1.2

0.

Matrix multiplication.

Assumed background.
e 1.1 Matrices, matrix addition, and scalar multiplication for matrices.

Abstract.  We introduce:—

o matrix multiplication (first for row vectors to column vectors from the left, then in the general situation through
presentation in blocks),

e properties of matrix multiplication,

e notions of square matrix and identity matrix,

e mnotion of positive powers of square matrices,

e presentation of matrix multiplication in terms of blocks.

. Definition. (Multiplication of row vector to column vector from the left.)

Let A be a row vector with n entries, and B be a column vector with n entries.

by
bo
an ], and B =

Suppose A =1 a1 as :
b
Then we define the product AB to be the (1 x 1)-matrix
[ a1b1 +(12b2 + - +anbn }

For future convenience we abuse notations to confuse as the number a1b; + asbs + - -+ + a,by,.

Definition. (Multiplication of matrix to column vector from the left.)

Let A be an (m X n)-matrix, and B be a column vector with n entries.
Ay
Ay
, in which A;, stands for the k-th row of A for each k.

We define the product AB to be the column vector with m entries, given by

Suppose A =

A, B

Ay B
AB = :
A B

(For each k, the k-th entry of AB is the number AxB.)
Remark. Denote the (7, 7)-th entry of A by a;;.

Denote the j-th entry of B by b;.

Then the k-th entry of AB is given by the number ag1b1 + agobs + -+ + agnbn.

Writing out the entries in the matrices explicitly, we have

a;n a2 a1n by anbr + aby + -+ aby
a1 @22 a2n ba as1by  +  agby + -+ azpby
Am1 Am2 Gmn bn amlbl + am2b2 + + amnbn

Definition. (Matrix multiplication.)

Let A be an (m X n)-matrix, and B be an (n X p)-matrix.

Suppose B=1[ By | By | --+ | By ], in which By is the {-th column of B for each (.
We define the product AB to be the (m x p)-matrix given by

AB=[ ABy | ABy | --- | AB, ].



(For each ¢, the ¢-th column of AB is the column vector AB,; with m entries.)

Remark. Denote the (7, j)-th entry of A by a;;. Denote the (k,¢)-th entry of B by by.
Denote the i-th row of A by A;.

Then the (i, £)-th entry of AB is given by the number A;B; = a;1b1¢ + ajobas + - - - + ainbpne, and

n n n
E a;bj1 E aijbja - E a1;bjp
j=1 j=1 j=1

AlBl AlBg s AlB n n n AlB

AQBl AQBQ cee AQBg Zagjbjl Za2jbj2 Zagjbjp Z‘ZB
AB = : : . = j=1 j=1 j=1 = . .

AnBi | AnBy | -+ | AnB, AnB

n n n
E Clmjbjp § anbjij o § anbjbjp
Jj=1 j=1 j=1
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(@) LetA=|2 3 2251 p= 2 7|
456 7 8 i
Write Ai=[1 2 3 4 5], A4,=[2 3 4 5 6], 43=[3 4 5 6 T],A;=[4 5 6 7 8].

0 5
1 6
Write Bi=| 2 |,By=| 7
3 8
4 9

Ay
We have A = 71?— ,B=[ B1| B2 ].
;[4
Then
Aq A1By A1B; 40 115
Rivrs | 4B 4By || 50 150
AB= || Bul Ba 1= | 4B, AsB, | =] 60 185
A, A4B) AyB, 70 220
1 -1 1 6 1 10 =5
6 4 1 4 -2 2 41
2 3 2 -1 3 |
1 2 3 2 0 a2 -3
6 3 4
We have
1 -1 1 6 1 507 28 20 18
ap_ |6 4 14 2| A 2 |17 13w
=12 3 2 -1 3 ||} 3 AT 72 3 12
1 2 3 2 0 A 0 -1 -3

5. Theorem (1). (Distributive Laws for addition and multiplication of matrices.)

(1) Suppose A is an (m x n)-matrix and B, C are (n x p)-matrices. Then A(B + C) = (AB) + (AC).

(2) Suppose A, B are (m x n)-matrices and C' is an (n X p)-matrix. Then (A+ B)C = (AC) + (BC).
Remark on notations. We will dispense with the brackets in ‘(AB) 4+ (AC)’, ‘(AC) + (BC)’, and simply write
‘AB + AC’, *‘AC + BC" respectively.
Proof of Statement (1) of Theorem (1).
Suppose A is an (m X n)-matrix and B, C are (n X p)-matrices.

(a) Suppose m =1 and p =1 for the moment. (So A is a row vector and B, C' are column vectors.)

For each j, denote the (1, j)-th entry of A by ay;.

For each k, denote the (k, 1)-th entries of B, C respectively by bg1, cx1-
The (k,1)-th entry of B,C is given by bg1 + cg1.



