1.2.1 Exercise: Matrix multiplication.

In some of the questions below, you will need the respective notions of *idempotency* and *involutoricy*. Their respective definitions are given below:—

Let C be a square matrix.

- (1) We say that C is **idempotent** if and only if $C^2 = C$.
- (2) We say that C is **involutoric** if and only if C^2 is the identity matrix.

1. Let
$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$.

Compute AB and BA.

2. Let $A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}$.

Compute (AB)C and A(BC).

3. Let
$$A = \begin{bmatrix} 2 & 0 & 2 & 1 \\ 2 & 8 & 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} a & 2 \\ 1 & b \\ b & a \\ -1 & 5 \end{bmatrix}$ and $C = \begin{bmatrix} 3 & c \\ 4 & d \end{bmatrix}$.

Suppose AB = C. Find the values of a, b, c, d.

4. Let
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & -3 \\ -5 & 2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 5 & -1 & -7 \\ -2 & 1 & 3 & 4 \\ 3 & 2 & 1 & 2 \end{bmatrix}$, $C = \begin{bmatrix} 3 & 6 & 0 & -6 \\ -1 & 2 & 4 & 5 \\ 4 & 3 & 2 & 3 \end{bmatrix}$.

- (a) Is it true that B = C? Justify your answer.
- (b) Compute AB and AC.
- (c) Is it true that AB = AC? Justify your answer.

5. Let
$$A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 2 & 4 \\ 1 & -2 & -4 \\ -1 & 2 & 4 \end{bmatrix}$

- (a) Compute AB and BA.
- (b) Verify that A, B are idempotent.
- (c) Let p, q be real numbers.
 - i. Verify that $(pA + qB)^2 = p^2A + q^2B$.
 - ii. Apply mathematical induction to prove that $(pA + qB)^n = p^nA + q^nB$ for any positive integer n.

6. Let *r* be a number, and *A* be the matrix given by
$$A = \begin{bmatrix} 3 - 2r & 2 - 2r & 2 - 2r \\ -1 + r & r & -1 + r \\ -3 + r & -3 + r & -2 + r \end{bmatrix}$$
.

Verify that A is involutary.

7. Let w, x, y, z be numbers.

Show that

$$\begin{bmatrix} x-y & y-z & z-w & w-x \\ w-x & x-y & y-z & z-w \end{bmatrix} - \begin{bmatrix} x-w & y-x & z-y & w-z \\ y-x & z-y & w-z & x-w \end{bmatrix} = \begin{bmatrix} 1 \\ p \end{bmatrix} \begin{bmatrix} q & r & -q & -r \end{bmatrix},$$

in which p, q, r are some appropriate numbers whose values may be dependent on the values of w, x, y, z. You have to name p, q, r explicitly.

8. Let A, B be square matrices of the same size. Name some appropriate numbers a, b, c, d for which the equality

$$(2A + 3B)(A - B) = aA^{2} + bAB + cBA + dB^{2}$$

holds.

9. Let A be the (3×3) -square matrix given by

$$A = \left[\begin{array}{rrr} a & 0 & 0 \\ d & b & 0 \\ e & f & c \end{array} \right].$$

Verify that $(aI_3 - A)(bI_3 - A)(cI_3 - A) = \mathcal{O}_{3\times 3}$.

- 10. (a) Compute the matrix product $\begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$.
 - (b) Hence express in matrix notation the equations (with unknown x, y) below. Give your answer in the form 'blah-blah = 0'.

i.
$$x^{2} + 9xy + y^{2} + 8x + 5y + 2 = 0$$
.
ii. $\frac{x^{2}}{9} + \frac{y^{2}}{16} = 1$.
iii. $xy = 25$.
iv. $y^{2} = 12x$.

11. Let *a* be a number, and $A = \begin{bmatrix} 0 & a & a^2 & a^3 \\ 0 & 0 & a & a^2 \\ 0 & 0 & 0 & a \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

Compute A^2 , A^3 , A^4 .

12. (a) Let

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}$$

Find AB.

(b) Let A be an (m × n)-matrix. Suppose every entry of A is 1.
 Let B be an (n × n)-square matrix given by

B =	$\frac{2}{3}$	$\frac{3}{4}$	$\frac{4}{5}$	 	n-1 n 1 \vdots	$\frac{1}{2}$	
	n-1 n	$n \\ 1$	$\frac{1}{2}$:	n-3 n-2	n-2 n-1	

Show that $AB = \alpha A$, in which α is a number whose value might depend on that of n. You have to determine the explicit value of α .

13. Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix}$.

For each statement below, determine whether it is true or false. Justify your answer.

- (a) $(A+B)^2 = A^2 + 2AB + B^2$.
- (b) $(A+B)^3 = A^3 + 3A^2B + 3AB^2 + B^3$.

