1. Let
$$A = \begin{bmatrix} 1 & 1 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ -1 & 1 & -1 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 & 1 \\ p & u & x \\ q & v & y \\ r & w & z \end{bmatrix}$, in which $p, q, r, u, v, w, x, y, z$ are some numbers.

- (a) i. Write down A^t .
 - ii. What is the first row of $2A^t + 3B$?
- (b) It is known that $AB = I_3$. Determine the values of u, v, w.
- 2. Suppose A is an $(m \times n)$ -matrix, B, C are $(n \times p)$ -matrices, and D is a $(p \times q)$ -matrix.

By directly using the definition, or using results that have been introduced/proved already, prove the statements below:—

- (a) $[A(B+C)]^t = B^t A^t + C^t A^t$.
- (b) $(ABD)^t = D^t B^t A^t$.
- 3. Let A be a square matrix.
 - (a) Prove that $(A^2)^t = (A^t)^2$.
 - (b) Apply mathematical induction to prove that $(A^n)^t = (A^t)^n$ for any positive integer n.
- 4. Let A_1, A_2 be matrices with m rows.

With reference to the definition, verify that $\begin{bmatrix} A_1 & A_2 \end{bmatrix}^t = \begin{bmatrix} A_1^t \\ A_2^t \end{bmatrix}$.

Remark. More generally:—

- whenever A_1, A_2, \dots, A_p are matrices with the same number of rows, $\begin{bmatrix} A_1 & A_2 & \cdots & A_p \end{bmatrix}^t = \begin{vmatrix} A_1^t \\ \hline A_2^t \\ \hline \vdots \\ \hline A_n^t \end{vmatrix}$, and
- whenever B_1, B_2, \cdots, B_p are matrices with the same number of columns, $\begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_n \end{bmatrix}$

$$\begin{bmatrix} \\ \\ \\ \end{bmatrix}^{t} = \begin{bmatrix} B_1^{t} \mid B_2^{t} \mid \cdots \mid B_p^{t} \end{bmatrix}.$$

We will sometimes use the special cases of these results in which the A_j 's are column vectors, and the $B'_k s$ are row vectors.

5. Let
$$A = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$
.

For each k, denote the k-th row of A by \mathbf{a}_k .

Note that $A^t = \begin{bmatrix} \mathbf{a}_1^t & \mathbf{a}_2^t \end{bmatrix} \mathbf{a}_3^t & \mathbf{a}_3^t & \mathbf{a}_5^t \end{bmatrix} \mathbf{a}_6^t & \mathbf{a}_7^t \end{bmatrix}$ by definition of transpose.

- (a) What are the respective values of $\mathbf{a}_1 \mathbf{a}_1^t$, $\mathbf{a}_2 \mathbf{a}_2^t$, ..., $\mathbf{a}_7 \mathbf{a}_7^t$?
- (b) Suppose i ≠ j. Take for granted this observation:—
 There is exactly one k for which the k-th entries of a_i, a_j are both 1.
 What is the value of a_ia_j^t?
- (c) Hence show that $AA^t = \alpha I_7 + \beta J_7$ for some appropriate numbers α, β whose value you have to name explicitly. Here J_7 stands for the (7×7) -square matrix whose entries are all 1.

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 Can you adapt what is done above to B =Remark. 1 0 0 0 $\begin{array}{c} 0 \\ 1 \end{array}$ 1 0 0 Ō 1 0 1 1 0 1 0 1 0 0 0 1 1 0 0 1 1

6. Let a, b, c, d be real numbers, and A be the (2×2) -square matrix given by $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

Suppose $AA^t = A^t A$ and $a \neq d$. Prove that A is symmetric.

7. Prove the statement below:—

The zero $(n \times n)$ -square matrix is the only $(n \times n)$ -square matrix which is both symmetric and skew-symmetric. **Remark.** When it is formally formulated, this statement reads:—

Let A be an $(n \times n)$ -square matrix. Suppose A is both symmetric and skew-symmetric. Then $A = \mathcal{O}_{n \times n}$.

- 8. Let A, B be symmetric square matrices.
 - (a) Prove the statement (♯):—
 (♯) Suppose AB = BA. Then AB is symmetric.
 - (b) Is the converse of (\sharp) true? Justify your answer.
- 9. Let A be a $(n \times n)$ -square matrix, whose (i, j)-th entry is denoted by a_{ij} for each i, j.

Suppose A is skew-symmetric.

With direct reference to definition, show that $a_{kk} = 0$ for each $k = 1, 2, \dots, n$.

10. Prove the statement below:—

Suppose A is a skew-symmetric $(n \times n)$ -square matrix, and C is an $(n \times p)$ -matrix. Then $C^{t}AC$ is a skew-symmetric $(p \times p)$ -square matrix.

- 11. Let \mathbf{u}, \mathbf{v} be column vectors with *n* entries, and *A* be the $(n \times n)$ -square matrix given by $A = \mathbf{u}\mathbf{v}^t \mathbf{v}\mathbf{u}^t$.
 - (a) Show that A is skew-symmetric.
 - (b) Suppose $\mathbf{u}^t \mathbf{u} = \mathbf{v}^t \mathbf{v} = 1$ and $\mathbf{u}^t \mathbf{v} = p$.
 - i. Show that $A^2 = \alpha(\mathbf{uv}^t + \mathbf{vu}^t) + \beta(\mathbf{uu}^t + \mathbf{vv}^t)$, in which α, β are some numbers whose respective values may depend on that of p. You have to name the values of α, β explicitly.
 - ii. Show that $A^3 = \gamma A$, in which β is some number whose value may depend on that of p. You have to name the value of γ explicitly.

```
Remark. We are identifying a (1 \times 1)-matrix with the number which is the only entry of that (1 \times 1)-matrix.
```

12. Let A, B be $(n \times n)$ -square matrices. Suppose A is symmetric and B is skew-symmetric.

For each of the matrices below, determine if it is symmetric or skew-symmetric or neither. Justify your answer with an appropriate argument.

- (a) AB + BA (c) A^2 (e) $A^2B^4A^2$ (g) $A^4B^5A^4$
- (b) AB BA (d) B^2 (f) $A^3 B^4 A^3$ (h) $A^3 B^5 A^3$
- 13. (a) Let A be an $(m \times n)$ -matrix with real entries. Suppose that $\mathbf{x}^t A \mathbf{y} = 0$ for any column vectors \mathbf{x} with m real entries, and any column vectors \mathbf{y} with n real entries. Prove that $A = \mathcal{O}$.

(b) Let B be an (n × n)-square matrix with real entries.
Suppose B is symmetric, and suppose u^tBu = 0 for any column vector u with n real entries.
Prove that B = O.
Hint. Find a way to make use of the result in the previous part.

(c) Give a counter-example to shown that the statement below is false, and justify your answer:— Suppose C is an $(n \times n)$ -square matrix with real entries. Suppose $\mathbf{u}^t C \mathbf{u} = 0$ for any column vector \mathbf{u} with n entries. Then $C = \mathcal{O}$.