1.1 Matrices, matrix addition, and scalar multiplication for matrices.

0. Abstract. We introduce:-

- the notion of matrices, and the notion of equality for matrices,
- matrix addition, and its properties,
- the notions of zero matrix and additive inverse,
- scalar multiplication for matrices, and its properties,
- presentation of matrices in terms of blocks, and presentation of matrix addition and scalar multiplication in terms of blocks.

1. Definition. (Matrices.)

An $(m \times n$)-matrix (or matrix of size m by n) with real/complex entries, with m rows and n columns, is an ($m \times n$)-rectangular array

$$
\left[\begin{array}{ccccc}
x_{11} & x_{12} & x_{13} & \cdots & x_{1 n} \\
x_{21} & x_{22} & x_{23} & \cdots & x_{2 n} \\
x_{31} & x_{32} & x_{33} & \cdots & x_{3 n} \\
\vdots & \vdots & \vdots & & \vdots \\
x_{m 1} & x_{m 2} & x_{m 3} & \cdots & x_{m n}
\end{array}\right]
$$

in which the $m n$ entries $x_{i j}$'s are respectively real/complex numbers.
Denote such a matrix by X. Fix any $k=1,2, \cdots, m$, and any $\ell=1,2, \cdots, n$.
(1) The k-th row of the matrix X is the 'horizontal' array

$$
\left[\begin{array}{lllll}
x_{k 1} & x_{k 2} & x_{k 3} & \cdots & x_{k n}
\end{array}\right] .
$$

(2) The ℓ-th column of X is the 'vertical' array

$$
\left[\begin{array}{c}
x_{1 \ell} \\
x_{2 \ell} \\
x_{3 \ell} \\
\vdots \\
x_{m \ell}
\end{array}\right]
$$

(3) The (k, ℓ)-th entry (or the (k, ℓ)-th element) of X is number $x_{k \ell}$. (It is where the k-th row and the ℓ-th column of X meet.)

Further terminologies.

A ($1 \times n$)-matrix (with just one row) is also called a row vector with size n.
An $(m \times 1)$-matrix (with just one column) is also called a column vector with size m.
2. Example (1).
(a) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$ is a (3×2)-matrix.

Its first, second and third rows are

$$
\left[\begin{array}{ll}
1 & 2
\end{array}\right], \quad\left[\begin{array}{ll}
3 & 4
\end{array}\right], \quad\left[\begin{array}{ll}
5 & 6
\end{array}\right]
$$

respectively.
Its first and second columns are

$$
\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right], \quad\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]
$$

respectively.
(b) $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7\end{array}\right]$ is a (4×4)-matrix.

Its first, second, third and fourth rows are

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right], \quad\left[\begin{array}{llll}
2 & 3 & 4 & 5
\end{array}\right], \quad\left[\begin{array}{llll}
3 & 4 & 5 & 6
\end{array}\right], \quad\left[\begin{array}{llll}
4 & 5 & 6 & 7
\end{array}\right]
$$

respectively.
Its first, second, third and fourth columns are

$$
\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], \quad\left[\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right], \quad\left[\begin{array}{l}
3 \\
4 \\
5 \\
6
\end{array}\right], \quad\left[\begin{array}{l}
4 \\
5 \\
6 \\
7
\end{array}\right]
$$

respectively.

3. Example (2).

(a) Let $X=\left[\begin{array}{rrr}1 & 1 & 1 \\ 2 & 2^{2} & 2^{3} \\ 3 & 3^{2} & 3^{3}\end{array}\right]$.

The (i, j)-th entry of X is i^{j}.
(b) Let a be a real number, and $X=\left[\begin{array}{lll}a & a & a \\ 0 & a & a \\ 0 & 0 & a\end{array}\right]$.

Denote the (i, j)-th entry of X by $x_{i j}$.
Then $x_{i j}=\left\{\begin{array}{lll}a & \text { if } & i \leq j \\ 0 & \text { if } & i>j\end{array} \quad\right.$.
(c) Let $X=\left[\begin{array}{ccccc}1 & 0 & 0 & \cdots & 0 \\ e & 1 & 0 & \cdots & 0 \\ e^{2} & e & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ e^{n} & e^{n-1} & e^{n-2} & \cdots & 1\end{array}\right]$.

Denote the (i, j)-th entry of X by $x_{i j}$.
Then $x_{i j}=\left\{\begin{array}{ccc}e^{i-j} & \text { if } & i \leq j \\ 0 & \text { if } & i>j\end{array}\right.$.
4. Definition. (Equality for matrices.)