14. Prove the statement below:—

Let A, B be square matrices of the same size. Suppose AB = A and BA = B. Then each of A, B is idempotent.

15. (a) Prove the statement (\sharp) :—

(\sharp) Let A be an $(n \times n)$ -square matrix. Suppose A is involutoric. Then $(I_n + A)(I_n - A) = \mathcal{O}_{n \times n}$.

- (b) Is the converse of (\sharp) true or not? Justify your answer.
- 16. Let A be an $(n \times n)$ -square matrix. Suppose $A^2 = \mathcal{O}_{n \times n}$.

Apply mathematical induction to prove the statement below:—

For any positive integer m, the matrix equality $A(I_n + A)^m = A$ holds.

17. Let A be an $(m \times n)$ -matrix and B be an $(n \times p)$ -matrix.

Suppose the k-th and ℓ -th rows of A are identical.

Show that the k-th and ℓ -th rows of AB are identical.

Hint. It may be easy to think of matrix multiplication (and organize your argument) in terms of appropriate blocks of rows/columns.

- 18. In this question, A stands for an $(m \times n)$ -matrix, B stands for an $(n \times p)$ -matrix, and C stands for an $(m \times p)$ -matrix. Furthermore, **x** stands for the column vector resultant from adding the columns of B together, and **y** stands for the column vector resultant from adding the columns of C together.
 - (a) Prove the statement (\sharp) :—

(\sharp) Suppose AB = C. Then $A\mathbf{x} = \mathbf{y}$.

Hint. Can you relate B and \mathbf{x} through an appropriate matrix equality involving matrix multiplication? How about C and \mathbf{y} ?

(b) Is the statement (b) true?

(b) Suppose $A\mathbf{x} = \mathbf{y}$. Then AB = C.

Give an appropriate justification for your answer, by providing a proof for the statement (b), or providing a counter-example against (b).

19. Prove the statement below (by directly applying the definition of matrix equality or otherwise):----

Suppose $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ are column vectors each with *m* entries, and $\lambda_1, \lambda_2, \cdots, \lambda_n$ are numbers.

Then
$$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \cdots + \lambda_n \mathbf{v}_n.$$

Remark. This is a useful special case of a general result:—

Suppose A_1, A_2, \dots, A_q are matrices all with m rows, and with n_1, n_2, \dots, n_q columns respectively.

Further suppose B_1, B_2, \dots, B_q are matrices all with p columns, and with n_1, n_2, \dots, n_q rows respectively.

Then
$$\begin{bmatrix} A_1 & A_2 & \cdots & A_q \end{bmatrix} \begin{bmatrix} \frac{B_1}{B_2} \\ \vdots \\ \hline B_q \end{bmatrix} = A_1 B_1 + A_2 B_2 + \cdots + A_q B_q.$$

20. By directly applying the definition of matrix multiplication, or otherwise, prove the statements below:—

Suppose A is an $(m \times n)$ -matrix.

Further suppose $B = [B_1 | B_2 | \cdots | B_s]$, in which B_1, B_2, \cdots, B_s are matrices all with n rows and with p_1, p_2, \cdots, p_s columns respectively.

Then $AB = [AB_1 | AB_2 | \cdots | AB_s].$

Remark. Below is an analogous result:—

Suppose
$$A = \begin{bmatrix} \frac{A_1}{A_2} \\ \vdots \\ \hline A_s \end{bmatrix}$$
, in which A_1, A_2, \cdots, A_s be matrices all with *n* columns and with m_1, m_2, \cdots, m_s rows

respectively.

Further suppose B is an $(n \times p)$ -matrix.

Then
$$AB = \begin{bmatrix} A_1B \\ \hline A_2B \\ \hline \vdots \\ \hline \hline A_sB \end{bmatrix}$$
.

21. Let

$$P = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \qquad Q = \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix}, \qquad R = \begin{bmatrix} aa' & bb' \\ cc' & dd' \end{bmatrix},$$

in which a, b, c, d, a', b', c', d' are some numbers. Suppose the equality PQ = R holds. (a) Show that

$$\left\{ \begin{array}{rrrr} bc' &=& 0\\ ab' + bd' &=& bb'\\ ca' + dc' &=& cc'\\ cb' &=& 0 \end{array} \right.$$

Remark. The result described in this question tells you that it is highly non-trivial for the product of two (2×2) -square matrices to be equal to the (2×2) -square matrix obtained by just multiplying the corresponding (i, j)-th entries together for each i, j.

(b) Now further suppose P = Q. Show that

$$b = c = 0$$
 or $(b = 0$ and $a + d = c)$ or $(c = 0$ and $a + d = b)$.