1. Let $A=\left[\begin{array}{cccc}1 & 1 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ -1 & 1 & -1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 1 & 1 \\ p & u & x \\ q & v & y \\ r & w & z\end{array}\right]$, in which $p, q, r, u, v, w, x, y, z$ are some numbers.
(a) i. Write down A^{t}.
ii. What is the first row of $2 A^{t}+3 B$?
(b) It is known that $A B=I_{3}$.

Determine the values of u, v, w.
2. Suppose A is an $(m \times n)$-matrix, B, C are $(n \times p)$-matrices, and D is a $(p \times q)$-matrix.

By directly using the definition, or using results that have been introduced/proved already, prove the statements below:-
(a) $[A(B+C)]^{t}=B^{t} A^{t}+C^{t} A^{t}$.
(b) $(A B D)^{t}=D^{t} B^{t} A^{t}$.
3. Let A be a square matrix.
(a) Prove that $\left(A^{2}\right)^{t}=\left(A^{t}\right)^{2}$.
(b) Apply mathematical induction to prove that $\left(A^{n}\right)^{t}=\left(A^{t}\right)^{n}$ for any positive integer n.
4. Let A_{1}, A_{2} be matrices with m rows.

With reference to the definition, verify that $\left[A_{1} \mid A_{2}\right]^{t}=\left[\frac{A_{1}{ }^{t}}{A_{2}{ }^{t}}\right]$.
Remark. More generally:-

- whenever $A_{1}, A_{2}, \cdots, A_{p}$ are matrices with the same number of rows, $\left[A_{1}\left|A_{2}\right| \cdots \mid A_{p}\right]^{t}=\left[\begin{array}{c}\frac{A_{1}{ }^{t}}{A_{2}{ }^{t}} \\ \vdots \\ A_{p}{ }^{t}\end{array}\right]$, and - whenever $B_{1}, B_{2}, \cdots, B_{p}$ are matrices with the same number of columns, $\left[\begin{array}{c}\frac{B_{1}}{B_{2}} \\ \frac{\vdots}{B_{p}}\end{array}\right]^{t}=\left[B_{1}{ }^{t}\left|B_{2}{ }^{t}\right| \cdots \mid B_{p}{ }^{t}\right]$.

We will sometimes use the special cases of these results in which the A_{j} 's are column vectors, and the $B_{k}^{\prime} s$ are row vectors.
5. Let $A=\left[\begin{array}{lllllll}1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right]$.

For each k, denote the k-th row of A by \mathbf{a}_{k}.
Note that $A^{t}=\left[\mathbf{a}_{1}{ }^{t}\left|\mathbf{a}_{2}{ }^{t}\right| \mathbf{a}_{3}{ }^{t}\left|\mathbf{a}_{4}{ }^{t}\right| \mathbf{a}_{5}{ }^{t}\left|\mathbf{a}_{6}{ }^{t}\right| \mathbf{a}_{7}{ }^{t}\right]$ by definition of transpose.
(a) What are the respective values of $\mathbf{a}_{1} \mathbf{a}_{1}{ }^{t}, \mathbf{a}_{2} \mathbf{a}_{2}{ }^{t}, \ldots, \mathbf{a}_{7} \mathbf{a}_{7}{ }^{t}$?
(b) Suppose $i \neq j$. Take for granted this observation:-

There is exactly one k for which the k-th entries of $\mathbf{a}_{i}, \mathbf{a}_{j}$ are both 1 .
What is the value of $\mathbf{a}_{i} \mathbf{a}_{j}{ }^{t}$?
(c) Hence show that $A A^{t}=\alpha I_{7}+\beta J_{7}$ for some appropriate numbers α, β whose value you have to name explicitly.

Here J_{7} stands for the (7×7)-square matrix whose entries are all 1 .

Remark. Can you adapt what is done above to $B=\left[\begin{array}{lllllllllllll}1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right]$?
6. Let a, b, c, d be real numbers, and A be the (2×2)-square matrix given by $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.

Suppose $A A^{t}=A^{t} A$ and $a \neq d$.
Prove that A is symmetric.
7. Prove the statement below:-

The zero $(n \times n)$-square matrix is the only $(n \times n)$-square matrix which is both symmetric and skew-symmetric.
Remark. When it is formally formulated, this statement reads:-
Let A be an $(n \times n)$-square matrix. Suppose A is both symmetric and skew-symmetric. Then $A=\mathcal{O}_{n \times n}$.
8. Let A, B be symmetric square matrices.
(a) Prove the statement (\sharp) :-
(\sharp) Suppose $A B=B A$. Then $A B$ is symmetric.
(b) Is the converse of (\sharp) true? Justify your answer.
9. Let A be a $(n \times n)$-square matrix, whose (i, j)-th entry is denoted by $a_{i j}$ for each i, j.

Suppose A is skew-symmetric.
With direct reference to definition, show that $a_{k k}=0$ for each $k=1,2, \cdots, n$.
10. Prove the statement below:-

Suppose A is a skew-symmetric $(n \times n)$-square matrix, and C is an $(n \times p)$-matrix. Then $C^{t} A C$ is a skew-symmetric $(p \times p)$-square matrix.
11. Let \mathbf{u}, \mathbf{v} be column vectors with n entries, and A be the $(n \times n)$-square matrix given by $A=\mathbf{u v}^{t}-\mathbf{v u}^{t}$.
(a) Show that A is skew-symmetric.
(b) Suppose $\mathbf{u}^{t} \mathbf{u}=\mathbf{v}^{t} \mathbf{v}=1$ and $\mathbf{u}^{t} \mathbf{v}=p$.
i. Show that $A^{2}=\alpha\left(\mathbf{u v}^{t}+\mathbf{v} \mathbf{u}^{t}\right)+\beta\left(\mathbf{u u}^{t}+\mathbf{v}^{t}\right)$, in which α, β are some numbers whose respective values may depend on that of p. You have to name the values of α, β explicitly.
ii. Show that $A^{3}=\gamma A$, in which β is some number whose value may depend on that of p. You have to name the value of γ explicitly.
Remark. We are identifying a (1×1)-matrix with the number which is the only entry of that (1×1)-matrix.
12. Let A, B be $(n \times n)$-square matrices. Suppose A is symmetric and B is skew-symmetric.

For each of the matrices below, determine if it is symmetric or skew-symmetric or neither. Justify your answer with an appropriate argument.
(a) $A B+B A$
(c) A^{2}
(e) $A^{2} B^{4} A^{2}$
(g) $A^{4} B^{5} A^{4}$
(b) $A B-B A$
(d) B^{2}
(f) $A^{3} B^{4} A^{3}$
(h) $A^{3} B^{5} A^{3}$
13. (a) Let A be an $(m \times n)$-matrix with real entries. Suppose that $\mathbf{x}^{t} A \mathbf{y}=0$ for any column vectors \mathbf{x} with m real entries, and any column vectors \mathbf{y} with n real entries. Prove that $A=\mathcal{O}$.
(b) Let B be an $(n \times n)$-square matrix with real entries.

Suppose B is symmetric, and suppose $\mathbf{u}^{t} B \mathbf{u}=0$ for any column vector \mathbf{u} with n real entries. Prove that $B=\mathcal{O}$.
Hint. Find a way to make use of the result in the previous part.
(c) Give a counter-example to shown that the statement below is false, and justify your answer:-

Suppose C is an $(n \times n)$-square matrix with real entries. Suppose $\mathbf{u}^{t} C \mathbf{u}=0$ for any column vector \mathbf{u} with n entries. Then $C=\mathcal{O}$.

