1.4.2 Appendix: Dis-proof by providing a counter-example.

0 . The material in this appendix is supplementary.

1. In this course we have already encountered (and will encounter) many a statement which is of the form as (\star):-
(*) 'Let/suppose so-and-so be/is amongst the objects tum-tum-tum-tum-tum-tum.
Suppose so-and-so possesses the property
$\underbrace{\text { blah-blah-blah-blah-blah-blah-blah-blah-blah }}_{\text {a statement about so-and-so when read on its own }}$.
Then so-and-so possesses the property

$$
\underbrace{\text { bleh-bleh-bleh-bleh-bleh-bleh-bleh-bleh-bleh }}_{\text {a statement about so-and-so when read on its own }} .
$$

Or we may encounter the same statement in the disguise of $\left(\star^{\prime}\right)$:
(\star^{\prime})'For any so-and-so amongst the objects tum-tum-tum-tum-tum-tum, if so-and-so possesses the property
$\underbrace{\text { blah-blah-blah-blah-blah-blah-blah-blah-blah }}$
a statement about so-and-so when read on its own
then so-and-so possesses the property

$$
\underbrace{\text { bleh-bleh-bleh-bleh-bleh-bleh-bleh-bleh-bleh }}
$$

a statement about so-and-so when read on its own
2. Not every statement of the likes of (\star) is true.

When we claim that such a statement (\star) is false, and we want to rigorously explain this claim in in a mathematical argument, we give an argument that is known as dis-proof by providing a counter-example against (\star). The work for such an argument consists of:-
(0) Important preparatory step, but not part of the argument.

Conceive (or make an educated guess on) a concrete object so-and-so:-
(0a) which we believe/hope will be amongst the objects tum-tum-tum-tum-tum-tum,
(0b) which we also believe/hope will possess the property blah-blah-blah-blah-blah-blah, and
(0c) which we further believe/hope will fail to possess the property bleh-bleh-bleh-bleh-bleh-bleh.
(1) First step of the argument.

Unveil the concrete object so-and-so.
(2) Rest of the argument.

Verify that:-
(2a) so-and-so is indeed amongst the objects tum-tum-tum-tum-tum-tum,
(2b) so-and-so indeed possesses the property blah-blah-blah-blah-blah-blah, and
(0c) so-and-so indeed fails to possess the property bleh-bleh-bleh-bleh-bleh-bleh.
3. From the point of view of pure logic, what we are doing, in giving a dis-proof by providing a counter-example against the statement (\star), is to prove the negation $(\sim \star)$ of the statement (\star), which reads:-
($\sim \star$) 'There exists some so-and-so amongst the objects tum-tum-tum-tum-tum-tum such that so-and-so possesses the property
blah-blah-blah-blah-blah-blah-blah-blah-blah
and so-and-so does not possess the property
bleh-bleh-bleh-bleh-bleh-bleh-bleh-bleh-bleh
4. This is an illustration of the ideas above with a daily life example.

Imagine the statement (\star) is made:-
(*) Let x be a CUHK student. Suppose x has taken MATH1010. Then x has taken MATH1030.
To dis-prove the statement (\star), all we have to do is to unveil a CUHK student who has taken MATH1010 and who has not taken MATH1030, and then verify by checking the student's transcript.
The most difficult work is in fact the preparatory step: to make an educated guess on where to look for such a student. (A good starting point is to look at the study schemes to see whether there is a programme for which MATH1010 is a major requirement but MATH1030 is not even a major elective.)
5. These are illustrations of the ideas above from school maths.
(a) We want to dis-prove the statement
$\left(\star_{a}\right)$ Let x be a real number. Suppose $x^{2}>0$. Then $x^{3}>0$.
A dis-proof by counter-example against $\left(\star_{a}\right)$ is given here:-

- Take $x=-1$. Note that x is a real number.

Note that $x^{2}=1$. Then $x^{2}>0$.
Note that $x^{3}=-1$. Then $x^{3} \leq 0$. Therefore ' $x^{3}>0$ ' is not true.
(b) We want to dis-prove the statement
$\left(\star_{b}\right)$ Let x, y be real numbers. Suppose $x^{3}-x=y^{3}-y$. Then $x=y$.
A dis-proof by counter-example against $\left(\star_{b}\right)$ is given here:-

- Take $x=1, y=-1$. Note that x, y are real number.

Note that $x^{3}-x=0$, and $y^{3}-y=0$. Then $x^{3}-x=y^{3}-y$. Also note that $x \neq y$. Then ' $x=y$ ' is not true.

