1.1 Matrices, matrix addition, and scalar multiplication for matrices.

0. Abstract. We introduce:—

o the notion of matrices, and the notion of equality for matrices,
e matrix addition, and its properties,

e the notions of zero matrix and additive inverse,

o scalar multiplication for matrices, and its properties,

e presentation of matrices in terms of blocks, and presentation of matrix addition and scalar multiplication in
terms of blocks.

1. Definition. (Matrices.)

An (m x n)-matrix (or matrix of size m by m) with real/complex entries, with m rows and n columns, is an
(m x n)-rectangular array

T11 Ti2 T13 -+ Tin
T21 T2 T23 ' Ton
r31 T32 T33 ' T3n
Tm1 Tm2 Tm3 e Tmn

in which the mn entries x;;’s are respectively real/complex numbers.

Denote such a matrix by X. Fix any k=1,2,--- ;m, and any £ =1,2,--- | n.
(1) The k-th row of the matrix X is the ‘horizontal’” array
[ Tk1 Th2 TR3 0 Tkn |

(2) The ¢-th column of X is the ‘vertical’ array

T1e
ZT2p
T3¢

Time
(3) The (k,£)-th entry (or the (k,{)-th element) of X is number ;.

(It is where the k-th row and the ¢-th column of X meet.)

Further terminologies.
A (1 x n)-matrix (with just one row) is also called a row vector with size n.

An (m x 1)-matrix (with just one column) is also called a column vector with size m.
2. Example (1).

1 2
(a) l 3 4 ] is a (3 x 2)-matrix.
5 6

Its first, second and third rows are

respectively.
Its first and second columns are

respectively.
1 2 3 4
(b) % i g 2 is a (4 x 4)-matrix.
4 5 6 7

Its first, second, third and fourth rows are

[1 2 3 4], [2 3 4 5], [3 45 6] [456 7]



respectively.
Its first, second, third and fourth columns are

1 2 3 4
2 3 4 5
3| 4 1 5 | 6
4 5 6 7
respectively.
3. Example (2).
1 1 1
(a) Let X = | 2 2% 23 |,
3 32 3
The (i, j)-th entry of X is /.
a a a
(b) Let a be a real number,and X = | 0 a a |.
0 0 a
Denote the (i, j)-th entry of X by z;;.
_Joa if i<y
Thenx”’_{ 0 if i>j
1 0 0 0
e 1 0 0
2
(c) Let X = | © € 1 0
e-n en.—l en.—2 . 1

Denote the (7, j)-th entry of X by z;;.
et it i<y
The”"j{ 0 if i>j
4. Definition. (Equality for matrices.)
Let A be an (m X n)-matrix, with its (i, j)-th entry being a,; for each i, j.
Let B be a (p x q)-matrix, with its (k, £)-th entry being b;; for each k, (.

We say that A, B are equal (as matrices) if and only if:

(1) m = p and n = q, and moreover,
(2) aij = by for all i, .
5. Definition. (Addition for matrices.)
Let A, B be (m x n)-matrices with the (i, j)-th entries respectively given by a;;,b;; for each i, j.
We define the sum of the matrices A, B to be the (m X n)-matrix whose (4, j)-th entry is a;; + b;; for each i, j.
It is denoted by A + B.
(We also read A + B as the ‘resultant of B added to A’)

Remark. In symbols, this definition says:

ai; a2 - Qip bir bz - bin a1 + bi1 a2 +bia - aip +biy
azy Qg2 -+ A2p bor b2 -+ ban az1 + ba1 ag2 +bya - agp +boy
am1 Am?2 T Amn bml bm2 tee bmn Am1 + bml Am?2 + bm2 Tt Amn + bmn

6. Example (3). (Addition for matrices.)
(a)[El 02%[11%}:“43)(—% (—05 :{(1) 32]
o [3 5 6]+[5 5 T]=[ak5 533 63v]=[o § 7]

7. Theorem (1). (Commutativity and associativity of matrix addition.)
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10.

11.

12.

(1) Suppose A, B are (m x n)-matrices. Then A+ B = B+ A.
(2) Suppose A, B,C are (m x n)-matrices. Then A+ (B+C)=(A+ B)+C.

