1.4.1 Appendix: Mathematical induction.

0 . The material in this appendix is supplementary.

1. In this course you will sometimes encounter arguments that are obtained through an application of the method of mathematical induction.
Such a method may be considered when we want to prove a statement, say, (\star), that can be expressed in the form
(*) (Suppose blih-blih-blih. Then) for any integer n no less than (some fixed integer) N,
$\underbrace{\text { bloh-bloh-bloh-bloh-bloh-bloh-bloh-bloh-bloh-bloh-bloh-bloh-bloh-bloh-bloh-bloh-bloh-bloh }}$
a passage about the symbol n which will become a statement on its own once a concrete integer is 'substituted' into n

Such a passage bloh-bloh-bloh-...-bloh-bloh-bloh about the symbol n which will become a statement on its own once an integer is 'substituted' into n is called a predicate with variable n.
Sometimes the predicate bloh-bloh-bloh-...-bloh-bloh-bloh takes the form of a conditional, which reads:-

- if $\underbrace{\text { blassa }}_{\text {blah-blah-blah-blah-blah-blah-blah-blah-blah }}$ then $\underbrace{\text { bleh-bleh-bleh-bleh-bleh-bleh-bleh-bleh-bleh }}$.
a passage about the symbol $n \quad$ a passage about the symbol n
For convenience of discussion, we borrow the idea of 'functional notations' to provide a label for such a predicate bloh-bloh-bloh-...-bloh-bloh-bloh. For instance, we may label it as, say, $P(n)$, and then as a consequence, the statement (\star) can be labelled as
(*) (Suppose blih-blih-blih. Then) for any integer n no less than (some fixed integer) N, the predicate $P(n)$ holds.

2. It must be noted that the method of mathematical induction is not applicable for the proof of every mathematical statement.
For a statement that cannot be expressed in the form (\star), mathematical induction is not applicable.
Below are some statements from school maths on which the method of mathematical induction is applicable:-
(a) For any positive integer n, $\underbrace{\text { the equality } 1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)}{4} \text { holds }}_{\text {predicate } P(n) \text { with variable } n}$.
(b) Suppose α is a complex number not equal to 1 . Then for any positive integer n,

$$
\underbrace{\text { the equality } 1+\alpha+\alpha^{2}+\cdots+\alpha^{n}=\frac{1-\alpha^{n+1}}{1-\alpha} \text { holds }}_{\text {predicate } P(n) \text { with variable } n}
$$

(c) For any positive integer n, the inequality $1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}} \geq \sqrt{n}$ holds.

$$
\text { predicate } P(n) \text { with variable } n
$$

(d) For any integer n no less than 2,

$$
\underbrace{\text { if } a_{1}, a_{2}, \cdots, a_{n} \text { are positive integers then } 2^{a_{1}+a_{2}+\cdots+a_{n}}=2^{a_{1}} 2^{a_{2}} \cdots 2^{a_{n}}}_{\text {predicate } P(n) \text { with variable } n}
$$

In this course, many results that we come across can be put in the same form.
3. When we apply the method of mathematical induction to prove a certain statement, what we mean is that, under the 'standing assumption' in the passage of argument, we are going to do as described below:-
(1) We declare that we can re-express what we are going to immediately verify in the form
(\star) 'For any integer n no less than (some fixed integer) N, the predicate $P(n)$ holds',
This declaration is usually given through the introduction of the predicate $P(n)$ with variable n.
(2) We verify the statement $P(N)$.
(3) We verify the statement that reads:-
'For any integer k no less than N, if the statement $P(k)$ is true, then the statement $P(k+1)$ is true.'
(4) We declare (in view of what has been done in (2) and (3)) that according to the Principle of Mathematical Induction, $P(m)$ is true for any integer m no less than N.

We illustrate this process with an application of the method of mathematical induction to prove this statement:Suppose α is a complex number not equal to 1. Then for any positive integer n,

$$
\text { the equality } 1+\alpha+\alpha^{2}+\cdots+\alpha^{n}=\frac{1-\alpha^{n+1}}{1-\alpha} \text { holds. }
$$

Argument.
Suppose α is a complex number not equal to 1 .

- Denote by $P(n)$ the predicate

$$
1+\alpha+\alpha^{2}+\cdots+\alpha^{n}=\frac{1-\alpha^{n+1}}{1-\alpha}
$$

- [We verify $P(1)$.]

Note that

$$
1+\alpha^{1}=1+\alpha=\frac{1-\alpha^{2}}{1-\alpha}=\frac{1-\alpha^{1+1}}{1-\alpha}
$$

Hence $P(1)$ is true.

- [We verify the statement 'for any positive integer k, if the statement $P(k)$ is true then the statement $P(k+1)$ is true'.]
Pick any positive integer k. Suppose $P(k)$ is true. [We now ask whether $P(k+1)$ will be true as a consequence of $P(k)$.]
Note that

$$
\begin{aligned}
\left(1+\alpha+\alpha^{2}+\cdots+\alpha^{k}+\alpha^{k+1}\right)-\frac{1-\alpha^{k+2}}{1-\alpha} & =\left(1+\alpha+\alpha^{2}+\cdots+\alpha^{k}\right)+\alpha^{k+1}-\frac{1-\alpha^{k+2}}{1-\alpha} \\
& =\frac{1-\alpha^{k+1}}{1-\alpha}+\alpha^{k+1}-\frac{1-\alpha^{k+2}}{1-\alpha} \quad(\text { by } P(k)) \\
& =\frac{\left(1-\alpha^{k+1}\right)+\alpha^{k+1}(1-\alpha)-\left(1-\alpha^{k+2}\right)}{1-\alpha} \\
& =\frac{1-\alpha^{k+1}+\alpha^{k+1}-\alpha^{k+2}-1+\alpha^{k+2}}{1-\alpha} \\
& =0
\end{aligned}
$$

Then $\left(1+\alpha+\alpha^{2}+\cdots+\alpha^{k}+\alpha^{k+1}\right)=\frac{1-\alpha^{k+2}}{1-\alpha}$.
Hence $P(k+1)$ is true.

- According to the Principle of Mathematical Induction, $P(n)$ is true for any positive integer n.

4. The method of mathematical induction is 'driven by' the Principle of Mathematical Induction, which is a mathematical statement whose validity is left unquestioned. (There are a few such statements in mathematics; mathematicians call them axioms.)

Principle of Mathematical Induction.

Let $P(n)$ be a predicate with variable n.
Let N be an integer. Suppose both conditions (\dagger), (\ddagger) are satisfied:-
(\dagger) $P(N)$ is true.
(\ddagger) For any integer $k \geq N$, if $P(k)$ is true then $P(k+1)$ is true.
Then $P(m)$ is true for each integer $m \geq N$.

