
1.8 Row operations and matrix multiplication.

0. Assumed background.

• 1.2 Matrix multiplication.
• 1.7 Row operations on matrices.

Abstract. We introduce:—

• the notion of row operations matrices,
• the ‘equivalence’ of application of row operations and left-multiplication by row operation matrices.

1. Definition. (‘Standard base’ for a ‘vector space of matrices’.)
Fix any positive integers p, q.
For each i = 1, · · · , p, j = 1, · · · , q, we define the (p× q)-matrix Ep,q

i,j to be the (p× q)-matrix whose (i, j)-th entry
is 1 and whose other entries are all 0.
Remark. According to definition, there are altogether pq matrices Ep,q

i,j as i, j vary. They are collectively referred
to as the ‘standard base’ for the ‘vector space of (p× q)-matrices’.

2. Example (1). (‘Standard base’ for various ‘vector spaces of matrices’.)

(a) E2,3
1,1 =

[
1 0 0
0 0 0

]
, E2,3

1,2 =
[
0 1 0
0 0 0

]
, E2,3

1,3 =
[
0 0 1
0 0 0

]
,

E2,3
2,1 =

[
0 0 0
1 0 0

]
, E2,3

2,2 =
[
0 0 0
0 1 0

]
, E2,3

2,3 =
[
0 0 0
0 0 1

]
.

(b) E3,3
1,1 =

[
1 0 0
0 0 0
0 0 0

]
, E3,3

1,2 =

[
0 1 0
0 0 0
0 0 0

]
, E3,3

1,3 =

[
0 0 1
0 0 0
0 0 0

]
,

E3,3
2,1 =

[
0 0 0
1 0 0
0 0 0

]
, E3,3

2,2 =

[
0 0 0
0 1 0
0 0 0

]
, E2,3

2,3 =

[
0 0 0
0 0 1
0 0 0

]
,

E3,3
3,1 =

[
0 0 0
0 0 0
1 0 0

]
, E3,3

3,2 =

[
0 0 0
0 0 0
0 1 0

]
, E3,3

3,3 =

[
0 0 0
0 0 0
0 0 1

]
.

3. Lemma (1).
Let p, q be positive integers. Suppose s, t are integers between 1 and p.
Let A be a (p× q)-matrix, whose (i, j)-th entry is denoted by aij .

Then Ep,p
s,t A is the (p× q)-matrix whose s-th row is [ at1 at2 · · · atq ], and whose every other entry is 0.

Remark. In plain words, multiplying Ep,p
s,t to A from the left results in a new (p× q)-matrix in which:—

• the s-th row is formed by the t-th row of A, and
• every other row is ‘set’ to zero.

4. Example (2). (Illustrations of Lemma (1).)

(a) Suppose A is the (3× 4)-matrix whose (i, j)-th entry is given by aij . Then:

i. E3,3
1,2A =

[
0 1 0
0 0 0
0 0 0

][
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

]
=

[
a21 a22 a23 a24
0 0 0 0
0 0 0 0

]
.

ii. E3,3
3,1A =

[
0 0 0
0 0 0
1 0 0

][
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

]
=

[
0 0 0 0
0 0 0 0
a11 a12 a13 a14

]
.

iii. E3,3
3,3A =

[
0 0 0
0 0 0
0 0 1

][
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

]
=

[
0 0 0 0
0 0 0 0
a31 a32 a33 a34

]
(b) Suppose A is the (4× 6)-matrix whose (i, j)-th entry is given by aij . Then:

i. E4,4
2,4A =

 0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46

 =

 0 0 0 0 0 0
a41 a42 a43 a44 a45 a46
0 0 0 0 0 0
0 0 0 0 0 0

.
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ii. E4,4
3,2A =

 0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46

 =

 0 0 0 0 0 0
0 0 0 0 0 0
a21 a22 a23 a24 a25 a26
0 0 0 0 0 0

.

iii. E4,4
4,1A =

 0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46

 =

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
a11 a12 a13 a14 a15 a16

.

5. Proof of Lemma (1).
For convenience, denote the (g, h)-th entry of Ep,p

s,t by εgh.

