array}{ccccccc}
1 & 0 & -1 & 0 & 1 & 0 & -1 \\
0 & 1 & 2 & 2 & 8 & -1 & 6 \\
0 & 0 & 0 & 1 & 3 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{-2 R_{3}+R_{2}} B_{5}=\left[\begin{array}{ccccccc}
1 & 0 & -1 & 0 & 1 & 0 & -1 \\
0 & 1 & 2 & 0 & 2 & -1 & 2 \\
0 & 0 & 0 & 1 & 3 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \xrightarrow{1 R_{4}+R_{2}} B_{6}=\left[\begin{array}{ccccccc}
1 & 0 & -1 & 0 & 1 & 0 & -1 \\
0 & 1 & 2 & 0 & 2 & 0 & 5 \\
0 & 0 & 0 & 1 & 3 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

(a) Provide appropriate labels for the row operations $\rho_{1}, \rho_{2}, \rho_{3}$.
(b) Fill in the blanks (I), (III) with row operations and the blank (II) with a matrix so as to give a sequence of row operations which starts from B_{3} and ends at B_{1} :

$$
B_{3} \overline{(\mathrm{I})} \overline{(\mathrm{II})} \xlongequal[(\mathrm{III})]{ } \quad B_{1}
$$

(c) Write down an appropriate (5×5)-square matrix K for which the equality $B_{5}=K B_{4}$ holds.
(d) Is there a sequence of row operations which joins I_{5} and some (5×5)-square matrix H for which the equality $B_{6}=H B_{1}$ holds?
If yes, write down one such sequence, giving all row operations and matrices (including H of course) in the sequence explicitly.
If no, simply write 'there is no such sequence'.
4. For the matrices labelled A, B in each part below, find an appropriate square matrix H for which $B=H A$.
(a) Here A, B are (3×4)-matrices, and are row-equivalent under the sequence of row operations:

$$
A \xrightarrow{-1 R_{1}+R_{2}} \xrightarrow{-2 R_{1}+R_{3}} \xrightarrow{-2 R_{2}+R_{3}} \xrightarrow{-1 R_{3}} \xrightarrow{-2 R_{2}+R_{1}} \xrightarrow{-1 R_{3}+R_{2}} B
$$

(b) Here A, B are (3×4)-matrices, and are row-equivalent under the sequence of row operations:

$$
A \xrightarrow{R_{1} \leftrightarrow R_{2}} \xrightarrow{-1 R_{1}} \xrightarrow{-2 R_{1}+R_{3}} \xrightarrow{-3 R_{2}+R_{3}} \xrightarrow{-2 R_{2}+R_{1}} B
$$

(c) Here A, B are (3×6)-matrices, and are row-equivalent under the sequence of row operations:

$$
A \xrightarrow{R_{1} \leftrightarrow R_{2}} \xrightarrow{2 R_{1}+R_{3}} \xrightarrow{-3 R_{2}+R_{3}} \xrightarrow{-2 R_{2}+R_{1}} \xrightarrow{2 R_{3}+R_{1}} \xrightarrow{-2 R_{3}+R_{2}} B
$$

(d) Here A, B are (4×5)-matrices, and are row-equivalent under the sequence of row operations:

$$
A \xrightarrow{-1 R_{1}+R_{2}} \xrightarrow{-3 R_{1}+R_{3}} \xrightarrow{-1 R_{1}+R_{4}} \xrightarrow{-1 R_{2}} \xrightarrow{4 R_{2}+R_{3}} \xrightarrow{3 R_{2}+R_{4}} \xrightarrow{R_{3} \leftrightarrow R_{4}} \xrightarrow{4 R_{3}+R_{4}} \xrightarrow{-2 R_{2}+R_{1}} \xrightarrow{-1 R_{3}+R_{1}} B
$$

5. Let $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ be (3×4)-matrices, and suppose they are row-equivalent under the sequence of row operations below:

$$
A_{1} \xrightarrow{-1 R_{1}+R_{2}} A_{2} \xrightarrow{-2 R_{1}+R_{3}} A_{3} \xrightarrow{-1 R_{2}+R_{3}} A_{4} \xrightarrow{-1 R_{2}+R_{1}} A_{5}
$$

