
1.5 Linear combinations.

0. Assumed background.

• 1.1 Matrices, matrix addition, and scalar multiplication for matrices.
• 1.2 Matrix multiplication.
• 1.3 Transpose, symmetry and skew-symmetry.

Abstract. We introduce:—

• the notion of linear combinations.
1. Motivation for the upcoming definition for the notion of ‘linear combinations’.

Out of any given matrices A,B,C,D, · · · of the same size, and any given numbers α, β, γ, δ, · · · , we can form, with
addition and scalar multiplication alone, various new matrices of the same size

αA, βB, γC, δD, · · · ,
αA+ βB, αA+ βB + γC, αA+ βB + γC + δD, · · ·

This type of ‘algebraic expressions’ will turn up naturally in many situations (exactly because they are formed with
the simplest kinds of matrix operations), and will often play fundamental roles.
For this reason, this type of expressions deserves being given a name, and its behaviour deserves attention.
Here, for simplicity, we only consider the special situation in which the matrices under questions are column vectors
and row vectors.

2. Definition. (Linear combination of column/row vectors over real (or complex) numbers.)
Let u1,u2, · · · ,uq be column/row vectors with p real (or complex) entries. (These q vectors are not assumed to be
pairwise distinct.)

(1) Any expression of the form
α1u1 + α2u2 + · · ·+ αquq,

in which α1, α2, · · · , αq are real (or complex) numbers, is called a linear combination of the column/row
vectors u1,u2, · · · ,uq with respect to the real (or complex) scalars α1, α2, · · · , αq.

(2) Let v be a column/row vector with p real (or complex) entries.
We say v is a linear combination of u1,u2, · · · ,up over the real (or complex) numbers if and only if
the statement (LC) holds:

(LC) There exist some real (or complex) numbers α1, α2, · · · , αq such that v = α1u1 + α2u2 + · · ·+ αquq.

Remarks on terminologies.

(a) An equality that reads
‘v = α1u1 + α2u2 + · · ·+ αquq’

is called a linear relation relating v with u1,u2, · · · ,up.

(b) i. If u1,u2, · · · ,uq are the j1-th, j2-th, ..., jq-th columns/rows in a matrix, say, A, with real (or complex)
entries, then we will call a linear combination of these q column/row vectors a linear combination of
the j1-th, j2-th, ..., jq-th columns/rows of A.

ii. Furthermore, if A is a (p× q)-matrix and u1,u2, · · · ,uq are exactly the q columns/rows of A, then such a
linear combination is called a linear combination of the columns/rows of A.

3. Comment (1) on the definitions.
From now on, for simplicity of presentation, we will focus on linear combinations of column/row vectors here with
real entries over real numbers:—

• The phrase ‘with p entries’ will read ‘with p real entries’.
• The phrase ‘the numbers/scalars α1, α2, · · · ’ will read ‘the real numbers/scalars α1, α2, · · · ’.
• The phrase ‘a linear combination of u1,u2, · · · ’ will read ‘a linear combination of u1,u2, · · · over the real

numbers’.
• The phrase ‘the matrix A’ will read ‘the matrix A with real entries’.
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Et cetera.
Our conceptual understanding will not be weakened. When we consistently change the reference to real numbers to
complex numbers in the definitions, theorems, and proofs stated here, we will recover the corresponding definitions,
theorems and proofs concerned with linear combinations of column/row vectors with complex entries over complex
numbers.
This is because the definitions, theorems, and proofs we state here regarding the notion of linear combinations rely
only on the the basic ‘algebraic properties’ of matrix addition, scalar multiplication, and matrix multiplication,
which in turn rely only on the basic ‘algebraic properties’ of addition, subtraction, multiplication and division for
real numbers. But these basic ‘algebraic properties’ of addition, subtraction, multiplication and division for complex
numbers are formally the ‘same’ as that for real numbers.

4. Lemma (1). (‘Dictionary’ between linear combinations of column vectors and that of row vectors.)
Suppose v,u1,u2, · · · ,uq are column/row vectors with p entries, and α1, α2, · · · , αq are scalars.
Then the statements below are logically equivalent:

(1) The column/row vector v is a linear combination of the column/row vectors u1,u2, · · · ,uq with respect to
scalars α1, α2, · · · , αq.