So εgh =

{
1 if g = s and h = t
0 if g ̸= s or h ̸= t

By definition, the (g, k)-th entry of Ep,p
s,t A is given by

εg1a1k + εg2a2k + · · ·+ εstatk + · · ·+ εgpapk.

• [We first focus on the s-th row of Ep,p
s,t A.]

For each k = 1, 2, · · · , q, the (s, k)-th entry of Ep,p
s,t A is the product of the s-th row of Ep,p

s,t and the k-th column
of A, and therefore is given by

εs1a1k + εs2a2k + · · ·+ εstatk + · · ·+ εspapk︸ ︷︷ ︸
all terms being 0 except possibly the term involving εst

= εstatk = atk.

Hence the s-th row of Ep,p
s,t A is [ at1 at2 · · · atq ].

• [We now turn to every other row of Ep,p
s,t A.]

Whenever g ̸= s, we have εgh = 0 for each h. Then, no matter which k is, the (g, k)-th entry of Ep,p
s,t A is a sum

of p copies of 0’s, and hence is 0.

6. Lemma (2).
Suppose A is a matrix with p rows, and i, k are integers between 1 and p. Then:—

(a) For any number α, the application of the row operation αRi +Rk on A results in (Ip + αEp,p
k,i )A.

(b) For any non-zero number β, the application of the row operation βRk on A results in (Ip + (β − 1)Ep,p
k,k)A.

(c) The application of the row operation Ri ↔ Rk on A results in (Ip − Ep,p
i,i − Ep,p

k,k + Ep,p
i,k + Ep,p

k,i )A.

Proof of Lemma (2). Exercise. (Straightforward calculation with the help of Lemma (1).)

7. Example (3). (Illustrations of Lemma (2).)
Suppose A is the (3 × 4)-matrix whose (i, j)-th entry is given by aij . Then we have these applications of row
operations:—

(a)

A
4R2+R1−−−−−→

[
4a21 + a11 4a22 + a12 4a23 + a13 4a24 + a14

a21 a22 a23 a24
a31 a32 a33 a34

]

= 4

[
a21 a22 a23 a24
0 0 0 0
0 0 0 0

]
+

[
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

]
= 4E3,3

1,2A+A = (I3 + 4E3,3
1,2)A

(b)

A
5R2−−→

[
a11 a12 a13 a14
5a21 5a22 5a23 5a24
a31 a32 a33 a34

]

=

[
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

]
+ 4

[
0 0 0 0
a21 a22 a23 a24
0 0 0 0

]
= A+ 4E3,3

2,2A = (I3 + 4E3,3
2,2)A
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(c)

A
R1↔R3−−−−−→

[
a31 a32 a33 a34
a21 a22 a23 a24
a11 a12 a13 a14

]

=

[
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

]
−

[
a11 a12 a13 a14
0 0 0 0
0 0 0 0

]
−

[
0 0 0 0
0 0 0 0
a31 a32 a33 a34

]

+

[
a31 a32 a33 a34
0 0 0 0
0 0 0 0

]
+

[
0 0 0 0
0 0 0 0
a11 a12 a13 a14

]
= A− E3,3

1,1A− E3,3
3,3A+ E3,3

1,3A+ E3,3
3,1A = (I3 − E3,3

1,1 − E3,3
3,3 + E3,3

1,3 + E3,3
3,1)A.

8. Symbols and labels associated with Lemma (2).
In symbolic terms, what we have described in Lemma (2) is the validity, for every matrix with p rows, say, A, of
the applications of the row operations below:—

• A
αRi+Rk−−−−−→ (Ip + αEp,p

k,i )A.

• A
βRk−−−→ (Ip + (β − 1)Ep,p

k,k)A.

• A
Ri↔Rk−−−−−→ (Ip − Ep,p

i,i − Ep,p
k,k + Ep,p

i,k + Ep,p
k,i )A.

Because of their behaviour, it makes sense to give special labels for these matrices. From now on:—

• We label Ip + αEp,p
k,i as M [αRi +Rk].