Let A be an $(m \times n)$-matrix, with its (i, j)-th entry being $a_{i j}$ for each i, j.
Let B be a $(p \times q)$-matrix, with its (k, ℓ)-th entry being $b_{i j}$ for each k, ℓ.
We say that A, B are equal (as matrices) if and only if:
(1) $m=p$ and $n=q$, and moreover,
(2) $a_{i j}=b_{i j}$ for all i, j.

5. Definition. (Addition for matrices.)

Let A, B be $(m \times n)$-matrices with the (i, j)-th entries respectively given by $a_{i j}, b_{i j}$ for each i, j.
We define the sum of the matrices A, B to be the $(m \times n)$-matrix whose (i, j)-th entry is $a_{i j}+b_{i j}$ for each i, j.
It is denoted by $A+B$.
(We also read $A+B$ as the 'resultant of B added to A '.)
Remark. In symbols, this definition says:

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]+\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & & \vdots \\
b_{m 1} & b_{m 2} & \cdots & b_{m n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2 n}+b_{2 n} \\
\vdots & \vdots & \vdots \\
a_{m 1}+b_{m 1} & a_{m 2}+b_{m 2} & \cdots & a_{m n}+b_{m n}
\end{array}\right]
$$

6. Example (3). (Addition for matrices.)
(a) $\left[\begin{array}{cc}-1 & 0 \\ 2 & -2\end{array}\right]+\left[\begin{array}{cc}1 & 2 \\ -1 & 0\end{array}\right]=\left[\begin{array}{cc}(-1)+1 & 0+2 \\ 2+(-1) & (-2)+0\end{array}\right]=\left[\begin{array}{cc}0 & 2 \\ 1 & -2\end{array}\right]$.
(b) $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]+\left[\begin{array}{lll}7 & 5 & 3 \\ 5 & 3 & 1\end{array}\right]=\left[\begin{array}{lll}1+7 & 2+5 & 3+3 \\ 4+5 & 5+3 & 6+1\end{array}\right]=\left[\begin{array}{lll}8 & 7 & 6 \\ 9 & 8 & 7\end{array}\right]$.
7. Theorem (1). (Commutativity and associativity of matrix addition.)
(1) Suppose A, B are $(m \times n)$-matrices. Then $A+B=B+A$.
(2) Suppose A, B, C are $(m \times n)$-matrices. Then $A+(B+C)=(A+B)+C$.

Remark. By virtue of (2), we agree to write ' $A+B+C$ ' for either ' $A+(B+C)$ ' or ' $(A+B)+C$ '.
8. Proof of Statement (1) of Theorem (1). Suppose A, B are $(m \times n)$-matrices. Denote the respective (i, j)-th entries of A, B by $a_{i j}, b_{i j}$ for each i, j.
Fix any i, j.
By the definition of matrix addition, the (i, j)-th entry of $A+B$ is $a_{i j}+b_{i j}$.
Similarly, The (i, j)-th entry of $B+A$ is $b_{i j}+a_{i j}$.
By the commutativity of addition for real/complex numbers, we have $a_{i j}+b_{i j}=b_{i j}+a_{i j}$.
Then by the definition of matrix equality, $A+B=B+A$.
Proof of Statement (2) of Theorem (1). This is left as an exercise.
(Imitate what is done above, using associativity of addition for real/complex numbers instead.)
9. Theorem (2). ('Existence and uniqueness' of 'additive identity' for matrices.)

There is a unique ($m \times n$)-matrix Z such that for any $(m \times n)$-matrix A, the equality $A+Z=A$ holds.
Proof of Theorem (2). Let Z be the $(m \times n)$-matrix whose entries are all 0 .
[We intend to verify two things:
(1) The equality $A+Z=A$ holds for any $(m \times n)$-matrix A.
(2) If some $(m \times n)$-matrix Y possesses the property ' $A+Y=A$ for any $(m \times n)$-matrix A ', then $Y=Z$.

We proceed with (1), (2) separately.]
(1) Let A be an $(m \times n)$-matrix with the (i, j)-th entry given by $a_{i j}$ for each i, j.