Remark. By virtue of (2), we agree to write ‘A + B + C” for either ‘A+ (B+ C)’ or ‘(A+ B) + C".

Proof of Statement (1) of Theorem (1). Suppose A, B are (m x n)-matrices. Denote the respective (7, j)-th
entries of A, B by a;j,b;; for each i, j.

Fix any ¢, j.

By the definition of matrix addition, the (4, j)-th entry of A+ B is a;; + b;;.

Similarly, The (¢, j)-th entry of B + A is b;; + a,;.

By the commutativity of addition for real/complex numbers, we have a;; + b;; = b;; + ai;.

Then by the definition of matrix equality, A + B = B + A.

Proof of Statement (2) of Theorem (1). This is left as an exercise.

(Imitate what is done above, using associativity of addition for real/complex numbers instead.)

Theorem (2). (‘Existence and uniqueness’ of ‘additive identity’ for matrices.)
There is a unique (m X n)-matrix Z such that for any (m x n)-matrix A, the equality A+ Z = A holds.
Proof of Theorem (2). Let Z be the (m x n)-matrix whose entries are all 0.

[We intend to verify two things:

(1) The equality A+ Z = A holds for any (m x n)-matrix A.
(2) If some (m x n)-matrix Y possesses the property ‘A+Y = A for any (m x n)-matrix A’, then Y = Z.

We proceed with (1), (2) separately.]

(1) Let A be an (m x n)-matrix with the (7, j)-th entry given by a,; for each ¢, j.
For each 14, j, the (i, j)-th entry of A+ Z is given by a;; + 0 = a;;.
Then by the definition of matrix addition, A + Z = A.

(2) Let Y be an (m x n)-matrix with the (7,7)-th entry given by y;; for each 4,j. Suppose A +Y = A for any
(m x n)-matrix A.
Then, in particular, Z +Y = Z.
By the definition of matrix addition, for each i, j, we have 0 4 y;; = 0. Then y;; = 0.
Therefore, by the definition of matrix equality, Y = Z.

Definition. (Zero matrix.)
The (m x n)-matrix whose entries are all 0 is called the (m X n)-zero matrix.

It is denoted by Oyxn, (or simply O when no confusion arises).

Theorem (3). (‘Existence and uniqueness’ of ‘additive inverse’ for a matrix)
Suppose A is an (m X n)-matrix. Then there is a unique (m X n)-matrix C' such that A+ C = Opyxn.

Proof of Theorem (3). Exercise, imitating the proof of Theorem (2). [We provide the beginning steps below:

Suppose A is an (m X n)-matrix, with its (i, j)-th entry given by a;; for each i, j.

Let P be the (m x n)-matrix, with its (i, j)-th entry given by —a,; for each i, j.
Now imitate the argument for Theorem (2) to verify the statements below:—

(1) A+ P = Onpn.
(2) If Q is an (m x n)-matrix satisfying A + Q = Oy, then Q = P as matrices.

Fill in the detail as an exercise.]

Definition. (Additive inverse, ‘matrix subtraction’)

Let A, B be (m x n)-matrices with the (i, j)-th entries respectively given by a;;,b;; for each i, j.



13.

14.

15.

16.

(a) The additive inverse of A is the (m X n)-matrix whose (i, j)-th entry is given by —a;; for each i, j.
It is denoted by —
(We also read —A as ‘minus A’)
(b) The difference of B from A is the (m x n)-matrix given by the sum B + (—A).
(For each 1, j, its (i, 7)-th entry is given by b;; — a;;.)
We may write B+ (—A) as B — A.
(We also read B — A as the ‘resultant of subtracting A from B’)

Definition. (Scalar multiplication for matrices.)
Let A be (m x n)-matrices with real/complex entries, with its (4, j)-th entry given by a;; for each i, j.
Let A be a real/complex number.

The product of the matrix A by the scalar ) is defined to be the (m x n)-matrix whose (i, j)-th entry is Aa;;
for each 1, j.

It is denoted by AA.