• We label Ip + (β − 1)Ep,p
k,k as M [βRk].

• We label Ip − Ep,p
i,i − Ep,p

k,k + Ep,p
i,k + Ep,p

k,i as M [Ri ↔ Rk].

Despite their seemingly complex formulae, these matrices are easy to write down explicitly, because they are the
resultants of applications of the respective row operations on the identity matrix:—

• Ip
αRi+Rk−−−−−→ Ip + αEp,p

k,i = M [αRi +Rk].

• Ip
βRk−−−→ Ip + (β − 1)Ep,p

k,k = M [βRk].

• Ip
Ri↔Rk−−−−−→ Ip − Ep,p

i,i − Ep,p
k,k + Ep,p

i,k + Ep,p
k,i = M [Ri ↔ Rk].

9. Definition. (Row-operation matrices.)

(a) Let ρ be a row operation on matrices with p rows. The matrix M [ρ] is called the row-operation matrix (or
elementary matrix) associated with ρ.

(b) A row-operation matrix (or elementary matrix) of size p is a (p × p)-square matrix which is the row-
operation matrix associated with some row-operation ρ on matrices with p rows.

10. Example (4). (Illustrations on row-operation matrices.)

(a) For the row operation 3R4 +R2 on matrices with 5 rows, its row-operation matrix M [3R4 +R2] is given by

I5
3R4+R2−−−−−→ M [3R4 +R2] =


1 0 0 0 0
0 1 0 3 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

.
(b) For the row operation 4R3 on matrices with 5 rows, its row-operation matrix M [4R3] is given by

I5
4R3−−→ M [4R3] =


1 0 0 0 0
0 1 0 0 0
0 0 4 0 0
0 0 0 1 0
0 0 0 0 1

.
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(c) For the row operation R2 ↔ R5 on matrices with 5 rows, its row-operation matrix M [R2 ↔ R5] is given by

I5
R2↔R5−−−−−→ M [R2 ↔ R5] =


1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0

.
11. Theorem (3). (‘Dictionary’ between row operations and matrix multiplication from the left.)

Let p, q be positive integers.
For any row operation ρ on matrices with p rows, there exists some unique (p × p)-square matrix H, namely,
H = M [ρ], such that for any matrix with p rows, say, A, the matrix HA is the resultant of the application of ρ on
the matrix A.
Remark. Theorem (3) below describes a ‘dictionary’ between the collection of all row operations on matrices
with p rows and the collection of all row-operation matrices of size p.
This ‘dictionary’ tells us the ‘application of row operations’ and the ‘multiplication from the left by row-operation
matrices’ are two ways of thinking about the same thing.
To write

‘the row operation A
ρ−−−−→ A′ is valid’

is the same as writing

‘the equality A′ = M [ρ]A holds’.

12. Proof of Theorem (3).
The ‘existence’ part of the argument follows immediately from Lemma (2). We only need to handle the ‘uniqueness’
part of the argument.
Suppose ρ is a row operation on (p× q) matrix, and H is a (p× p)-square matrix for which the following holds:—

• For any (p× q)-matrix A, the application of ρ on A results in HA.

Now, in particular, the application of ρ on Ip results in H.

Recall that by the definition of M [ρ], the application of ρ on Ip results in M [ρ].

It follows that H = M [ρ].

13. The ‘dictionary’ informs us that to apply a sequence of row operations on a matrix is the same as to multiply the
product of the corresponding row-operation matrices (put in an appropriate order) to the same matrix from the left.
Theorem (4). (Corollary to Theorem (3).)
Let A1, A2, · · · , AN be (p× q)-matrices.
Suppose A1, A2, · · · , AN are row-equivalent to each other, and A1 is joint to AN by some sequence of row operations
ρ1, ρ2, · · · , ρN−1:

A1
ρ1−→ A2

ρ2−→ A3
ρ3−→ · · ·

ρ
N−2−−−→ AN−1

ρ
N−1−−−→ AN

Then the equalities

A2 = M [ρ1]A1, A3 = M [ρ2]A2, · · · · · · , AN−1 = M [ρ
N−2

]AN−2, AN = M [ρ
N−1

]AN−1,

AN = M [ρ
N−1

]M [ρ
N−2

] · ... ·M [ρ3]M [ρ2]M [ρ1]A1

hold.
Proof of Theorem (4). This is an immediate consequence of Theorem (3).