By definition,

AB = [ anbi1 +aizbor 4+ - + ainbnr |
AC = [ aircin +arecor + -+ dinCn |
AB+C) = [ an(bin +ci1)+aiz(bar +ca1) + -+ ain(bn1 + cn1) |
Then
AB+C) = [ aii(bir +ci1) +ara(bar +co1) + - + a1n (b1 + 1) |

= [ (@11b11 + a12b21 + - -+ + a1nbp1) + (a11€11 + 12021 + -+ - + A1nCn1) ]
= [ aiibiy +aigbay + -+ ainbp |4 arrcin +arecor + -+ aincpy |
= AB+ AC

(b) We now still suppose p = 1, but leave the value of m un-restricted.
For each 7, denote the i-th row of A by A;.
By the calculation above, we have A;(B+ C) = A;B + A,;C.

Then
Ay A1 (B+QC) A1B+ A C A1 B A C
Ay Ay(B +C) Ay B+ AyC A,B AyC
A(B+C) = .| (B+O) = : = : = : + : = AB+AC.
A Am(B+C) ApB + A, C AnB AnC

(¢) We now leave the values of m, p un-restricted.
For each j, denote the j-th columns of B,C by B;, C; respectively.
By the calculation above, we have A(B; + C;) = AB; + AC;.

Then
AB+C) = A[Bi+C[Ba+Co |-+ | Bp+Cp |
= [AB1+C) | A(B2+Cy) | -+ | A(Bp+Cy) ]
— [ AB, + ACy | ABy+ ACy | --- | AB,+ AC, |
— [ABy | ABy |- | AB, |+] ACy | ACy | - | AC, | = AB + AC

Proof of Statement (2) of Theorem (1). This is left as an exercise. (Imitate what is done above.)

. Theorem (2).

Suppose A is an (m X n)-matrix and B is an (n X p)-matrix. Suppose A is a number.

Then \(AB) = (AA)B = A(\B).

Remark on notations. We will dispense with the brackets in ‘A(AB)’, ‘(AA)B’, and simply write ‘AAB’.

Proof of Theorem (2). Exercise.

. Definition. (Square matrix.)

A matrix with the same number of rows and columns is called a square matrix.

. Theorem (3). (‘Existence and uniqueness’ of ‘multiplicative identity’ for matrix multiplication.)

There is a unique (n X n)-square matrix M such that for any (n X n)-square matrix A, the equalities ‘MA = A’,
‘AM = A’ hold.

Proof of Theorem (3).

1 0 0 0 0

01 0 0 0

0 0 1 0 0
Define M = .

0 0 O 1 0

000 --- 01

Define 6;; = { é i z ;i . (‘045" is called the Kronecker symbol.)

Then the (i, j)-th entry of M is ¢;; for each 1, j.
[We intend to verify two things:



(1) The equalities ‘M A = A’, ‘AM = A’ hold for any (n x n)-matrix A.
(2) If some (n x n)-matrix P possesses the property that both equalities ‘PA = A’, ‘AP = A’ hold for any
(n x n)-matrix A’, then P = M.
We proceed with (1), (2) separately.]

(1) Let A be an (n x n)-matrix with its (4, j)-th entry given by a;;.
* By the definition of matrix multiplication, the (4, j)-th entry of M A is given by

di1a1j + Gi2a0; + 03035 + - + dinGnj = 045055 = a45.

Hence M A = A.
* By the definition of matrix multiplication, the (4, j)-th entry of AM is given by

ai101j + aizd2j + @izdsj + - + @indnj = ;055 = asj.
Hence AM = A.
(2) Let P be an (n x n)-matrix. Suppose AP = A = PA for any (n x n)-matrix A.

Then in particular, because M is an (n X n)-matrix, we have MP = M = PM.

Since P is an (n x n)-matrix, we have PM = P from the calculations above.
Hence M = PM = P.

9. Definition. (Identity matrix.)

For each positive integer n, the (n x n)-square matrix whose (k, k)-th entry is 1 for each k and whose every other
entry is 0, given explicitly by

10 0 0 0
01 0 0 0
00 1 0 0
00 0 10
00 0 0 1

is called the (n x n)-identity matrix.

It is denoted by I,,.

10. Theorem (4).
Suppose A is an (m x n)-matrix. Then the equalities ‘I,,A = A’, ‘AIl,, = A’ hold.

Proof of Theorem (4). Exercise. (Imitate (the relevant portion of) the argument for Theorem (4).)

11. Theorem (5). (Associativity of matrix multiplication.)
Suppose A is an (m X n)-matrix, B is an (n x p)-matrix, and C is a (p X q)-matrix. Then A(BC) = (AB)C.

Remark. We will give a proof for Theorem (5) later. (The argument is not hard. It is in the same spirit as the
argument for Theorem (1), but the work in keeping track of symbols is more ‘involved’.)

Because of this result, we may write ‘(AB)C”, ‘A(BC)’ simply as ABC, unless we want to emphasize that associa-
tivity of matrix multiplication is used.

In the light of this result, the definition below, for the notion of positive integral powers of square matrices, makes
perfect sense.
12. Definition. (Positive integral powers of square matrices.)
Let n be a positive integer. Suppose A is a square matrix.
The n-th power of A is defined to be the square matrix AAA--- AAA.
—_

n copies of A

It is denoted by A™.