For each i, j, the (i, j)-th entry of $A+Z$ is given by $a_{i j}+0=a_{i j}$.
Then by the definition of matrix addition, $A+Z=A$.
(2) Let Y be an $(m \times n)$-matrix with the (i, j)-th entry given by $y_{i j}$ for each i, j. Suppose $A+Y=A$ for any $(m \times n)$-matrix A.
Then, in particular, $Z+Y=Z$.
By the definition of matrix addition, for each i, j, we have $0+y_{i j}=0$. Then $y_{i j}=0$.
Therefore, by the definition of matrix equality, $Y=Z$.
10. Definition. (Zero matrix.)

The ($m \times n$)-matrix whose entries are all 0 is called the ($m \times n$)-zero matrix.
It is denoted by $\mathcal{O}_{m \times n}$, (or simply \mathcal{O} when no confusion arises).
11. Theorem (3). ('Existence and uniqueness' of 'additive inverse' for a matrix)

Suppose A is an $(m \times n)$-matrix. Then there is a unique $(m \times n)$-matrix C such that $A+C=\mathcal{O}_{m \times n}$.
Proof of Theorem (3). Exercise, imitating the proof of Theorem (2). [We provide the beginning steps below:
Suppose A is an $(m \times n)$-matrix, with its (i, j)-th entry given by $a_{i j}$ for each i, j.
Let P be the $(m \times n)$-matrix, with its (i, j)-th entry given by $-a_{i j}$ for each i, j.
Now imitate the argument for Theorem (2) to verify the statements below:-
(1) $A+P=\mathcal{O}_{m, n}$.
(2) If Q is an $(m \times n)$-matrix satisfying $A+Q=\mathcal{O}_{m, n}$ then $Q=P$ as matrices.

Fill in the detail as an exercise.]
12. Definition. (Additive inverse, 'matrix subtraction'.)

Let A, B be $(m \times n)$-matrices with the (i, j)-th entries respectively given by $a_{i j}, b_{i j}$ for each i, j.
(a) The additive inverse of A is the $(m \times n)$-matrix whose (i, j)-th entry is given by $-a_{i j}$ for each i, j. It is denoted by $-A$.
(We also read $-A$ as 'minus A '.)
(b) The difference of B from A is the $(m \times n)$-matrix given by the sum $B+(-A)$.
(For each i, j, its (i, j)-th entry is given by $b_{i j}-a_{i j}$.)
We may write $B+(-A)$ as $B-A$.
(We also read $B-A$ as the 'resultant of subtracting A from B '.)
13. Definition. (Scalar multiplication for matrices.)

Let A be $(m \times n)$-matrices with real/complex entries, with its (i, j)-th entry given by $a_{i j}$ for each i, j.
Let λ be a real/complex number.
The product of the matrix A by the scalar λ is defined to be the $(m \times n)$-matrix whose (i, j)-th entry is $\lambda a_{i j}$ for each i, j.
It is denoted by λA.
(We also read λA as 'the scalar multiple of A by λ ', or the 'resultant of multiplying the matrix A by the scalar λ^{\prime})
Remark. In symbols, this definition says:

$$
\lambda\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\left[\begin{array}{cccc}
\lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1 n} \\
\lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2 n} \\
\vdots & \vdots & & \vdots \\
\lambda a_{m 1} & \lambda a_{m 2} & \cdots & \lambda a_{m n}
\end{array}\right]
$$

14. Example (4). (Scalar multiplication for matrices.)
(a) $3\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{lll}3 \cdot 1 & 3 \cdot 2 & 3 \cdot 3 \\ 3 \cdot 4 & 3 \cdot 5 & 3 \cdot 6\end{array}\right]=\left[\begin{array}{ccc}3 & 6 & 9 \\ 12 & 15 & 18\end{array}\right]$.
(b) $\left(5\left[\begin{array}{ll}1 & 0 \\ 0 & 2 \\ 3 & 4\end{array}\right]\right)+\left(2\left[\begin{array}{ll}0 & 8 \\ 7 & 0 \\ 6 & 5\end{array}\right]\right)=\left[\begin{array}{cc}5 & 0 \\ 0 & 10 \\ 15 & 20\end{array}\right]+\left[\begin{array}{cc}0 & 16 \\ 14 & 0 \\ 12 & 10\end{array}\right]=\left[\begin{array}{cc}5 & 16 \\ 14 & 10 \\ 27 & 30\end{array}\right]$.
15. Theorem (4). (Properties of scalar multiplication for matrices.)

Suppose A, B are $(m \times n)$-matrices, and λ, μ are scalars. Then:-
(1) $\lambda(A+B)=\lambda A+\lambda B$.
(2) $(\lambda+\mu) A=\lambda A+\mu A$.
(3) $\lambda(\mu A)=(\lambda \mu) A$.
(4) $1 A=A$.
(5) $(-1) A=-A$.
(6) $0 A=\mathcal{O}_{m \times n}$.