14. Comment on the content of Theorem (4).
Implicit in this result is the information on:—

• how we can obtain the product
M [ρ

N−1
]M [ρ

N−2
] · · ·M [ρ3]M [ρ2]M [ρ1]

without having to perform matrix multiplication.

4



This product is the resultant of the application of the sequence of row operations ρ1, ρ2, ρ3, · · · , ρN−2, ρN−1 on the
identity matrix Ip:

Ip
ρ1−→ M [ρ1]

ρ2−→ M [ρ2]M [ρ1]
ρ3−→ M [ρ3]M [ρ2]M [ρ1]

ρ4−→ · · · · · · · · ·
ρ
N−2−−−→ M [ρ

N−2
] · · ·M [ρ3]M [ρ2]M [ρ1]

ρ
N−1−−−→ M [ρ

N−1
]M [ρ

N−2
] · · ·M [ρ3]M [ρ2]M [ρ1]

15. Example (5). (Illustrations on Theorem (4).)

(a) The sequence of row operations below joins A and A′′:

A =

[
1 0 1 1
0 2 1 1
1 0 0 2

]
1R1+R2−−−−−→ A′ =

[
1 0 1 1
1 2 2 2
1 0 0 2

]
2R2+R1−−−−−→ A′′ =

[
3 4 5 5
1 2 2 2
1 0 0 2

]
.

Then A′′ = H2H1A, in which

H1 = M [1R1 +R2] =

[
1 0 0
1 1 0
0 0 1

]
, H2 = M [2R2 +R1] =

[
1 2 0
0 1 0
0 0 1

]
.

So A′′ = HA, in which H = H2H1 =

[
3 2 0
1 1 0
0 0 1

]
.

(b) The sequence of row operations below joins B and B′′:

B =

[
1 2 2 −1
2 −2 1 0
1 0 0 2

]
4R2−−→ B′ =

[
1 2 2 −1
8 −8 4 0
1 0 0 2

]
−2R1−−−→ B′′ =

[
−2 −4 −4 2
8 −8 4 0
1 0 0 2

]
.

Then B′′ = H2H1B, in which

H1 = M [4R2] =

[
1 0 0
0 4 0
0 0 1

]
, H2 = M [−2R1] =

[
−2 0 0
0 1 0
0 0 1

]
.

So B′′ = HB, in which H = H2H1 =

[
−2 0 0
0 4 0
0 0 1

]
.

(c) The sequence of row operations below joins C and C ′′:

C =

[
1 2 2 0
3 0 3 1
2 1 0 1

]
R1↔R2−−−−−→ C ′ =

[
3 0 3 1
1 2 2 0
2 1 0 1

]
R2↔R3−−−−−→ C ′′ =

[
3 0 3 1
2 1 0 1
1 2 2 0

]
.

Then C ′′ = H2H1C, in which H1 = M [R1 ↔ R2] =

[
0 1 0
1 0 0
0 0 1

]
, H2 = M [R2 ↔ R3] =

[
1 0 0
0 0 1
0 1 0

]
.

So C ′′ = HC, in which H = H2H1 =

[
0 1 0
0 0 1
1 0 0

]
.

(d) The sequence of row operations below joins A1 and A4:

A1=

[
1 0 1 1
0 2 1 1
1 0 0 2

]
1R1+R2−−−−−→A2=

[
1 0 1 1
1 2 2 2
1 0 0 2

]
2R3−−→A3=

[
1 0 1 1
1 2 2 2
2 0 0 4

]
R1↔R3−−−−−→A4=

[
2 0 0 4
1 2 2 2
1 0 1 1

]
.