(a) Write down appropriate (3×3)-square matrices $J_{1}, J_{2}, J_{3}, J_{4}$ for which the equalities $A_{2}=J_{1} A_{1}, A_{3}=J_{2} A_{2}$, $A_{4}=J_{3} A_{3}, A_{5}=J_{4} A_{4}$.
(b) Let $B_{1}, B_{2}, B_{3}, B_{4}$ be (3×3)-square matrix, and suppose [$\left.A_{1} \mid B_{1}\right]$, $\left[A_{2} \mid B_{2}\right]$, $\left[A_{3} \mid B_{3}\right]$, [$\left.A_{4} \mid B_{4}\right]$, [$A_{5} \mid I_{3}$] are row-equivalent under the sequence of row operations below:

$$
\left[A_{1} \mid B_{1}\right] \xrightarrow{-1 R_{1}+R_{2}}\left[A_{2} \mid B_{2}\right] \xrightarrow{-2 R_{1}+R_{3}}\left[A_{3} \mid B_{3}\right] \xrightarrow{-1 R_{2}+R_{3}}\left[A_{4} \mid B_{4}\right] \xrightarrow{-1 R_{2}+R_{1}}\left[A_{5} \mid I_{3}\right]
$$

Find $B_{1}, B_{2}, B_{3}, B_{4}$ explicitly.
(c) Is it true that $B_{1} A_{1}$ is row-equivalent to A_{5} ? If yes, provide an appropriate sequence of row operations joining $B_{1} A_{1}$ and A_{5}, giving the row operations involved in the sequence explicitly. If no, explain why $B_{1} A_{1}$ is not row-equivalent to A_{5}.
6. Let A, B be matrices with four rows. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}$ be numbers.

Suppose A, B are row-equivalent, and are joint by the sequence of row operations

$$
A \xrightarrow{\alpha_{1} R_{1}+R_{2}} \xrightarrow{\alpha_{2} R_{1}+R_{3}} \xrightarrow{\alpha_{3} R_{1}+R_{4}} \xrightarrow{\beta_{1} R_{2}+R_{1}} \xrightarrow{\beta_{2} R_{3}+R_{1}} \xrightarrow{\beta_{3} R_{4}+R_{1}} B .
$$

(a) Write down a (4×4)-matrix G (in terms of $\left.\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}\right)$ for which the equality $B=G A$ holds.
(b) Write down a (4×4)-matrix H (in terms of $\left.\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}\right)$ for which the equality $A=H B$ holds.
7. Prove the statements below:-

Let A, A^{\prime} be $(m \times n)$-matrices. Suppose A is row-equivalent to A^{\prime}.
Then $A B$ is row-equivalent to $A^{\prime} B$ for any $(n \times p)$-matrix B.
8. Prove the statements below:-

Let A, A^{\prime} be $(m \times n)$-matrices, and B, B^{\prime} be $(p \times n)$-matrices. Suppose A is row-equivalent to A^{\prime}, and B is rowequivalent to B^{\prime}.

Then $\left[\frac{A}{B}\right]$ is row-equivalent to $\left[\frac{A^{\prime}}{B^{\prime}}\right]$.
9. (a) Prove the statements below:-

Let A, B be $(m \times n)$-matrices.
Suppose $A=\left[A^{\prime} \mid A^{\prime \prime}\right]$, and $B=\left[B^{\prime} \mid B^{\prime \prime}\right]$, in which:-

- A^{\prime} are the first p columns of A, and $A^{\prime \prime}$ are the last $n-p$ columns of A, and
- B^{\prime} are the first p columns of B, and $B^{\prime \prime}$ are the last $n-p$ columns of B.

Then A is row-equivalent to B if and only if $A^{\prime}, A^{\prime \prime}$ are row-equivalent to $B^{\prime}, B^{\prime \prime}$ under some common sequence of row operations.
(b) Give a counter-example against the statement below (and justify your answer).

Let A, B be $(m \times n)$-matrices.
Suppose $A=\left[A^{\prime} \mid A^{\prime \prime}\right]$, and $B=\left[B^{\prime} \mid B^{\prime \prime}\right]$, in which:-

- A^{\prime} are the first p columns of A, and $A^{\prime \prime}$ are the last $n-p$ columns of A, and
- B^{\prime} are the first p columns of B, and $B^{\prime \prime}$ are the last $n-p$ columns of B.

Suppose A^{\prime} is row-equivalent to B^{\prime}, and $A^{\prime \prime}$ is row-equivalent $B^{\prime \prime}$. Then A is row-equivalent to B.

