
1.3 Transpose, symmetry and skew-symmetry.

0. Assumed background.

• 1.1 Matrices, matrix addition, and scalar multiplication for matrices.
• 1.2 Matrix multiplication.

Abstract. We introduce:—

• the notion of transpose,
• the notions of symmetry and skew-symmetry.

In the appendices, we digress onto the notion of definition, theorem, proof, and the format which dictates how they
are to be read, and in the meaning of words and phrases which indicate the logical content of statements.

1. Definition. (Transpose of a matrix.)
Let A be an (m× n)-matrix, whose (i, j)-th entry is denoted by aij .

The transpose of A is the (n×m)-matrix whose (k, ℓ)-th entry is given by aℓk.

It is denoted by At.
Remark. In symbolic terms, what this definition says is:—

If A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

...
am1 am2 am3 · · · amn

 then At =


a11 a21 a31 · · · am1
a12 a22 a32 · · · am2
a13 a23 a33 · · · am2
...

...
...

...
a1n a2n a3n · · · amn

.

2. Example (1). (Transpose of a matrix.)

Suppose A =
[
1 2 3
0 1 2

]
, B =

[
1 3 0
2 1 1

]
and C =

[
1 2
0 1
1 3

]
.

Then At =

[
1 0
2 1
3 2

]
, Bt =

[
1 2
3 1
0 1

]
and Ct =

[
1 0 1
2 1 3

]
.

(a) Note that A+B =
[
2 5 3
2 2 3

]
. Then (A+B)t =

[
2 2
5 2
3 3

]
.

We have At +Bt = · · · =

[
2 2
5 2
3 3

]
. So (A+B)t = At +Bt (in this example).

(b) Note that AC = · · · =
[
4 13
2 7

]
. Then (AC)t =

[
4 2
13 7

]
.

We have CtAt = · · · =
[

4 2
13 7

]
. So (AC)t = CtAt (in this example).

3. Theorem (1). (Basic properties of transpose.)
The statements below hold:—

(1) Suppose A is an (m× n)-matrix. Then (At)t = A.

(2) Suppose A,B are (m× n)-matrices. Then (A+B)t = At +Bt.

(3) Suppose A is an (m× n)-matrix, and λ is a number. Then (λA)t = λAt.

(4) Suppose A is an (m× n)-matrices, and C is an (n× p)-matrix. Then (AC)t = CtAt.

Proof of Statement (4) of Theorem (1).
Suppose A is a (m× n)-matrix, and C is an (n× p)-matrix. (So AC is an (m× p)-matrix, and (AC)t is a (p×m)-
matrix.)

(By definition, At is an (n×m)-matrix, and Ct is a (p× n)-matrix. So CtAt is well-defined as a (p×m)-matrix.)
Denote the (i, j)-th entry of A by aij . Denote the (k, ℓ)-th entry of C by ckℓ.
Fix any ℓ = 1, 2, · · · , p and i = 1, 2, · · · ,m.
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• By the definition of matrix multiplication, the (i, ℓ)-th entry of AC is given by
n∑

j=1

aijcjℓ.

Then, by the definition of transpose, the (ℓ, i)-th entry of (AC)t is given by
n∑

j=1

aijcjℓ.

• By the definition of transpose, for each j = 1, 2, · · · , n, the (ℓ, j)-th entry of Ct is cjℓ, and the (j, i)-th entry of
At is aij .

Then, by the definition of matrix multiplication, the (ℓ, i)-th entry of CtAt is given by
n∑

j=1

aijcjℓ.

Hence (AC)t = CtAt.
Proof of Statements (1), (2), (3) of Theorem (1). Exercise. (Imitate what is done above.)

4. Definition. (Symmetric matrix and skew-symmetric matrix.)
Suppose A is an (n× n)-square matrix. Then:—

(1) A is said to be symmetric if and only if At = A.
(2) A is said to be skew-symmetric if and only if At = −A.

5. Example (2). (Examples and non-examples on symmetric matrices and skew-symmetric matrices.)

(a) The (n× n)-zero matrix is a symmetric matrix. It is also a skew-symmetric matrix.
(b) The identity matrix is a symmetric matrix. It is not skew-symmetric.

(c) Let A =

[
1 3 5
3 2 4
5 4 6

]
.

Note that At =

[
1 3 5
3 2 4
5 4 6

]
= A. Then A is symmetric.

Note that At ̸= −A. Then A is not skew-symmetric.

(d) Let A =

[
0 1 2
−1 0 3
−2 −3 0

]
.

Note that At =

[
0 −1 −2
1 0 −3
2 3 0

]
= −A. Then A is skew-symmetric.

Note that At ̸= A. Then A is not symmetric.

(e) Let B =
[
1 3
2 4

]
.

Note that Bt =
[
1 2
3 4

]
.

We have Bt ̸= B. Then B is not symmetric.
We have Bt ̸= −B. Then B is not skew-symmetric.

(f) Let B =

[
1 1 0
−1 0 0
0 0 0

]
.

Note that Bt =

[
1 −1 0
1 0 0
0 0 0

]
.

We have Bt ̸= B. Then B is not symmetric.
We have Bt ̸= −B. Then B is not skew-symmetric.

6. Lemma (2).
Suppose A is a square matrix. Then:—

(1) A+At is symmetric.
(2) A−At is skew-symmetric.

Proof of Lemma (2).
Suppose A is a square matrix.
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(1) We have (A+At)t = At + (At)t = At +A = A+At.
Then, by definition of symmetric matrix, A+At is symmetric.

(2) We have (A−At)t = [A+ (−At)]t = At + (−At)t = At − (At)t = At −A = −(A−At).
Then, by definition of skew-symmetric matrix, A−At is skew-symmetric.

7. Theorem (3).
Suppose A is a square matrix. Then there are some unique square matrices B,C such that B is symmetric, C is
skew-symmetric, and A = B + C.
Proof of Theorem (3).
Suppose A is a square matrix.
[We have two tasks, which are (α), (β) below:—

(α) Conceive some appropriate symmetric matrix, and some appropriate skew-symmetric matrix, respectively la-
belled B,C in the subsequent consideration, which we hope will satisfy A = B + C.

(β) Then we verify for such a pair of matrices B,C two things:—
(1) The equality ‘A = B + C’ holds indeed.
(2) If some symmetric matrix P and some skew-symmetric matrix Q also satisfy A = P +Q, then P = B and

Q = C.

We proceed with (α), and follow up with (β).
But how to proceed with (α)?]
[Roughwork.
According to Lemma (2), we have a pair of symmetric matrix and skew-symmetric matrix determined by A alone:—

• A+At is a symmetric matrix.
• A−At is a skew-symmetric matrix.

However, because (A+At) + (A−At) = 2A, they are not the respective B,C that we hope for. But we are getting
close.]

Define B =
1

2
(A+At), and C =

1

2
(A−At).

Note that B is symmetric, and C is skew-symmetric. (Why? Apply Lemma (2) and Theorem (1).)

• We have B + C =
1

2
(A+At) +

1

2
(A−At) = A.

• Suppose P is a symmetric matrix, Q is a skew-symmetric matrix, and A = P +Q.
[Ask: Is it true that B = P and C = Q?]
By assumption, P t = P and Qt = −Q. Then At = (P +Q)t = P t +Qt = P −Q.

Now we have 2P = (P +Q) + (P −Q) = A+At. Then P =
1

2
(A+At) = B.

We also have 2Q = (P +Q)− (P −Q) = A−At. Then Q =
1

2
(A−At) = C.
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