Then A4 = H3H2H1A1, in which

H1 = M [1R1 +R2] =

[
1 0 0
1 1 0
0 0 1

]
, H2 = M [2R3] =

[
1 0 0
0 1 0
0 0 2

]
, H3 = M [R1 ↔ R3] =

[
0 0 1
0 1 0
1 0 0

]
.

So A4 = HA1, in which H = H3H2H1 =

[
0 0 2
1 1 0
1 0 0

]
.
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16. Theorem (5). (Matrix of ‘reverse row-operation’.)
Suppose ρ is a row operation on matrices with p rows, and ρ̃ is its corresponding ‘reverse row operation’ on matrices
with p rows.
Then M [ρ̃]M [ρ] = Ip and M [ρ]M [ρ̃] = Ip.
Proof of Theorem (5).
Suppose ρ is a row operation on matrices with p rows, and ρ̃ is its corresponding ‘reverse row operation’ on matrices
with p rows.
By the definition of row-operation matrices, we have the sequence of row operations:

Ip
ρ−→ M [ρ]

ρ̃−→ M [ρ̃]M [ρ].

As ρ̃ is the ‘reverse row operation’ for ρ, M [ρ̃]M [ρ] = Ip.
Note that ρ is the ‘reverse row operation’ for ρ̃. Repeating the argument, with the roles of ρ, ρ̃ interchanged, we
deduce that M [ρ]M [ρ̃] = Ip.
Remark. The ‘formulae’ for the row-operation matrices of ‘reverse row operations’ for row operations of various
types are explicitly described below:—

Row operation
ρ on matrices
with p rows.

Row-operation
matrix M [ρ].

‘Reverse
row operation’
ρ̃ for ρ.

Row-operation
matrix M [ρ̃].

αRi +Rk. Ip + αEp,p
k,i . −αRi +Rk. Ip − αEp,p

k,i .
βRk. Ip + (β − 1)Ep,p

k,k. (1/β)Rk. Ip + (1/β − 1)Ep,p
k,k.

Ri ↔ Rk. Ip − Ep,p
i,i − Ep,p

k,k + Ep,p
i,k + Ep,p

k,i . Ri ↔ Rk. Ip − Ep,p
i,i − Ep,p

k,k + Ep,p
i,k + Ep,p

k,i .

17. Example (6). (Row operation matrices and matrices of corresponding ‘reverse row operations’.)

(a) For the row operation 3R4 +R2 on matrices with 5 rows, its row operation matrix M [3R4 +R2] is given by

I5
3R4+R2−−−−−→ M [3R4 +R2] =


1 0 0 0 0
0 1 0 3 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

.
The corresponding ‘reverse row operation’ on matrices with 5 rows is −3R4+R2, and its row operation matrix
M [−3R4 +R2] is given by

I5
−3R4+R2−−−−−−→ M [−3R4 +R2] =


1 0 0 0 0
0 1 0 −3 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

.
(b) For the row operation 4R3 on matrices with 5 rows, its row operation matrix M [4R3] is given by

I5
4R3−−→ M [4R3] =


1 0 0 0 0
0 1 0 0 0
0 0 4 0 0
0 0 0 1 0
0 0 0 0 1

.
The corresponding ‘reverse row operation’ on matrices with 5 rows is 1

4R3, and its row operation matrix M [ 14R3]

is given by

I5
1
4R3−−−→ M [

1

4
R3] =


1 0 0 0 0
0 1 0 0 0
0 0 1/4 0 0
0 0 0 1 0
0 0 0 0 1

.
(c) For the row operation R2 ↔ R5 on matrices with 5 rows, its row operation matrix M [R2 ↔ R5] is given by

I5
R2↔R5−−−−−→ M [R2 ↔ R5] =


1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0

.
The corresponding ‘reverse row operation’ on matrices with 5 rows is R2 ↔ R5 itself, and its row operation
matrix is M [R2 ↔ R5] itself.
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18. Because of the ‘dictionary’ between row operations and row-operation matrices (Theorem (3)):—

• whatever can be done through the application of row operations can also be done through the multiplication
from the left by their corresponding row-operation matrices, and

• whatever can be done through the multiplication from the left by row-operation matrices can also be done
through the application of the corresponding row operations which determine these row-operation matrices.

