1.6.1 Answers to Exercise.

1. (a) Comment.

The equality $1 \cdot \mathbf{0}_{p}=\mathbf{0}_{p}$ is involved.
(b) Comment.

The equality $1 \cdot \mathbf{0}_{p}+0 \cdot \mathbf{u}_{1}+0 \cdot \mathbf{u}_{2}+\cdots+0 \cdot \mathbf{u}_{q}=\mathbf{0}_{p}$ is involved.
(c) Comment.

The equality $\beta \cdot \alpha \mathbf{u}-\alpha \cdot \beta \mathbf{u}=\mathbf{0}_{p}$ is involved.
(d) Comment.

The equality $(-1) \mathbf{u}+1 \cdot \mathbf{v}+1 \cdot(\mathbf{u}-\mathbf{v})=\mathbf{0}_{p}$ is involved.
(e) Comment.

The equality $(-\beta \gamma) \mathbf{u}+(-\alpha \delta) \beta \mathbf{v} \alpha \beta(\gamma \mathbf{u}+\delta \mathbf{v})=\mathbf{0}_{p}$ is involved.
(f) \qquad
2. \qquad
3. \qquad
4. \qquad
5. (a)
(b) i. A possible counter-example is provided by $\mathbf{t}=\left[\begin{array}{c}-1 / 2 \\ 0 \\ 0\end{array}\right], \mathbf{u}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{v}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \mathbf{w}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
ii. \qquad
6. \qquad
7. (a) i. $\beta_{1}=2 \alpha_{1}+\alpha_{2}, \beta_{2}=\alpha_{1}-\alpha_{2}+\alpha_{3}, \beta_{3}=-3 \alpha_{1}+\alpha_{3}$.
ii.
(b) i. $\mathbf{u}_{2}=\mathbf{u}_{1}-\mathbf{v}_{2}=\frac{1}{6} \mathbf{v}_{1}-\frac{1}{3} \mathbf{v}_{2}+\frac{1}{2} \mathbf{v}_{3}$.
ii. \qquad

