1.2.1 Exercise: Matrix multiplication.

In some of the questions below, you will need the respective notions of idempotency and involutoricy. Their respective definitions are given below:-

Let C be a square matrix.
(1) We say that C is idempotent if and only if $C^{2}=C$.
(2) We say that C is involutoric if and only if C^{2} is the identity matrix.

1. Let $A=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right], B=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]$.

Compute $A B$ and $B A$.
2. Let $A=\left[\begin{array}{cc}3 & 0 \\ -1 & 2 \\ 1 & 1\end{array}\right], B=\left[\begin{array}{cc}4 & -1 \\ 0 & 2\end{array}\right], C=\left[\begin{array}{lll}1 & 4 & 2 \\ 3 & 1 & 5\end{array}\right]$.

Compute $(A B) C$ and $A(B C)$.
3. Let $A=\left[\begin{array}{llll}2 & 0 & 2 & 1 \\ 2 & 8 & 1 & 0\end{array}\right], B=\left[\begin{array}{rr}a & 2 \\ 1 & b \\ b & a \\ -1 & 5\end{array}\right]$ and $C=\left[\begin{array}{ll}3 & c \\ 4 & d\end{array}\right]$.

Suppose $A B=C$. Find the values of a, b, c, d.
4. Let $A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & 1 & -3 \\ -5 & 2 & 3\end{array}\right], B=\left[\begin{array}{cccc}2 & 5 & -1 & -7 \\ -2 & 1 & 3 & 4 \\ 3 & 2 & 1 & 2\end{array}\right], C=\left[\begin{array}{cccc}3 & 6 & 0 & -6 \\ -1 & 2 & 4 & 5 \\ 4 & 3 & 2 & 3\end{array}\right]$.
(a) Is it true that $B=C$? Justify your answer.
(b) Compute $A B$ and $A C$.
(c) Is it true that $A B=A C$? Justify your answer.
5. Let $A=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right], B=\left[\begin{array}{ccc}-1 & 2 & 4 \\ 1 & -2 & -4 \\ -1 & 2 & 4\end{array}\right]$.
(a) Compute $A B$ and $B A$.
(b) Verify that A, B are idempotent.
(c) Let p, q be real numbers.
i. Verify that $(p A+q B)^{2}=p^{2} A+q^{2} B$.
ii. Apply mathematical induction to prove that $(p A+q B)^{n}=p^{n} A+q^{n} B$ for any positive integer n.
6. Let r be a number, and A be the matrix given by $A=\left[\begin{array}{rrr}3-2 r & 2-2 r & 2-2 r \\ -1+r & r & -1+r \\ -3+r & -3+r & -2+r\end{array}\right]$.

Verify that A is involutary.
7. Let w, x, y, z be numbers.

Show that

$$
\left[\begin{array}{cccc}
x-y & y-z & z-w & w-x \\
w-x & x-y & y-z & z-w
\end{array}\right]-\left[\begin{array}{cccc}
x-w & y-x & z-y & w-z \\
y-x & z-y & w-z & x-w
\end{array}\right]=\left[\begin{array}{c}
1 \\
p
\end{array}\right]\left[\begin{array}{llll}
q & r & -q & -r
\end{array}\right]
$$

in which p, q, r are some appropriate numbers whose values may be dependent on the values of w, x, y, z. You have to name p, q, r explicitly.
8. Let A, B be square matrices of the same size. Name some appropriate numbers a, b, c, d for which the equality

$$
(2 A+3 B)(A-B)=a A^{2}+b A B+c B A+d B^{2}
$$

holds.

9 . Let A be the (3×3)-square matrix given by

$$
A=\left[\begin{array}{lll}
a & 0 & 0 \\
d & b & 0 \\
e & f & c
\end{array}\right]
$$

Verify that $\left(a I_{3}-A\right)\left(b I_{3}-A\right)\left(c I_{3}-A\right)=\mathcal{O}_{3 \times 3}$.
10. (a) Compute the matrix product $\left[\begin{array}{lll}x & y & 1\end{array}\right]\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$.
(b) Hence express in matrix notation the equations (with unknown x, y) below. Give your answer in the form 'blah-blah-blah $=0$ '.
i. $x^{2}+9 x y+y^{2}+8 x+5 y+2=0$.
ii. $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$.
iii. $x y=25$.
iv. $y^{2}=12 x$.
11. Let a be a number, and $A=\left[\begin{array}{cccc}0 & a & a^{2} & a^{3} \\ 0 & 0 & a & a^{2} \\ 0 & 0 & 0 & a \\ 0 & 0 & 0 & 0\end{array}\right]$.

Compute A^{2}, A^{3}, A^{4}.
12. (a) Let

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array}\right]
$$

Find $A B$.
(b) Let A be an $(m \times n)$-matrix. Suppose every entry of A is 1 .

Let B be an $(n \times n)$-square matrix given by

$$
B=\left[\begin{array}{cccccc}
1 & 2 & 3 & \cdots & n-1 & n \\
2 & 3 & 4 & \cdots & n & 1 \\
3 & 4 & 5 & \cdots & 1 & 2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
n-1 & n & 1 & \vdots & n-3 & n-2 \\
n & 1 & 2 & \cdots & n-2 & n-1
\end{array}\right]
$$

Show that $A B=\alpha A$, in which α is a number whose value might depend on that of n. You have to determine the explicit value of α.
13. Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{cc}-1 & -1 \\ 0 & 0\end{array}\right]$.