For this reason, you may wonder why we need to learn both.
It will transpire that dependent on the situation, to think (and work) with one of them may be more advantageous.
Below is an illustration of a problem which is easy to handle in terms of row operation matrices (and equalities
amongst matrices), but not so easy in terms of row operations.
Illustration.

Let C =

[
1 2 3
1 2 1
1 2 2

]
, D =

[
1 3 3
2 4 0
1 3 2

]
.

We verify that C is not row-equivalent to D:
Suppose it were true that C was row-equivalent to D.
Then there would be some sequence of row operations joining C to D:

C
ρ1−−−−−→ ρ2−−−−−→ · · · ρk−1−−−−−−−→ ρk−−−−−→ D.

Denote the row-operation matrix of ρj by M [ρj ] for each j.
Then the equality

D = M [ρk]M [ρk−1] · ... ·M [ρ2]M [ρ1]C

would hold.
Write H = M [ρk]M [ρk−1] · ... ·M [ρ2]M [ρ1].
For each ℓ, denote the ℓ-th column of C,D by cℓ,dℓ respectively. Then the equalities

d1 = Hc1, d2 = Hc2

would hold.
Note that c2 = 2c1. Then[

3
4
3

]
= d2 = Hc2 = H(2c1) = 2Hc1 = 2d1 = 2

[
1
2
1

]
=

[
2
4
2

]
,

which is impossible.
Hence, in the first place, C is not row-equivalent to D.

19. Theorem (6). (Re-formulation of row-equivalence between matrices in terms of equalities for matri-
ces.)
Suppose A,B are matrices with p rows. Then the statements below are logically equivalent:—

(1) A,B are row-equivalent to each other.
(2) There are (finitely many) row-operation matrices G1, G2, · · · , Gk−1, Gk such that B = GkGk−1 · ... ·G2G1A.

Now suppose any one of the above holds (so that both hold). Then there are some row-operation matrices
H1,H2, · · · ,Hk−1,Hk such that:—

• A = H1H2 · ... ·Hk−1HkB, and
• for each j = 1, 2, · · · , k, the equalities HjGj = Ip and GjHj = Ip.

Proof of Theorem (6). Exercise. (Apply Theorem (3) and Theorem (5).)
Remark. This result is a useful device for theoretical discussions in the future, because we can make use of it to
introduce equalities (instead of just row operations) in such discussions.

20. A seemingly trivial consequence of Theorem (6) is that:—

• if a square matrix is row-equivalent to the identity matrix then the square matrix concerned is a product of
row-operation matrices.
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In fact, much more can be said when we combine what is (implicitly) stated in Theorem (4) about products of
row-operation matrices. This will become relevant when we introduce the notion of invertibility of square matrices.
Theorem (7).
Suppose A is a (p× p)-square matrix. Then the statements below are logically equivalent:—

(1) A is row-equivalent to Ip.

(2) A is a product of row-operation matrices.

21. Proof of Theorem (7).
Suppose A is a (p× p)-square matrix.

(a) By Theorem (6), if A is row-equivalent to Ip then A is a product of row-operation matrices.

(b) Suppose that A is a product of row-operation matrices, say, H1,H2, · · · ,Hk−1,Hk, and that the equality
A = H1H2 · · ·Hk−1Hk holds.
Denote by γ1, γ2, · · · , γk−1, γk the respective row operations on (p × p)-matrices to which the row-operation
matrices H1,H2, · · · ,Hk−1,Hk are associated.
We have A = H1H2 · · ·Hk−1Hk = H1H2 · · ·Hk−1HkIp.
Then we have the sequence of row operations

Ip
γk−→Hk

γ
k−1−−−→Hk−1Hk

γ
k−2−−−→· · · · · · · · · γ3−→H3 · · ·Hk−1Hk

γ2−→H2H3 · · ·Hk−1Hk
γ1−→H1H2H3 · · ·Hk−1Hk=A

Therefore Ip is row-equivalent to A. Hence A is row-equivalent to Ip.
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