1.4.3 Exercise: Commuting matrices versus non-commuting matrices.

In some of the questions below, you will need the respective notions of diagonal matrix, polynomial of a square matrix, Lie product. Their respective definitions are given below:-

- Let D be a $(p \times p)$-square matrix, whose (i, j)-th entry is denoted by $d_{i j}$ for each i, j.

We say that D is a diagonal matrix if and only if $d_{i j}=0$ whenever $i \neq j$.
We may write $D=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}\right)$ if $d_{11}=\alpha_{1}, d_{22}=\alpha_{2}, \ldots$ and $d_{p p}=\alpha_{p}$. In this situation, we may further call D the diagonal matrix with respective diagonal entries $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}$.

- Suppose B is a $(p \times p)$-square matrix, and $a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}, a_{n}$ be numbers.

Then the $(p \times p)$-square matrix given by

$$
a_{0} I_{p}+a_{1} B+a_{2} B^{2}+\cdots+a_{n-1} B^{n-1}+a_{n} B^{n}
$$

is called the polynomial of B with respective coefficients $a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}, a_{n}$.
For convenience of notations, if $f(x)$ is the polynomial with variable x given by $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+$ $a_{n-1} x^{n-1}+a_{n} x^{n}$, then we agree to write

$$
f(B)=a_{0} I_{p}+a_{1} B+a_{2} B^{2}+\cdots+a_{n-1} B^{n-1}+a_{n} B^{n}
$$

- Let A, B be square matrices of the same size.

The square matrix $A B-B A$ is called the Lie product of A, B, and is denoted by $[A, B]$.
Remark. $[A, B]$ 'measures' how far $A B$ and $B A$ differ from each other.

1. Let $A=\left[\begin{array}{ccc}3 & 1 & -2 \\ 2 & -2 & 0 \\ -1 & 1 & 2\end{array}\right], B=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 1 \\ 0 & 1 & 2\end{array}\right]$.

Do A, B commute with each other? Justify your answer.
2. Let $A=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right], B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right]$.

Do A, B commute with each other? Justify your answer.
3. (a) Let A, B be square matrices with size m. Suppose $A B=B A=\mathcal{O}$.
i. Verify that $(A+B)^{2}=A^{2}+B^{2}$.
ii. Verify that $(A+B)^{3}=A^{3}+B^{3}$.
(b) Without using the 'Binomial Theorem for commuting matrices', prove the statement below, with the help of mathematical induction:-
Let A, B be square matrices with size m. Suppose $A B=B A=\mathcal{O}$. Then for any integer n greater than 1 , the equality $(A+B)^{n}=A^{n}+B^{n}$.
(c) Let $A=\left[\begin{array}{ccc}2 & 2 & 2 \\ -2 & -2 & -2 \\ 1 & 1 & 1\end{array}\right], B=\left[\begin{array}{ccc}-3 & -4 & -2 \\ 6 & 6 & 0 \\ -3 & -2 & 2\end{array}\right]$.

Show that $(A+B)^{n}=A^{n}+B^{n}$ for each integer $n \geq 2$.
Hint. Compute $A B$ and $B A$ first.
4. (a) Prove the statement ($\#$):-

Suppose D, E are diagonal matrices of the same size. Then D, E commute with each other.
(b) Prove the statement (\square):-

Let A, B, G, H be $(p \times p)$-square matrices. Suppose $G A H, G B H$ are diagonal matrices and $H G=I_{p}$. Then A, B commute with each other.
5. (a) Prove the statement below (with the help of mathematical induction, if appropriate):-

Let A, B be $(p \times p)$-square matrix. Suppose A, B commute with each other. Then, for any positive integers m, n, the matrices A^{m}, B^{n} commute with each other.
Hint. This statement can be re-formulated as:-

Let A, B be $(p \times p)$-square matrix. Suppose A, B commute with each other. Suppose n is a positive integer. Then, for any positive integer m, the matrices A^{m}, B^{n} commute with each other.
Remark. You may take for granted the validity of the statement below:-
Let C, D be $(p \times p)$-square matrix. Suppose C, D commute with each other. Then, for any positive integer n, the matrices C, D^{n} commute with each other.
(b) Prove the statement below (with the help of mathematical induction, if appropriate):-

Let A, B be $(p \times p)$-square matrix. Suppose A, B commute with each other. Then, for any positive integer n, the equality

$$
(A+B)^{n}=A^{n}+\binom{n}{1} A^{n-1} B+\binom{n}{2} A^{n-2} B^{2}+\cdots+\binom{n}{k} A^{n-k} B^{k}+\cdots+\binom{n}{n-1} A B^{n-1}+B^{n}
$$

holds .
6. (a) Prove the statement below (with the help of mathematical induction, if appropriate):-

