1.6.1 Linear dependence and linear independence.

1. With direct reference to the definitions of linear dependence, linear independence, and linear combinations (where relevant), prove the statements below:-
(a) $\mathbf{0}_{p}$ is linearly dependent.
(b) Suppose $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{q}$ are column vectors with p entries.

Then $\mathbf{0}_{p}, \mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{q}$ are linearly dependent.
(c) Suppose \mathbf{u} is a column vector with p entries.

Then, for any non-zero numbers α, β, the column vectors $\alpha \mathbf{u}, \beta \mathbf{u}$ are linearly dependent.
(d) Suppose \mathbf{u}, \mathbf{v} are column vector with p entries.

Then the column vectors $\mathbf{u}, \mathbf{v}, \mathbf{u}-\mathbf{v}$ are linearly dependent.
(e) Suppose \mathbf{u}, \mathbf{v} are column vector with p entries.

Then, for any numbers $\alpha, \beta, \gamma, \delta$, the column vectors $\alpha \mathbf{u}, \beta \mathbf{v}, \gamma \mathbf{u}+\delta \mathbf{v}$ are linearly dependent.
Remark. The argument requires some care. Just as you cannot expect a symbol like u to automatically stand for a non-zero column/row vector, you cannot expect a symbol like α to automatically stand for a non-zero number.
(f) Let $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}$ be column vector with p entries. Suppose the column vectors $\mathbf{v}, \mathbf{w}, \mathbf{x}$ are linearly dependent. Then the column vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}$ are linearly dependent.
2. Let \mathbf{u}, \mathbf{v} be column vectors with p entries. Prove, with direct reference to the definitions for the notions of linear dependence and linear combination, that the statements below are logically equivalent:-
(1) \mathbf{u}, \mathbf{v} are linearly dependent.
(2) One of \mathbf{u}, \mathbf{v} is a scalar multiple of the other.
3. Let \mathbf{u}, \mathbf{v} be column vectors with p entries. Prove that the statements below are logically equivalent, with direct reference to the definition of linear independence:-
(1) \mathbf{u}, \mathbf{v} are linearly independent.
(2) $\mathbf{u},-\mathbf{v}$ are linearly independent.
(3) $\mathbf{u}+\mathbf{v}, \mathbf{u}$ are linearly independent.
(4) $\mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}$ are linearly independent.
4. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be column vectors with p entries. Prove that the statements below are logically equivalent, with direct reference to the definition of linear dependence:-
(1) $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly dependent.
(2) $\mathbf{u}, \mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{v}+\mathbf{w}$ are linearly dependent.
(3) $\mathbf{u}+\mathbf{v}, \mathbf{v}+\mathbf{w}, \mathbf{u}+\mathbf{w}$ are linearly dependent.
(3) $\mathbf{u}+\mathbf{v}+\mathbf{w}, \mathbf{u}+2 \mathbf{v}+3 \mathbf{w}, \mathbf{u}+3 \mathbf{v}+6 \mathbf{w}$ are linearly dependent.
5. (a) Prove the statement (\sharp):-
(\sharp) Let $\mathbf{t}, \mathbf{u}, \mathbf{v}, \mathbf{w}$ be column vectors with p entries. Suppose $\mathbf{t}, \mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent. Then $\mathbf{u}+2 \mathbf{t}, \mathbf{v}+3 \mathbf{t}, \mathbf{w}+4 \mathbf{t}$ are linearly independent.
(b) i. Give a dis-proof against (b) by providing an appropriate counter-example.
(b) Let $\mathbf{t}, \mathbf{u}, \mathbf{v}, \mathbf{w}$ be column vectors with 3 entries. Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent. Then $\mathbf{u}+2 \mathbf{t}, \mathbf{v}+3 \mathbf{t}, \mathbf{w}+4 \mathbf{t}$ are linearly independent.
ii. This is more challenging than the previous part.

Give a dis-proof against (b^{\prime}) by providing an appropriate counter-example.
$\left(b^{\prime}\right)$ Let $\mathbf{t}, \mathbf{u}, \mathbf{v}, \mathbf{w}$ be column vectors with 3 entries. Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent, and none of $\mathbf{u}+2 \mathbf{t}, \mathbf{v}+3 \mathbf{t}, \mathbf{w}+4 \mathbf{t}$ is the zero column vector. Then $\mathbf{u}+2 \mathbf{t}, \mathbf{v}+3 \mathbf{t}, \mathbf{w}+4 \mathbf{t}$ are linearly independent.
6. With direct reference to the definitions of linear dependence, linear independence, and linear combinations (where relevant), prove the statements below.
(a) Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{k}$ be column vectors with p entries. Suppose $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{k}$ are linearly independent. Then for each $j=1,2, \cdots, k$, the column vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{j}$ are linearly independent.
(b) Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}, \mathbf{w}_{1}, \mathbf{w}_{2}, \cdots, \mathbf{w}_{q}$ be column vectors with p entries.

Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$ are linearly dependent.
Then $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}, \mathbf{w}_{1}, \mathbf{w}_{2}, \cdots, \mathbf{w}_{q}$ are linearly dependent.
Remark. In plain words, the statement in part (a) says:-
Any 'portion' of a collection of linearly independent column vectors is itself a collection of linearly independent column vectors.

The statement in part (b) says:-
A collection of column vectors is definitely linearly dependent when some portion of it is, on its own, a collection of linearly dependent column vectors.

The two statements are 'contra-positive' re-formulations of each other.
7. Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ be column vectors with m entries.

Let $\mathbf{v}_{1}=2 \mathbf{u}_{1}+\mathbf{u}_{2}-3 \mathbf{u}_{3}, \mathbf{v}_{2}=\mathbf{u}_{1}-\mathbf{u}_{2}, \mathbf{v}_{3}=\mathbf{u}_{2}+\mathbf{u}_{3}$.
(a) Suppose $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ are linearly independent.

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}$ be numbers.
i. Suppose $\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}=\beta_{1} \mathbf{u}_{1}+\beta_{2} \mathbf{u}_{2}+\beta \mathbf{u}_{3}$. Express $\beta_{1}, \beta_{2}, \beta_{3}$ in terms of $\alpha_{1}, \alpha_{2}, \alpha_{3}$. (Justify your answer.)
ii. Are $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ linearly independent?

Hint. Start with the assumption 'suppose $\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}=\mathbf{0}$ '. What can you say about the values of $\alpha_{1}, \alpha_{2}, \alpha_{3}$?
Remark. The assumption ' $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ are linear independent is crucial in guaranteeing the conclusion ' $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent'.
To explore, write down any concrete example of non-zero column vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$, say, 3 entries, which are linear dependent. See whether the corresponding column vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ will automatically turn out to be linearly dependent.
(b) i. Express each of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ as linear combinations of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.

Hint. Start by expressing $\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{2}+\mathbf{v}_{3}$ in terms of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.
ii. Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent. Show that $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ is linearly independent.

Remark. So it happens that $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ is linearly independent if and only if $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is linearly independent.