Proof of Theorem (4). Exercise. (Imitate the arguments for Theorem (1).)
16. Presentation of matrices in blocks, introduced through examples.

Very often, for one reason or another, we like to:-

- visualize various 'rectangular blocks of entries' inside a given matrix as matrices on their own, or
- construct a matrix by putting given matrices of 'smaller sizes' alongside each other.

We introduce this idea through concrete examples.
(a) Let $A_{1}, A_{2}, \cdots, A_{p}$ be matrices each with m rows, and with $n_{1}, n_{2}, \cdots, n_{p}$ columns respectively.

The matrix [$A_{1}\left|A_{2}\right| \cdots \mid A_{p}$] stands for the $\left(m \times\left(n_{1}+n_{2}+\cdots+n_{p}\right)\right)$-matrix whose columns from left to right are that of $A_{1}, A_{2}, \cdots, A_{p}$ in succession, each from left to right.
Illustration.
Let $A_{1}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43}\end{array}\right], A_{2}=\left[\begin{array}{c}a_{14} \\ a_{24} \\ a_{34} \\ a_{44}\end{array}\right], A_{3}=\left[\begin{array}{ll}a_{15} & a_{16} \\ a_{25} & a_{26} \\ a_{35} & a_{36} \\ a_{45} & a_{46}\end{array}\right]$.
Then $\left[A_{1}\left|A_{2}\right| A_{3}\right]=\left[\begin{array}{lll|l|ll}a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} & a_{46}\end{array}\right]$.
(b) Let $B_{1}, B_{2}, \cdots, B_{p}$ be matrices each with n columns, and with $m_{1}, m_{2}, \cdots, m_{p}$ rows respectively.

The matrix $\left[\begin{array}{c}\frac{B_{1}}{B_{2}} \\ \frac{\vdots}{B_{p}}\end{array}\right]$ stands for the $\left(\left(m_{1}+m_{2}+\cdots+m_{p}\right) \times n\right)$-matrix whose rows from top to bottom are that of $B_{1}, B_{2}, \cdots, B_{p}$ in succession, each from top to bottom.

Illustration.

Let $B_{1}=\left[\begin{array}{llll}b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34}\end{array}\right], B_{2}=\left[\begin{array}{llll}b_{41} & b_{42} & b_{43} & b_{44}\end{array}\right], B_{3}=\left[\begin{array}{llll}b_{51} & b_{52} & b_{53} & b_{54} \\ b_{61} & b_{62} & b_{63} & b_{64}\end{array}\right]$.
Then $\left[\frac{B_{1}}{B_{2}}\left[\begin{array}{l}B_{3}\end{array}\right]=\left[\begin{array}{llll}b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ \hline b_{41} & b_{42} & b_{43} & b_{44} \\ \hline b_{51} & b_{52} & b_{53} & b_{54} \\ b_{61} & b_{62} & b_{63} & b_{64}\end{array}\right]\right.$.
(c) The same idea can be extended to the construction of matrices with rows and columns of blocks.

Illustration.
Let $C_{11}=\left[\begin{array}{lll}c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \\ c_{41} & c_{42} & c_{43}\end{array}\right], C_{12}=\left[\begin{array}{c}c_{14} \\ c_{24} \\ c_{34} \\ c_{44}\end{array}\right], C_{13}=\left[\begin{array}{ll}c_{15} & c_{16} \\ c_{25} & c_{26} \\ c_{35} & c_{36} \\ c_{45} & c_{46}\end{array}\right], C_{21}=\left[\begin{array}{lll}c_{51} & c_{52} & c_{53} \\ c_{61} & c_{62} & c_{63} \\ c_{71} & c_{72} & c_{73}\end{array}\right], C_{22}=\left[\begin{array}{l}c_{54} \\ c_{64} \\ c_{74}\end{array}\right]$, $C_{23}=\left[\begin{array}{ll}c_{55} & c_{56} \\ c_{65} & c_{66} \\ c_{75} & c_{76}\end{array}\right]$,
Then $\left[\begin{array}{l|l|l}C_{11} & C_{12} & C_{13} \\ \hline C_{21} & C_{22} & C_{32}\end{array}\right]=\left[\begin{array}{lll|l|ll}c_{11} & c_{12} & c_{13} & c_{14} & c_{15} & c_{16} \\ c_{21} & c_{22} & c_{23} & c_{24} & c_{25} & c_{26} \\ c_{31} & c_{32} & c_{33} & c_{34} & c_{35} & c_{36} \\ c_{41} & c_{42} & c_{43} & c_{44} & c_{45} & c_{46} \\ \hline c_{51} & c_{52} & c_{53} & c_{54} & c_{55} & c_{56} \\ c_{61} & c_{62} & c_{63} & c_{64} & c_{65} & c_{66} \\ c_{71} & c_{72} & c_{73} & c_{74} & c_{75} & c_{76}\end{array}\right]$.
17. Theorem (5).