Let A, B be $(p \times p)$-square matrices. Suppose A, B commute with each other. Then, for any positive integer n, the equality

$$
A^{n+1}-B^{n+1}=(A-B)\left(A^{n}+A^{n-1} B+A^{n-2} B^{2}+\cdots+A^{n-k} B^{k}+\cdots+A B^{n-1}+B^{n}\right)
$$

holds .
(b) Hence, or otherwise, deduce the statement below:-

Let B be a $(p \times p)$-square matrix. Then, for any positive integer n,

$$
I_{p}-B^{n+1}=\left(I_{p}-B\right)\left(I_{p}+B+B^{2}+\cdots+B^{k}+\cdots+B^{n-1}+B^{n}\right)
$$

7. (a) Prove the statement ($\#$):-

Let B, C be square matrices of the same size, and $f(x)$ be a polynomial.
Suppose B, C commute with each other. Then $f(B), C^{m}$ commute with each other for each positive integer m.
Remark. You may take for granted that under the assumption that B, C commute with each other, it happens that B^{k}, C^{m} will commute with each other for any positive integers k, m.
(b) Hence, or otherwise, prove the statement ($\sharp \sharp$): -

Let B, C be square matrices of the same size, and $f(x), g(x)$ be polynomials.
Suppose B, C commute with each other. Then $f(B), g(C)$ commute with each other.
8. Let $J=\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], K=\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right], L=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]$.

Verify that $[J, K]=L,[K, L]=J,[L, J]=K$.
9. Prove the statements below:-
(a) Suppose A, B, C are square matrices of the same size, and β, γ are numbers. Then $[A, \beta B+\gamma C]=\beta[A, B]+$ $\gamma[A, C]$.
(b) Suppose A is a square matrix. Then $[A, A]=\mathcal{O}$.
(c) Suppose A, B are square matrices of the same size. Then $[A, B]=-[B, A]=[-B, A]=[B,-A]$.
(d) Suppose A, B, C are square matrices of the same size, and α, β are numbers. Then $[\alpha A+\beta B, C]=\alpha[A, C]+$ $\beta[B, C]$.
(e) Let A, B be square matrices of the same size. Suppose $A,[A, B]$ commute with each other. Then $\left[A^{k+1}, B\right]=$ $(k+1)[A, B] A^{k}$ for each positive integer k.
10. Prove the statements below:-
(a) Suppose A, B, C are square matrices of the same size. Then $[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=\mathcal{O}$.
(b) Suppose A, B are $(n \times n)$-square matrices. Further suppose that A, B commute with each other. Then $[A,[B, C]]=[B,[A, C]]$ for any $(n \times n)$-square matrix C.
(c) Suppose A, B, C, D are square matrices of the same size. Then $[A,[B,[C, D]]]+[B,[C,[D, A]]]+$ $[C,[D,[A, B]]]+[D,[A,[B, C]]]=\mathcal{O}$.
11. Prove the statements below:-
(a) Let A be a square matrix. Suppose $B=\left[A, A^{t}\right]$. Then B is symmetric.
(b) Let A, B be square matrices of the same size. Suppose A, B are symmetric. Then $[A, B]$ is skew-symmetric.
(c) Let A, B be square matrices of the same size. Suppose A is symmetric and B is skew-symmetric. Then $[A, B]$ is symmetric.
(d) Let A, B be square matrices of the same size. Suppose A, B are skew-symmetric. Then $[A, B]$ is skew-symmetric.
12. (a) Let A, B be square matrices.

Express each of $(A+B)^{2},(A-B)(A+B)$ in the form of $\alpha A^{2}+\beta B^{2}+\gamma A B+\delta[A, B]$, in which $\alpha, \beta, \gamma, \delta$ are appropriate numbers.
(b) Hence, or otherwise, prove that the statement below:-

Suppose A, B are square matrices.
Then $(A+B)^{2}=A^{2}+2 A B+B^{2}$ if and only if $(A-B)(A+B)=A^{2}-B^{2}$.
13. Prove the statement below:-

Let A, B, C, D be square matrices of the same size, and s, t, u, v be numbers.
Suppose $C=s A+t B, D=u A+v B$, and $s v-t u \neq 0$.
Then $[A, B]=\mathcal{O}$ if and only if $[C, D]=\mathcal{O}$.