(We also read AA as ‘the scalar multiple of A by \’, or the ‘resultant of multiplying the matrix A by the
scalar \’)

Remark. In symbols, this definition says:

aix a2 - QAin Aair Aaiz o A,
as1 a2 cc+ Q2n Aa21 Aaze - Aagy
am1 Am2 e Gmn )\aml )\amZ e )\amn

Example (4). (Scalar multiplication for matrices.)
3 12 37_73-1 3-2 3-3 3 6 9
@314 5 6]=[34 3.5 3.6 12 15 18

1 0 0 8 5 0 0 16 5 16
(b)(5lg 2 )+ (2 gg])lo 10 14 0][14 10].

4 15 20 12 10 27 30

Theorem (4). (Properties of scalar multiplication for matrices.)

Suppose A, B are (m x n)-matrices, and A\, u are scalars. Then:—

(1) M(A+ B) = XA+ \B.
(2) A+ p)A =X A+ puA.
(3) A(nA) = (M)A

(4) 1A= A.

() (DA =-A

(6) 0A = Opixn.

Proof of Theorem (4). Exercise. (Imitate the arguments for Theorem (1).)

Presentation of matrices in blocks, introduced through examples.

Very often, for one reason or another, we like to:—

e visualize various ‘rectangular blocks of entries’ inside a given matrix as matrices on their own, or

e construct a matrix by putting given matrices of ‘smaller sizes’ alongside each other.

We introduce this idea through concrete examples.

(a) Let Ay, Ag,---, A, be matrices each with m rows, and with nq,ng,--- ,n, columns respectively.
The matrix [ A1 | A2 | --- | Ap ] stands for the (m x (nq 4+ ng + - -+ + ny))-matrix whose columns from left to
right are that of A;, As,---, A, in succession, each from left to right.
IMlustration.
air a2 as aiq ais QA6
teay= [0 e e |
Gq1 G42 Q43 Q44 Q45 Q46

ai; aiz2 @13 | Q14 | a15 Q16

Then [ Ay | A2 | A3 | = a21 Qg2 (23 | G24 | Q25 Q26
! 2 3 a31 a3z as3 | 434 | azs Aa36

Q41 Q42 Q43 | Q44 | Qa5 Q46



b) Let Bi, Bs,---, B, be matrices each with n columns, and with my, ms,--- , m, rows respectively.
P P

By
By
The matrix |~ . | stands for the ((mq +mz+---+m,) X n)-matrix whose rows from top to bottom are that
B.p
of By, Ba,- -, By in succession, each from top to bottom.
IMlustration.
bin b2 b1z bus bsi bsy bss b
Let By = | bay bos bog boy |, By = [ bi1 by bys by L B3 = |: b51 b52 b53 b54 }
b31 b32 b33 b34 61 62 63 64
b1 b2 b1z buy
By bar  bao baz boy
Then | By | — | D3t bs2 Dss bas
B, bai Do Dy3 Duy

bs1 bs2 Ds3  Dsa
bs1 bez bez bea

(¢) The same idea can be extended to the construction of matrices with rows and columns of blocks.

Illustration.
€11 €12 (13 Ci4 Ci5 Ci6
Co1 C2n Cag Ca a5 C26 €51 ¢52 053 e
Let Ci1 = , Cra = , C13 = ,Copr =] c61 co2 Ce3 |,Caa=| Cosa |,
€31 C32 €33 C34 €35 €36 1 Cra Cr3 €74
Cq1  C42  C43 Cq4 C45 C46
Cs5 Cs6
Cos = | c65 Ce6 |,
Cr5  Cr6
C11 Ci12 C13 | Ci4 | C15 Ci6
C21 C22 (23 | C24 | C25 C26
Oy ‘ Cha ‘ Ci3 C31 €32 (€33 | C34 | C35 C36
Then { Cor [Co | C }z C41  C42 €43 | C44 | C45  C46
2 32 Cs1 C52 €53 | Cs4 | C55 Cs6
C61 Ce2 Ce3 | Ce4 | C65 Ce6
Cr1 Cr2 Cr3 | Cr4 | Cr5  Cre