Let $A_{i j}, B_{i j}$ be matrices for each $i=1,2, \cdots, p$ and $j=1,2, \cdots, q$.
Suppose that for each $i=1,2, \cdots, p$, the matrices $A_{i 1}, A_{i 2}, \cdots, A_{i q}, B_{i 1}, B_{i 2}, \cdots, B_{i q}$ have the same number of rows.
Suppose that for each $j=1,2, \cdots, q$, the matrices $A_{1 j}, A_{2 j}, \cdots, A_{q j}, B_{1 j}, B_{2 j}, \cdots p j$ have the same number of columns.
Define $A=\left[\begin{array}{c|c|c|c}A_{11} & A_{12} & \cdots & A_{1 q} \\ \hline A_{21} & A_{22} & \cdots & A_{2 q} \\ \hline \vdots & \vdots & & \vdots \\ \hline A_{p 1} & A_{p 2} & \cdots & A_{p q}\end{array}\right]$, and $B=\left[\begin{array}{c|c|c|c}B_{11} & B_{12} & \cdots & B_{1 q} \\ \hline B_{21} & B_{22} & \cdots & B_{2 q} \\ \hline \vdots & \vdots & & \vdots \\ \hline B_{p 1} & B_{p 2} & \cdots & B_{p q}\end{array}\right]$.
Then $A+B=\left[\begin{array}{c|c|c|c}A_{11}+B_{11} & A_{12}+B_{12} & \cdots & A_{1 q}+B_{1 q} \\ \hline A_{21}+B_{21} & A_{22}+B_{22} & \cdots & A_{2 q}+B_{2 q} \\ \hline \vdots & \vdots & & \vdots \\ \hline A_{p 1}+B_{p 1} & A_{p 2}+B_{p 2} & \cdots & A_{p q}+B_{p q}\end{array}\right]$.
Moreover, $\lambda A=\left[\begin{array}{c|c|c|c}\lambda A_{11} & \lambda A_{12} & \cdots & \lambda A_{1 q} \\ \hline \lambda A_{21} & \lambda A_{22} & \cdots & \lambda A_{2 q} \\ \hline \vdots & \vdots & & \vdots \\ \hline \lambda A_{p 1} & \lambda A_{p 2} & \cdots & \lambda A_{p q}\end{array}\right]$
for each number λ.
Proof of Theorem (5). Omitted. (This is omitted not because it is difficult, but because it is a tedious and straightforward exercise in book-keeping.)
18. Illustrations of the content of Theorem (5).
(a) Let $A=\left[\begin{array}{lll|l|ll}a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} & a_{46}\end{array}\right], B=\left[\begin{array}{lll|l|ll}b_{11} & b_{12} & b_{13} & b_{14} & b_{15} & b_{16} \\ b_{21} & b_{22} & b_{23} & b_{24} & b_{25} & b_{26} \\ b_{31} & b_{32} & b_{33} & b_{34} & b_{35} & b_{36} \\ b_{41} & b_{42} & b_{43} & b_{44} & b_{45} & b_{46}\end{array}\right]$.

