1.6.1 Linear dependence and linear independence.

- 1. With direct reference to the definitions of linear dependence, linear independence, and linear combinations (where relevant), prove the statements below:—
 - (a) $\mathbf{0}_p$ is linearly dependent.
 - (b) Suppose u₁, u₂, ..., u_q are column vectors with p entries. Then 0_p, u₁, u₂, ..., u_q are linearly dependent.
 - (c) Suppose u is a column vector with p entries.
 Then, for any non-zero numbers α, β, the column vectors αu, βu are linearly dependent.
 - (d) Suppose u, v are column vector with p entries.
 Then the column vectors u, v, u v are linearly dependent.
 - (e) Suppose \mathbf{u}, \mathbf{v} are column vector with p entries.

Then, for any numbers $\alpha, \beta, \gamma, \delta$, the column vectors $\alpha \mathbf{u}, \beta \mathbf{v}, \gamma \mathbf{u} + \delta \mathbf{v}$ are linearly dependent.

Remark. The argument requires some care. Just as you cannot expect a symbol like **u** to automatically stand for a non-zero column/row vector, you cannot expect a symbol like α to automatically stand for a non-zero number.

- (f) Let u, v, w, x, y be column vector with p entries. Suppose the column vectors v, w, x are linearly dependent. Then the column vectors u, v, w, x, y are linearly dependent.
- 2. Let \mathbf{u}, \mathbf{v} be column vectors with p entries. Prove, with direct reference to the definitions for the notions of linear dependence and linear combination, that the statements below are logically equivalent:—
 - (1) \mathbf{u}, \mathbf{v} are linearly dependent.
 - (2) One of \mathbf{u}, \mathbf{v} is a scalar multiple of the other.
- 3. Let \mathbf{u}, \mathbf{v} be column vectors with p entries. Prove that the statements below are logically equivalent, with direct reference to the definition of linear independence:—
 - (1) \mathbf{u}, \mathbf{v} are linearly independent.
 - (2) $\mathbf{u}, -\mathbf{v}$ are linearly independent.
 - (3) $\mathbf{u} + \mathbf{v}, \mathbf{u}$ are linearly independent.
 - (4) $\mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v}$ are linearly independent.
- 4. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be column vectors with p entries. Prove that the statements below are logically equivalent, with direct reference to the definition of linear dependence:—
 - (1) $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly dependent.
 - (2) $\mathbf{u}, \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} + \mathbf{w}$ are linearly dependent.
 - (3) $\mathbf{u} + \mathbf{v}, \mathbf{v} + \mathbf{w}, \mathbf{u} + \mathbf{w}$ are linearly dependent.
 - (3) $\mathbf{u} + \mathbf{v} + \mathbf{w}, \mathbf{u} + 2\mathbf{v} + 3\mathbf{w}, \mathbf{u} + 3\mathbf{v} + 6\mathbf{w}$ are linearly dependent.
- 5. (a) Prove the statement (\sharp) :—
 - (\sharp) Let $\mathbf{t}, \mathbf{u}, \mathbf{v}, \mathbf{w}$ be column vectors with p entries. Suppose $\mathbf{t}, \mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent. Then $\mathbf{u} + 2\mathbf{t}, \mathbf{v} + 3\mathbf{t}, \mathbf{w} + 4\mathbf{t}$ are linearly independent.
 - (b) i. Give a dis-proof against (b) by providing an appropriate counter-example.
 - (b) Let $\mathbf{t}, \mathbf{u}, \mathbf{v}, \mathbf{w}$ be column vectors with 3 entries. Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent. Then $\mathbf{u} + 2\mathbf{t}, \mathbf{v} + 3\mathbf{t}, \mathbf{w} + 4\mathbf{t}$ are linearly independent.
 - ii. This is more challenging than the previous part.
 Give a dis-proof against (b') by providing an appropriate counter-example.
 - (\flat') Let $\mathbf{t}, \mathbf{u}, \mathbf{v}, \mathbf{w}$ be column vectors with 3 entries. Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent, and none of $\mathbf{u} + 2\mathbf{t}, \mathbf{v} + 3\mathbf{t}, \mathbf{w} + 4\mathbf{t}$ is the zero column vector. Then $\mathbf{u} + 2\mathbf{t}, \mathbf{v} + 3\mathbf{t}, \mathbf{w} + 4\mathbf{t}$ are linearly independent.
- 6. With direct reference to the definitions of linear dependence, linear independence, and linear combinations (where relevant), prove the statements below.

- (a) Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ be column vectors with p entries. Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ are linearly independent. Then for each $j = 1, 2, \cdots, k$, the column vectors $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_j$ are linearly independent.
- (b) Let v₁, v₂, ..., v_n, w₁, w₂, ..., w_q be column vectors with p entries. Suppose v₁, v₂, ..., v_n are linearly dependent. Then v₁, v₂, ..., v_n, w₁, w₂, ..., w_q are linearly dependent.

Remark. In plain words, the statement in part (a) says:—

Any 'portion' of a collection of linearly independent column vectors is itself a collection of linearly independent column vectors.

The statement in part (b) says:—

A collection of column vectors is definitely linearly dependent when some portion of it is, on its own, a collection of linearly dependent column vectors.

The two statements are 'contra-positive' re-formulations of each other.

- 7. Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ be column vectors with *m* entries.
 - Let $\mathbf{v}_1 = 2\mathbf{u}_1 + \mathbf{u}_2 3\mathbf{u}_3$, $\mathbf{v}_2 = \mathbf{u}_1 \mathbf{u}_2$, $\mathbf{v}_3 = \mathbf{u}_2 + \mathbf{u}_3$.
 - (a) Suppose $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are linearly independent.

Let $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3$ be numbers.

- i. Suppose $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \beta \mathbf{u}_3$. Express $\beta_1, \beta_2, \beta_3$ in terms of $\alpha_1, \alpha_2, \alpha_3$. (Justify your answer.)
- ii. Are $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ linearly independent? *Hint.* Start with the assumption 'suppose $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = \mathbf{0}$ '. What can you say about the values of $\alpha_1, \alpha_2, \alpha_3$?

Remark. The assumption ' \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 are linear independent is crucial in guaranteeing the conclusion ' \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are linearly independent'.

To explore, write down any concrete example of non-zero column vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$, say, 3 entries, which are linear dependent. See whether the corresponding column vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ will automatically turn out to be linearly dependent.

(b) i. Express each of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ as linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

Hint. Start by expressing $\mathbf{v}_1 + \mathbf{v}_2$, $\mathbf{v}_2 + \mathbf{v}_3$ in terms of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$.

ii. Suppose $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent. Show that $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ is linearly independent.

Remark. So it happens that $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ is linearly independent if and only if $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is linearly independent.