(2) The row/column vector vt is a linear combination of the row/column vectors ut
1,u

t
2, · · · ,ut

q with respect to
scalars α1, α2, · · · , αq.

Proof of Lemma (1). Exercise.

5. Comment (2) on the definitions, as a remark on Lemma (1).
Because of Lemma (1), for each result involving the notion of linear combinations of column vectors alone, we can
immediately obtain an analogous results concerned with row vectors by changing the word ‘column’ to ‘row’, and
taking ‘transpose’ for all matrices and vectors involved in the statement and its proof.
So, from now on, for further simplicity of presentation, we will state (and prove) results concerned with column
vectors only, as most of the time in this course we need column vectors rather than row vectors.

6. Lemma (2). (‘Dictionary’ between linear combinations and matrix-vector products.)
Let A be an (p× q)-matrix and t be a column vector with q entries.
Suppose that for each j = 1, 2, · · · , q, the j-th column of A is aj and the j-th entry of t is tj .

(So A = [ a1 a2 · · · aq ] and t =


t1
t2
...
tq

.)

Then At = t1a1 + t2a2 + · · ·+ tqaq.

7. Comment (3) on the definitions, as a remark on Lemma (2).
Lemma (2) links up the definitions (on linear combinations of column vectors) with matrix multiplication.
In plain words, the result says:—

• A given column vector is a linear combination of the columns of a given matrix if and only if the column vector
concerned is resultant from multiplying the matrix concerned from the left to some appropriate column vector.

While the result looks innocent, it will serve as a useful tool, because sometimes it is more convenient to think of
a linear combination of column vectors as a matrix-vector product, and some other times it is more convenient to
think of a matrix-vector product as a linear combination of the columns of the matrix involved in the product.

8. Proof of Lemma (2).
Let A be an (p× q)-matrix and t be a column vector with q entries.
Suppose that for each j = 1, 2, · · · , q, the j-th column of A is aj and the j-th entry of t is tj .

For each i, j, we denote the (i, j)-th entry of A by aij .

• The i-th entry of At is given by
n∑

j=1

aijtj = t1ai1 + t2ai2 + · · ·+ tqaiq.

• For each j, the i-th entry of aj (which is the j-th column of A) is aij .
Then the i-th entry of t1a1 + t2a2 + · · ·+ tqaq is t1ai1 + t2ai2 + · · ·+ tqaiq.
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The corresponding entries of At, t1a1 + t2a2 + · · ·+ tqaq agree with each other.
Hence At = t1a1 + t2a2 + · · ·+ tqaq indeed.

9. Example (1). (Simple concrete examples about linear combinations of column/row vectors.)

(a)


1
2
3
4
5

 = 1 ·


1
0
0
0
0

+ 2


0
1
0
0
0

+ 3


0
0
1
0
0

+ 4


0
0
0
1
0

+ 5


0
0
0
0
1

.

So


1
2
3
4
5

 is the linear combination of


1
0
0
0
0

,


0
1
0
0
0

,


0
0
1
0
0

,


0
0
0
1
0

,


0
0
0
0
1

 with respect to the scalars 1, 2, 3, 4, 5.

A manifestation of the same relation is the equality below:
1
2
3
4
5

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



1
2
3
4
5

.

(b)


1
1
3
4
5

 = 1 ·


1
3
5
7
9

+ (−1)


0
2
4
6
8

+ 2


0
0
1
3
5

+ (−1)


0
0
0
3
6

+ 0 ·


0
0
0
0
2

.

So


1
1
3
4
5

 is also a linear combination of


1
3
5
7
9

,


0
2
4
6
8

,


0
0
1
3
5

,


0
0
0
3
6

,


0
0
0
0
2

 with respect to the scalars 1,−1, 2,−1, 0.

A manifestation of the same relation is the equality below:
1
1
3
4
5

 =


1 0 0 0 0
3 2 0 0 0
5 4 1 0 0
7 6 3 3 0
9 8 5 6 2




1
−1
2
−1
0

.
(c) [ −4 9 4 −1 ] = 2 [ 1 2 1 0 ] + 3 [ 2 3 2 1 ]− 4 [ 3 2 1 1 ].