For each statement below, determine whether it is true or false. Justify your answer.
(a) $(A+B)^{2}=A^{2}+2 A B+B^{2}$.
(b) $(A+B)^{3}=A^{3}+3 A^{2} B+3 A B^{2}+B^{3}$.
14. Prove the statement below:-

Let A, B be square matrices of the same size. Suppose $A B=A$ and $B A=B$. Then each of A, B is idempotent.
15. (a) Prove the statement (\sharp) :-
(\sharp) Let A be an $(n \times n)$-square matrix. Suppose A is involutoric. Then $\left(I_{n}+A\right)\left(I_{n}-A\right)=\mathcal{O}_{n \times n}$.
(b) Is the converse of (\sharp) true or not? Justify your answer.
16. Let A be an $(n \times n)$-square matrix. Suppose $A^{2}=\mathcal{O}_{n \times n}$.

Apply mathematical induction to prove the statement below:-
For any positive integer m, the matrix equality $A\left(I_{n}+A\right)^{m}=A$ holds.
17. Let A be an $(m \times n)$-matrix and B be an $(n \times p)$-matrix.

Suppose the k-th and ℓ-th rows of A are identical.
Show that the k-th and ℓ-th rows of $A B$ are identical.
Hint. It may be easy to think of matrix multiplication (and organize your argument) in terms of appropriate blocks of rows/columns.
18. In this question, A stands for an $(m \times n)$-matrix, B stands for an $(n \times p)$-matrix, and C stands for an $(m \times p)$-matrix. Furthermore, \mathbf{x} stands for the column vector resultant from adding the columns of B together, and \mathbf{y} stands for the column vector resultant from adding the columns of C together.
(a) Prove the statement (\sharp) :-
(\sharp) Suppose $A B=C$. Then $A \mathbf{x}=\mathbf{y}$.
Hint. Can you relate B and \mathbf{x} through an appropriate matrix equality involving matrix multiplication? How about C and \mathbf{y} ?
(b) Is the statement (b) true?
(b) Suppose $A \mathbf{x}=\mathbf{y}$. Then $A B=C$.

Give an appropriate justification for your answer, by providing a proof for the statement (b), or providing a counter-example against (b).
19. Prove the statement below (by directly applying the definition of matrix equality or otherwise):-

Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$ are column vectors each with m entries, and $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are numbers.
Then $\left[\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \cdots \mid \mathbf{v}_{n}\right]\left[\begin{array}{c}\lambda_{1} \\ \lambda_{2} \\ \vdots \\ \lambda_{n}\end{array}\right]=\lambda_{1} \mathbf{v}_{1}+\lambda_{2} \mathbf{v}_{2}+\cdots \lambda_{n} \mathbf{v}_{n}$.
Remark. This is a useful special case of a general result:-
Suppose $A_{1}, A_{2}, \cdots, A_{q}$ are matrices all with m rows, and with $n_{1}, n_{2}, \cdots, n_{q}$ columns respectively.
Further suppose $B_{1}, B_{2}, \cdots, B_{q}$ are matrices all with p columns, and with $n_{1}, n_{2}, \cdots, n_{q}$ rows respectively.
Then $\left[A_{1}\left|A_{2}\right| \cdots \mid A_{q}\right]\left[\begin{array}{c}\frac{B_{1}}{B_{2}} \\ \frac{\vdots}{B_{q}}\end{array}\right]=A_{1} B_{1}+A_{2} B_{2}+\cdots+A_{q} B_{q}$.
20. By directly applying the definition of matrix multiplication, or otherwise, prove the statements below:-

Suppose A is an $(m \times n)$-matrix.
Further suppose $B=\left[B_{1}\left|B_{2}\right| \cdots \mid B_{s}\right]$, in which $B_{1}, B_{2}, \cdots, B_{s}$ are matrices all with n rows and with $p_{1}, p_{2}, \cdots, p_{s}$ columns respectively.
Then $A B=\left[A B_{1}\left|A B_{2}\right| \cdots \mid A B_{s}\right]$.
Remark. Below is an analogous result:-
Suppose $A=\left[\begin{array}{c}\frac{A_{1}}{A_{2}} \\ \hline \vdots \\ \hline A_{s}\end{array}\right]$, in which $A_{1}, A_{2}, \cdots, A_{s}$ be matrices all with n columns and with $m_{1}, m_{2}, \cdots, m_{s}$ rows respectively.
Further suppose B is an $(n \times p)$-matrix.
Then $A B=\left[\begin{array}{c}\frac{A_{1} B}{A_{2} B} \\ \vdots \\ \hline A_{s} B\end{array}\right]$.
21. Let

$$
P=\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right], \quad Q=\left[\begin{array}{cc}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right], \quad R=\left[\begin{array}{cc}
a a^{\prime} & b b^{\prime} \\
c c^{\prime} & d d^{\prime}
\end{array}\right],
$$

in which $a, b, c, d, a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ are some numbers.
Suppose the equality $P Q=R$ holds.
(a) Show that

$$
\left\{\begin{array}{rlc}
b c^{\prime} & = & 0 \\
a b^{\prime}+b d^{\prime} & = & b b^{\prime} \\
c a^{\prime}+d c^{\prime} & = & c c^{\prime} \\
c b^{\prime} & = & 0
\end{array}\right.
$$

Remark. The result described in this question tells you that it is highly non-trivial for the product of two (2×2)-square matrices to be equal to the (2×2)-square matrix obtained by just multiplying the corresponding (i, j)-th entries together for each i, j.
(b) Now further suppose $P=Q$. Show that

$$
b=c=0 \text { or }(b=0 \text { and } a+d=c) \text { or }(c=0 \text { and } a+d=b) .
$$