Let $A_{1}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43}\end{array}\right], A_{2}=\left[\begin{array}{l}a_{14} \\ a_{24} \\ a_{34} \\ a_{44}\end{array}\right], A_{3}=\left[\begin{array}{ll}a_{15} & a_{16} \\ a_{25} & a_{26} \\ a_{35} & a_{36} \\ a_{45} & a_{46}\end{array}\right]$.
Let $B_{1}=\left[\begin{array}{lll}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \\ b_{41} & b_{42} & b_{43}\end{array}\right], B_{2}=\left[\begin{array}{l}b_{14} \\ b_{24} \\ b_{34} \\ b_{44}\end{array}\right], B_{3}=\left[\begin{array}{ll}b_{15} & b_{16} \\ b_{25} & b_{26} \\ b_{35} & b_{36} \\ b_{45} & b_{46}\end{array}\right]$.
Then we have $A=\left[A_{1}\left|A_{2}\right| A_{3}\right], B=\left[B_{1}\left|B_{2}\right| B_{3}\right]$, and
$A_{1}+B_{1}=\left[\begin{array}{lll}a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\ a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23} \\ a_{31}+b_{31} & a_{32}+b_{32} & a_{33}+b_{33} \\ a_{41}+b_{41} & a_{42}+b_{42} & a_{43}+b_{43}\end{array}\right], A_{2}+B_{2}=\left[\begin{array}{l}a_{14}+b_{14} \\ a_{24}+b_{24} \\ a_{34}+b_{34} \\ a_{44}+b_{44}\end{array}\right], A_{3}+B_{3}=\left[\begin{array}{ll}a_{15}+b_{15} & a_{16}+b_{16} \\ a_{25}+b_{25} & a_{26}+b_{26} \\ a_{35}+b_{35} & a_{36}+b_{36} \\ a_{45}+b_{45} & a_{46}+b_{46}\end{array}\right]$.
So $A+B=\left[A_{1}+B_{1}\left|A_{2}+B_{2}\right| A_{3}+B_{3}\right]$ indeed.
(b) Let $C=\left[\begin{array}{llll}c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & c_{34} \\ \hline c_{41} & c_{42} & c_{43} & c_{44} \\ \hline c_{51} & c_{52} & c_{53} & c_{54} \\ c_{61} & c_{62} & c_{63} & c_{64}\end{array}\right]$.

Let $C_{1}=\left[\begin{array}{llll}c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & c_{34}\end{array}\right], C_{2}=\left[\begin{array}{llll}c_{41} & c_{42} & c_{43} & c_{44}\end{array}\right], C_{3}=\left[\begin{array}{llll}c_{51} & c_{52} & c_{53} & c_{54} \\ c_{61} & c_{62} & c_{63} & c_{64}\end{array}\right]$.
Then $C=\left[\begin{array}{l}C_{1} \\ \frac{C_{2}}{C_{3}}\end{array}\right]$.
For each number λ, we have $\lambda C_{1}=\left[\begin{array}{llll}\lambda c_{11} & \lambda c_{12} & \lambda c_{13} & \lambda c_{14} \\ \lambda c_{21} & \lambda c_{22} & \lambda c_{23} & \lambda c_{24} \\ \lambda c_{31} & \lambda c_{32} & \lambda c_{33} & \lambda c_{34}\end{array}\right], \lambda C_{2}=\left[\begin{array}{llll}\lambda c_{41} & \lambda c_{42} & \lambda c_{43} & \lambda c_{44}\end{array}\right], \lambda C_{3}=$ $\left[\begin{array}{llll}\lambda c_{51} & \lambda c_{52} & \lambda c_{53} & \lambda c_{54} \\ \lambda c_{61} & \lambda c_{62} & \lambda c_{63} & \lambda c_{64}\end{array}\right]$.
So $\lambda C=\left[\begin{array}{l}\lambda C_{1} \\ \frac{\lambda C_{2}}{\lambda C_{3}}\end{array}\right]$
(c) Let $A_{11}, A_{12}, A_{21}, A_{22}, B_{11}, B_{12}, B_{21}, B_{22}$ be matrices.

Suppose that:-

- the number of rows of $A_{11}, A_{12}, B_{11}, B_{12}$ are the same,
- the number of rows of $A_{21}, A_{22}, B_{21}, B_{22}$ are the same,
- the number of columns of $A_{11}, A_{21}, B_{11}, B_{21}$ are the same, and
- the number of column of $A_{12}, A_{22}, B_{12}, B_{22}$ are the same.

Define $A=\left[\begin{array}{l|l}A_{11} & A_{12} \\ \hline A_{21} & A_{22}\end{array}\right], B=\left[\begin{array}{l|l}B_{11} & B_{12} \\ \hline B_{21} & B_{22}\end{array}\right]$.
Then $A+B=\left[\begin{array}{l|l}A_{11}+B_{11} & A_{12}+B_{12} \\ \hline A_{21}+B_{21} & A_{22}+B_{22}\end{array}\right]$.
Moreover, for each $\alpha \in \mathbb{R}, \alpha A=\left[\begin{array}{l|l}\alpha A_{11} & \alpha A_{12} \\ \hline \alpha A_{21} & \alpha A_{22}\end{array}\right]$.