So [ −4 9 4 −1 ] is a linear combination of [ 1 2 1 0 ], [ 2 3 2 1 ], [ 3 2 1 1 ] with respect
to the scalar 2, 3,−4.
A manifestation of the same relation is the equality below:

[ −4 9 4 −1 ] = [ 2 3 −4 ]

[
1 2 1 0
2 3 2 1
3 2 1 1

]
.

With transpose being taken on both sides of the equality above, we obtain an equality which gives the same
information: −4

9
4
−1

 =

 1 2 3
2 3 1
1 2 1
0 1 1

[ 2
3
−4

]
.

But this last equality is just giving the same information as this equality about linear combinations of column
vectors. −4

9
4
−1

 = 2

12
1
0

+ 3

23
2
1

− 4

32
1
1

.
10. Theorem (3). (Addition and scalar multiplication of linear combinations.)

Let u1,u2, · · · ,uq be column vectors with p entries.
The statements below are true:

(a) The zero vector 0p is a linear combination of u1,u2, · · · ,uq.
(b) The sum of any two linear combinations of u1,u2, · · · ,uq is a linear combination of u1,u2, · · · ,uq.
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(c) Every scalar multiple of any linear combination of u1,u2, · · · ,uq is a linear combination of u1,u2, · · · ,uq.

11. Proof of Theorem (3).
Let u1,u2, · · · ,uq be column vectors with p entries.

(a) [Ask: Can we name some appropriate numbers α1, α2, · · · , αq for which the equality 0p = α1u1 +α2u2 + · · ·+
αnuq holds?]
We have 0p = 0 · u1 + 0 · u2 + · · ·+ 0 · uq.
Then by definition, 0p is a linear combination of u1,u2, · · · ,uq.

(b) Suppose v,w are linear combinations of u1,u2, · · · ,uq.
Then, by definition, there exist some numbers β1, β2, · · · , βq such that v = β1u1 + β2u2 + · · ·+ βquq.
Also, there exist some numbers γ1, γ2, · · · , γq such that w = γ1u1 + γ2u2 + · · ·+ γquq.
[Ask: Can we name some appropriate numbers α1, α2, · · · , αq for which the equality v +w = α1u1 + α2u2 +

· · ·+ αquq holds?]
Note that v +w = ... = (β1 + γ1)u1 + (β2 + γ2)u2 + · · · + (βq + γq)uq, and β1 + γ1, β2 + γ2, · · · , βq + γq are
well-defined as numbers.
Then by definition, v +w is a linear combination of u1,u2, · · · ,uq.

(c) Exercise.

12. Theorem (4). (Linear combination of linear combinations.)
Let u1,u2, · · · ,uq be column vectors with p entries.
Every linear combination of (finitely many) linear combinations of u1,u2, · · · ,uq is a linear combination of u1,u2, · · · ,uq.

Remark. In fact, Theorem (4) is saying the same thing as Statement (b) and Statement (c) in Theorem (3)
combined.
Its conclusion part can be formulated as:

For any column vector x with p entries, if x is a linear combination of some column vectors v1,v2, · · · ,vn

with p entries, which are themselves linear combinations of column vectors u1,u2, · · · ,uq with p entries, then
x itself is a linear combination of u1,u2, · · · ,uq.

13. Proof of Theorem (4).
[This argument carries the same essence of the argument for Statement (b) and Statement (c) in Theorem (3).]
Let u1,u2, · · · ,uq be column vectors with p entries.
Pick any column vector x with p entries.
Suppose x is a linear combination of (finitely many) column vectors with p entries, say, v1,v2, · · · ,vn, which are
linear combinations of u1,u2, · · · ,uq.
[Reminder: We want to see why x is a linear combination of u1,u2, · · · ,uq.]
By definition, x is a linear combination of v1,v2, · · · ,vn.
Then there exist some numbers α1, α2, · · · , αn such that x = α1v1 + α2v2 + · · ·+ αnvn.
[Ask: Can we link up the uj ’s with the vi’s so as to see that x is a linear combination of u1,u2, · · · ,uq?]
By assumption, for each j = 1, 2, · · · , q, there exist some numbers β1j , β2j , · · · , βqj such that vj = β1ju1 + β2ju2 +