13. Example (2). (Positive integral powers of square matrices.)

0 010
(a) Let A= 8 (1) 8 (1) . (Note that A itself is neither I, nor —1Iy.)
1 0 0 O
01 00 0 0 01 1 0 0 O
o_ |1 0 0 0 3_ 10 0 10 4_ |0 1 0 0| _
We have A* = 00 0 1 AT =11 00 0 , AT = 001 0]|=1
0 01 0 01 00 0 0 01



01 0 00
00 2 00
(by Lee B=| 0 0 0 3 0 |. (Note that B itself is not the zero matrix.)

0 0 0 0 4

00 0 0 O
00 2 0 O 00 0 6 O 0 0 0 0 24
0 0 0 6 O 0 0 00 24 00 0 0 O

Wehave B2=[ 0 0 0 0 12 |, B3=|0 0 0 0 O [,B*=|0 0 0 0 0 |, B®>=0sxs.

000 0 O 00 0 0 O 00 0 0 O
0 00 0 O 00 0 0 O 00 0 0 O

Remark. The various parts of Example (2) have told us that the statements (f), (1) are false:—
(1) Suppose that A is a (n X n)-square matrix with real entries. Further that suppose there is some positive p such
that AP = 1,,. Then A=1, or A= —1I,.
(1) Suppose that B is a square matrix. Further suppose that B is not the zero matrix. Then, for each positive
integer p, BP is not the zero matrix.
The content of part (a) of Example (2) is referred to as a counter-example against the statement (7).

The content of part (b) of Example (2) is referred to as a counter-example against the statement (1).

14. Proof of Theorem (5).

Suppose A is an (m x n)-matrix, B is an (n x p)-matrix, and C is a (p X ¢)-matrix.

(a) Suppose m =1 and g =1 for the moment. (So A is a row vector and C is a column vector.)
a
C2
Suppose A=[ a1 a2 -+ ap],and C =
¢
Denote the (j, k)-th entry by b;,. Denote the j-th row of B by Bigyw-j. Denote the k-th column of B by Bk

b1 bz - by Brow-1
R S o Brow-2
(SO B= [ Beol1 ‘ Beol2 ‘ ‘ Bcol—p ]: : . : = :
bnl bn2 e bnp Brow-n
We claim that each of (AB)C, A(BC) is the sum of all the a;b;,ck’s, each copy exactly once.
o We have
AB = A[ Beol1 ‘ Beol2 ‘ ‘ Bcol—p ]:[ ABcol—l ‘ ABcol—2 ‘ ‘ ABcol—p ]

n n n
E:%‘bﬂ E ajbja - § a;bjp
j=1 j=1 j=1

Then
n n n p n p n
(AB)CZ Zajbjl c1+ Zajbjg Co+---+ Zajbjp cp = ch Zajbjk = ZZajbjkck.
j=1 j=1 j=1 k=1 =1 k=1j=1
So (AB)C is the sum of all the a;b;rci’s, each copy exactly once.
e We have
- _
> biker
k=1
B row-1 Brow— 1 C p
Brow-2 Brow-2C Z baxcr
B TOW-N B Tow-1n C » :
Z bnicr
L k=1 J
Then
p p p n P n
A(BC) = ay (Z b1k6k> + az (Z bgkck> + -t ap (Z bnkck> = Z(L]’ ( bjk> = Z Zajbjkck.
k=1 k=1 k=1 j=1 k=1 j=1k=1

So A(BC) is also the sum of all the a;b;,ci’s, each copy exactly once.



(b) We now leave the values of m, ¢ un-restricted.

Ay
Ay
For each i, denote the i-th row of A by A4;. (So A= )
;fm
For each ¢, denote the ¢-th column of C by Cyp. (SoC=[ Cy | Co |- | Cy ].)
Ay A1 B
Ao A, B
o We have AB = .| B= : .
A, A,.B
AlB (AlB)Cl (AlB)CQ (Al )Cq
A,B (A2B)Cy  (A2B)Cs (A2B)C,
Then(AB)O: . [01‘02‘ ‘Cq}: .
A, B (AmB)C1 (AnB)Cy - (AnB)C,
The (i, £)-th entry of (AB)C' is (A;B)C} for each i, £.
e Wehave BC=B[ C1 |Ca|--- |Cq |=[ BCi | BCy|--- | BCy |
Ay A1(BCy)  Ai(BCs) -+ Ai1(BCy)
Ay Ay(BCy1) Ag(BCy) -+ Ay(BCy)
Then A(BC) = |~ ~|[ BC1 | BC2| -+ | BC, | = , , ,
A An(BC1) An(BCa) - An(BC,)

The (i, £)-th entry of A(BC) is A;(BCY) for each i, £.

By the calculations above, the equality (A4;B)Cy = A;(BC) holds for each i and for each ¢.
Then (AB)C = A(BC') by the definition of matrix equality.



