1.1.1 Exercise: Matrices, matrix addition, and scalar multiplication for matrices.

1. (a) Write out the (6×6)-matrix A whose (i, j)-th entry $a_{i j}$ is given by $a_{i j}=1$ for each i, j.
(b) Write out the (6×6)-matrix B whose (i, j)-th entry $b_{i j}$ is given by $b_{i j}=i+j$ for each i, j.
(c) Write out the (6×6)-matrix C whose (i, j)-th entry $c_{i j}$ is given by $c_{i j}=\left\{\begin{array}{ll}1 & \text { if } i+j \text { is even } \\ 0 & \text { otherwise }\end{array}\right.$.
(d) Write out the (6×6)-matrix D whose (i, j)-th entry $d_{i j}$ is given by $d_{i j}=(-1)^{i-j}$ for each i, j.
(e) Write out the (6×6)-matrix E whose (i, j)-th entry $e_{i j}$ is given by $e_{i j}=\left\{\begin{array}{cll}-1 & \text { if } & i>j \\ 0 & \text { if } & i=j \\ 1 & \text { if } & i<j\end{array}\right.$.
(f) For the matrices A, C, D above, name some appropriate numbers p, q (if such exist) for which the equality $p C=A+q D$.
2. Let A be an (5×5)-matrix whose (i, j)-th entry is $a_{i j}$ for each i, j.
(a) Write out (in terms of the entries of A) the (5×5)-matrix B whose (i, j)-th entry $b_{i j}$ is given by $b_{i j}=a_{i, 6-j}$.
(b) Write out (in terms of the entries of A) the (5×5)-matrix C whose (i, j)-th entry $c_{i j}$ is given by $c_{i j}=a_{6-i, 6-j}$.

3 . Let r be a number.
Suppose $r^{2}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]+r\left[\begin{array}{cc}-1 & -3 \\ 1 & r-3\end{array}\right]+\left[\begin{array}{cc}0 & 2 \\ -2 & 1\end{array}\right]=\mathcal{O}_{2 \times 2}$.
Determine all positive values of r.
4. Suppose A, B, C are matrices of the same size.

By directly using the definition, or using results that have been introduced/proved already, prove the statements below:-
(a) $-(A+B)=-A-B$.
(b) Suppose $A+C=B+C$. Then $A=B$.
5. Apply mathematical induction to prove the statement below:-

Suppose A is a matrix. Then, for any positive integer n, the equality $n A=\underbrace{A+A+A+\cdots+A}_{n \text { copies of } A}$ holds.
6. Suppose A, B are $(m \times n)$-matrices.

Determine all possible $(m \times n)$-matrices X for which $3\left(X+\frac{1}{2} A\right)=5\left(X-\frac{3}{4} B\right)$ holds. Leave your answer(s) in terms of A, B.
7. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], B=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.

Determine all possible (3×3)-matrices X for which the equality $X+A=2(X-B)$ holds.