· · ·+ βqjuq.
Then

x = α1v1 + α2v2 + · · ·+ αnvn

= α1(β11u1 + β21u2 + · · ·+ βq1uq) + α2(β12u1 + β22u2 + · · ·+ βq2uq)

+ · · ·+ αn(β1pu1 + β2pu2 + · · ·+ βqnuq)

= (β11α1 + β12α2 + · · ·+ β1nαn)u1 + (β21α1 + β22α2 + · · ·+ β2nαn)u2

+ · · ·+ (βn1α1 + βn2α2 + · · ·+ βqnαn)uq

Note that βk1α1 + βk2α2 + · · ·+ βknαn is well-defined as a number for each k = 1, 2, · · · , q.
Then x is a linear combination of u1,u2, · · · ,uq.
Remark. We shall later also give an alternative argument for Theorem (4), with an application of mathematical
induction.
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14. Example (2). (Concrete illustration of the content of Theorem (3), Theorem (4), and the ‘algebraic
content’ of their proofs.)
Let u1,u2,u3,u3,v1,v2,v3,w1,w2,x be column vectors with 5 entries.
Suppose v1 = 2u1 − 3u2 + 4u3 − u4, v2 = u1 + 2u2 − 3u3 + 4u4, v3 = −u1 + 3u2 + 2v3 + u4.
Note that each of v1,v2,v3 is a linear combination of u1,u2,u3,u4.

(a) Note that 05 = 0 · u1 + 0 · u2 + 0 · u3 + 0 · u4.
Hence 05 is a linear combination of u1,u2,u3.

(b) Suppose w1 = v1 + v2. (So w1 is the sum of v1,v2.)
Note that w1 = v1 + v2 = (2u1 − 3u2 + 4u3 − u4) + (u1 + 2u2 − 3u3 + 4u4) = 3u1 − u2 + u3 + 3u4.
Hence w1 is a linear combination of u1,u2,u3.

(c) Suppose w2 = 4v3. (So w2 is a scalar multiple of v3.)
Note that 4w2 = 4(−u1 + 3u2 + 2v3 + u4) = −4u1 + 12u2 + 8v3 + 4u4.
Hence w2 is a linear combination of u1,u2,u3.

(d) Suppose x = 3v1 + 2v2 − 4v3. (So x is a linear combination of v1,v2,v3.)
Note that

x = 3v1 + 2v2 − 4v3

= 3(2u1 − 3u2 + 4u3 − u4) + 2(u1 + 2u2 − 3u3 + 4u4)− 4(−u1 + 3u2 + 2v3 + u4)

= 12u1 − 17u2 − 2u3 − u4

Hence x is a linear combination of u1,u2,u3.

15. Example (3). (Baby examples on checking whether a given vector is a linear combination of a number
of given vectors.)
The illustrations below suggest that such problems may become non-trivial when the vectors concerned have three
or more entries. The key to the problem seems to be related to mathematical objects that we call systems of linear
equations.

(a) Let v =
[
4
2

]
, u1 =

[
1
1

]
, u2 =

[
1
−1

]
.

We want to determine whether v is a linear combination of u1,u2, and to find a linear relation relating v with
u1,u2 if such exists.

i. Question. Suppose v is a linear combination of u1,u2. Then how is v related with u1,u2 through a
linear relation?
Answer. If v is a linear combination of u1,u2, then by definition, there are some numbers α1, α2 such
that v = α1u1 + α2u2.

ii. Further question. But what are α1, α2?
Answer. We have the equalities[

α1 + α2
α1 − α2

]
= α1

[
1
1

]
+ α2

[
1
−1

]
= α1u1 + α2u2 = v =

[
4
2

]
.

The definition of matrix equality gives {
α1 + α2 = 4
α1 − α2 = 2

Then 2α1 = (α1 + α2) + (α1 − α2) = 4 + 2 = 6. Therefore α1 = 3.
Also 2α2 = (α1 + α2)− (α1 − α2) = 4− 2 = 2. Therefore α1 = 1.

iii. Up to now, we have discovered that:—
• If v is a linear combination of u1,u2 then it is necessary for the equality v = 3u1 + u2 to hold.

iv. Question. But is it indeed true that v = 3u1 + u2?
Answer. By direct computing, we see that

3u1 + 1u2 = 3
[
1
1

]
+
[
1
−1

]
=

[
4
2

]
= v.