17. Theorem (5).

Let A;j, B;j be matrices for eachi=1,2,--- ,pand j =1,2,--- ,q.
Suppose that for each i = 1,2,--- | p, the matrices A;1, Aia, -+ , Aig, Bi1, Bia, - - -, Biq have the same number of rows.
Suppose that for each j = 1,2,---,q, the matrices A1;,Asj,--- ,Aqj, B1j, Baj, - -pj have the same number of
columns.
A | A |- | Ayg Bii | Bia |-+ | Big
Agy [ A [ - [ Agg By | Bag [+ | Bag
Define A = . . . ,and B = . . .
Apl Ap2 T qu Bpl Bp2 e qu
A+ Bu | Ais+ Bio A1 + Big
A1 + Boy [ Aao + By Azq + By
Then A+ B = .
Apl + Bpl Ap2 + Bp2 qu + qu
)\AH /\A12 )\Alq
Ao | Moo 2
Moreover, A\A = .
V. IR DV s A,
for each number .
Proof of Theorem (5). Omitted. (This is omitted not because it is difficult, but because it is a tedious and

straightforward exercise in book-keeping.)

18. Ilustrations of the content of Theorem (5).

a1 a2 613 | aia | a5 ais b1 bia big | bia | bis Dbis
Let A = a21 A22 A23 | A24 | G25 G2 B = bar baz  baz | bas | bas  bog

(a) Le I a a a a a U I/ b b b b b
31 32 33 34 35 36 31 32 33 34 35 36

(41 Q42 Q43 | Q44 | Q45 Q46 bar baz baz | bas | bas  bas



~

ail a2 a3 a14 ais

_ Ga21 Q22 a23 _ 24 _ a2s5

Let 4; = a3l Qg2 assz |’ Az = asg |’ Az = ass

G41 Q42 Q43 Q44 Q45

i 211 212 213 214 215

_ 21 022 023 _ 24 _ 25

Let By = b31 b3y b3z |’ By = bss |’ Bs = b3s

L ba1 baz  bas bay bys

Then we have A=[ A1 | A2 | A3 |, B=[ B1 | B2 | B3 ],

air + 211 a2 + 212 a13 + 213

_ | @21 +021 azp+022 a3+ 023 _

Art+By = azy +b31 asz +b32 azz+bzz |’ Ax+Bp =
as1 +ba1 asz +baz  as3 + bas

SoA+B=[ A1+ By | Ay + By | A3+ B3 | indeed.

Ci11 Ci12 C13 Ci4

C21 C22 C23 C24

C31 C32 €33 C34
Let C =

C41  C42 C43 Cy4

C51 Cs2 €53 Cs4

C61 Ce2 €63 Ce4

C11 C12 €13 Ci4
Let C1 = | ca1 c22 ca3 coq |,Co=[ cCa1 Ca2

C31 €32 C33 C34

Cy
Then C = | Csy |.

Cs

)\011 )\012 )\013
For each number \, we have A\C7 = | Aca1  Acaa  Acas
Aczt Aczz Acss

/\651 /\652 )\653 )\654
)\061 )‘062 )\663 )\064 :

\C4
So AC = | ACs

ACs3

Let Ay1, A2, Ag1, A2, Bi1, Bi2, Ba1, By be matrices.
Suppose that:—

o the number of rows of A1y, A12, B11, B12 are the same,

e the number of rows of As1, Aos, Ba1, Bos are the same,

aie
a26
a36
Q46

bis
bag
b3s
bas

and
a14 + bis
a24 + boa

a34 + b3a
Q44 + bas

c43 44 ], C5= [

)\014
Ac24
)\034

) )\02

e the number of columns of Ai1, Asq, B11, Bo1 are the same, and

e the number of column of Ais, Ase, Bio, Boo are the same.

Define A — [ A | A } B [ By | Bio }
21 22 |’ 21 22 |°
_[Au+ DB | Ao+ Bio
Then A+ B = [ A1 + Ba1 | Aga + Baa ]

Moreover, for each a € R, aA = {%L‘%i}.
aAar | adag

, A3+Bsg =

C52
C62

Cs51
C61

= [ Acai

ais + bis
azs + bas
azs + b3s
Q45 + bas

Cs53
Ce3

Acq2

C54
Ce4

Acqs

a16 + bis
az6 + bae
ase + b3e
a46 + bag

/\044 ], )\03 =