Hence v is indeed a linear combination of u1,u2, through the linear relation v = 3u1 + u2.
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(b) Let v =

[
5
3
1

]
, u1 =

[
1
0
0

]
, u2 =

[
1
1
0

]
, u3 =

[
1
1
1

]
.

We want to determine whether v is a linear combination of u1,u2,u3, and to find a linear relation relating v

with u1,u2,u3 if such exists.
i. Question. Suppose v is a linear combination of u1,u2,u3. Then how is v related with u1,u2,u3 through

a linear relation?
Answer. If v is a linear combination of u1,u2,u3, then by definition, there are some numbers α1, α2, α3

such that v = α1u1 + α2u2 + α3u3.
ii. Further question. But what are α1, α2, α3?

Answer. We have the equalities[
α1 + α2 + α3

α2 + α3
α3

]
= α1

[
1
0
0

]
+ α2

[
1
1
0

]
+ α3

[
1
1
1

]
= α1u1 + α2u2 + α3u3 = v =

[
5
3
1

]
.

The definition of matrix equality gives α1 + α2 + α3 = 5
α2 + α3 = 3

α3 = 1

Note that α3 = 1.
Then α2 = (α2 + α3)− α2 = 3− 1 = 2.
Now α1 = (α1 + α2 + α3)− (α1 + α2) = 5− 3 = 2.

iii. Up to now, we have discovered that:—
• If v is a linear combination of u1,u2,u3 then it is necessary for the equality v = 2u1 + 2u2 + u3 to

hold.
iv. Question. But is it indeed true that v = 2u1 + 2u2 + u3?

Answer. By direct computing, we see that

2u1 + 2u2 + u3 = 2

[
1
0
0

]
+

[
1
1
0

]
+

[
1
1
1

]
=

[
5
3
1

]
= v.

Hence v is indeed a linear combination of u1,u2,u3, through the linear relation v = 2u1 + 2u2 + u3.

(c) Let v =

[
2
1
0

]
, u1 =

[
1
1
0

]
, u2 =

[
2
1
1

]
, u3 =

[
3
2
1

]
.

We want to determine whether v is a linear combination of u1,u2,u3, and to find a linear relation relating v

with u1,u2,u3 if such exists.
i. Question. Suppose v is a linear combination of u1,u2,u3. Then how is v related with u1,u2,u3 through

a linear relation?
Answer. If v is a linear combination of u1,u2,u3, then by definition, there are some numbers α1, α2, α3

such that v = α1u1 + α2u2 + α3u3.
ii. Further question. But what are α1, α2, α3?

Answer. We have the equalities[
α1 + 2α2 + 3α3
α1 + α2 + 2α3

α2 + α3

]
= α1

[
1
1
0

]
+ α2

[
2
1
1

]
+ α3

[
3
2
1

]
= α1u1 + α2u2 + α3u3 = v =

[
2
1
0

]
.

The definition of matrix equality gives α1 + 2α2 + 3α3 = 2
α1 + α2 + 2α3 = 1

α2 + α3 = 0

Note that α2 + α3 = 0.
Also note that α2 + α3 = (α1 + 2α2 + 3α3)− (α1 + α2 + 2α2) = 2− 1 = 1.
Then 0 = α2 + α3 = 1, which is impossible.
Hence v is not a linear combination of u1,u2,u3.

(d) Let v =

[
6
4
2

]
, u1 =

[
1
0
0

]
, u2 =

[
1
1
0

]
, u3 =

[
1
1
1

]
, u4 =

[
1
2
3

]
.

We want to determine whether v is a linear combination of u1,u2,u3,u4, and to find a linear relation relating
v with u1,u2,u3,u4 if such exists.
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i. Question. Suppose v is a linear combination of u1,u2,u3,u4. Then how is v related with u1,u2,u3,u4

through a linear relation?
Answer. If v is a linear combination of u1,u2,u3,u4, then by definition, there are some numbers
α1, α2, α3, α4 such that v = α1u1 + α2u2 + α3u3 + α4u4.

ii. Further question. But what are α1, α2, α3, α4?
Answer. We have the equalities[

α1 + α2 + α3 + α4
α2 + α3 + 2α4

α3 + 3α4

]
=α1

[
1
0
0

]
+α2

[
1
1
0

]
+α3

[
1
1
1

]
+α4

[
1
2
3

]
=α1u1+α2u2+α3u3+α4u4=v=

[
6
4
2

]
.

The definition of matrix equality gives α1 + α2 + α3 + α4 = 6
α2 + α3 + 2α4 = 4

α3 + 3α4 = 2

By observation, these equalities in turn give relations which relate each of α1, α2, α3 in terms of α4 alone:
• We have α1 − α4 = (α1 + α2 + α3 + α4)− (α2 + α3 + 2α4) = 6− 4 = 2. Then α1 = 2 + α4.
• We have α2 − α4 = (α2 + α3 + 2α4)− (α3 + 3α4) = 4− 2 = 2. Then α2 = 2 + α4

• We have α3 − α4 = 2. Then α3 = 2 + α4.
iii. Up to now, we have discovered that:—

• If v is a linear combination of u1,u2,u3,u4 then it is necessary for the equality

v = (2 + t)u1 + (2 + t)u2 + (2 + t)u3 + tu4

to hold for some number t.
iv. Question. But is it indeed true that v = (2 + t)u1 + (2 + t)u2 + (2 + t)u3 for some number t?

Answer. It happens that when, say, t = 0, we have

(2 + t)u1 + (2 + t)u2 + (2 + t)u3 + tu4 = 2u1 + 2u2 + 2u3 + 0 · u4 = 2

[
1
0
0

]
+ 2

[
1
1
0

]
+ 2

[
1
1
1

]
=

[
6
4
2

]
= v.

Hence v is indeed a linear combination of u1,u2,u3,u4, through the linear relation v = 2u1+2u2+2u3+
0 · u4.

Remark. As seen in this example, determining whether a given vector is a linear combination of a number of
given vectors looks difficult, because the process involves solving a complicated system of ‘simultaneous equations’
which arises naturally in the process.

16. Alternative argument for Theorem (4), as an illustration on the application of mathematical induc-
tion.
Let u1,u2, · · · ,uq be column vectors with p entries. (They are kept fixed throughout the rest of the argument.)

By applying mathematical induction, and by consciously applying Theorem (3), we verify the statement

‘For any positive integer s, if α1, α2, · · · , αs are numbers, and v1,v2, · · · ,vs are linear combinations of
u1,u2, · · · ,uq, and then α1v1 + α2v2 + · · ·+ αsvs is a linear combination of u1,u2, · · · ,uq.’

Denote by P (s) the proposition below:

‘If α1, α2, · · · , αs are numbers, and v1,v2, · · · ,vs are linear combinations of u1,u2, · · · ,uq then α1v1+α2v2+

· · ·+ αsvs is a linear combination of u1,u2, · · · ,uq.’

We verify P (1):

Suppose α1 is a number, and v1 is a linear combination of u1,u2, · · · ,uq.
Then by Theorem (3), α1v1 is a linear combination of u1,u2, · · · ,uq.

Suppose P (k) is true.
Note that P (k + 1) reads:

‘If and α1, α2, · · · , αk, αk+1 are numbers, and v1,v2, · · · ,vk,vk+1 are linear combinations of u1,u2, · · · ,uq,
then α1v1 + α2v2 + · · ·+ αk+1vk+1 is a linear combination of u1,u2, · · · ,uq.’
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With the help of P (k), we verify P (k + 1):

Suppose α1, α2, · · · , αk, αk+1 are numbers and v1,v2, · · · ,vk,vk+1 are linear combinations of u1,u2, · · · ,uq.
By P (k), α1v1 + α2v2 + · · ·+ αkvk is a linear combination of u1,u2, · · · ,uq.
By P (1), αk+1vk+1 is a linear combination of u1,u2, · · · ,uq.
Then, by Theorem (3), α1v1 + α2v2 + · · ·+ αkvk + αk+1vk+1 is a linear combination of u1,u2, · · · ,uq.
Therefore P (k + 1) is true.

By the Principle of Mathematical Induction, P (s) is true for any positive integer s.
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