
4.2 Set equality (for sets of matrices and sets of vectors).

0. Assumed background.

• Whatever has been covered in Topics 1-3.
• 4.1 Sets of matrices and sets of vectors.

Abstract. We introduce:—

• the notion of set equality (in the context of sets of matrices, and sets of column/row vectors),
• how the notion of set equality is used in the formulation of results,
• how the notion of set equality is used in arguments.

We also verify a few results about null space, solution set and span whose formulations involve set equalities.

1. Equality for sets.
As with other mathematical objects, we are interested in what we mean by ‘equality for such objects’.
Definition. (Set equality.)
Suppose S, T are sets. Then we say that S is equal to T , and write S = T , if and only if every element of each of
S, T belongs to the other of S, T .
Remark. The presentation of this ‘defining condition’ is rather terse. What we really mean is that the equality
‘S = T ’ holds if and only if both of (†), (‡) are true:—

(†) For any object x, if x ∈ S then x ∈ T .
(‡) For any object y, if y ∈ T then y ∈ S.

The conditions (†), (‡) may be ‘combined together’ into one condition and (re-)expressed as:—

(†‡) For any object z, the statement ‘z ∈ S’ holds if and only if the statement ‘z ∈ T ’ holds.

Further remark. According to definition (and also according to logic), S is not equal to T if and only if at least
one of the statements (∼†), (∼‡) hold:—

(∼†) There is some object x such that x ∈ S and x /∈ T .
(∼‡) There is some object y such that y ∈ T and y /∈ S.

In this situation, we write S ̸= T . (Note that there is no requirement for both (∼†), (∼‡) to hold.)

2. Example (1).
By inspection on the elements of the respective sets ‘as listed’, we know these equalities hold:—

(a)
{[

1
2
3

]
,

[
2
3
1

]
,

[
0
2
4

]
,

[
3
0
5

]}
=

{[
0
2
4

]
,

[
1
2
3

]
,

[
2
3
1

]
,

[
3
0
5

]}
.

(b)
{[

1
2
3

]
,

[
2
3
1

]
,

[
0
2
4

]
,

[
3
0
5

]}
=

{[
0
2
4

]
,

[
1
2
3

]
,

[
2
3
1

]
,

[
3
0
5

]
,

[
0
2
4

]
,

[
3
0
5

]}
.

3. As an illustration on the the use of the notion of set equality, we re-formulate some definition concerned with systems
of linear equations:—
Theorem (1). (Re-formulation of consistency of systems of linear equations in set language.)
Let A be an (m× n)-matrix with real entries.

(a) Suppose b ∈ Rm. Then:—
i. LS(A, b) is consistent if and only if S(A, b) ̸= ∅.
ii. LS(A, b) is inconsistent if and only if S(A, b) = ∅.

(b) i. LS(A, 0m) has some non-trivial solution with real entries if and only if N (A) ̸= {0n}.
ii. LS(A, 0m) has no non-trivial solution with real entries if and only if N (A) = {0n}.
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4. As another illustration on the use of the notion of set equality, we re-formulate a theoretical result that relates
invertibility with systems of linear equations whose coefficient matrices are square matrices.
Theorem (2). (Re-formulation of invertibility in terms of null space and solution set.)
Suppose A is a (p× p)-square matrix with real entries. Then the statements below are logically equivalent:—

(1) A is invertible.
(2) N (A) = {0p}.

Moreover, if either of (1), (2) holds, then, for any b ∈ Rp, the equality S(A, b) = {A−1b} holds.
Remark. In the original presentation of the result, ‘S(A, b) = {A−1b}’ is formulated as:—

‘The system LS(A, b) has a unique solution, namely, A−1b’.

5. We now illustrate how the notion of set equality is used in the presentation of the full description of solutions for
systems of linear equations.
Example (2).

(a) We solve the system of linear equations LS(A, b), in which A,b are given by

A =

 1 −1 2 −7
3 −2 6 −18
−4 3 −7 23
1 2 0 7

, b =

 −23
−55
73
33

.
After some work, we conclude that:—

the one and only one solution with real entries of LS(A, b) is

 1
2
3
4

.

We may present this conclusion as:—

S(A, b) =


 1

2
3
4

.

(b) We solve the system of linear equations LS(A, b), in which A,b are given by

A =

 1 3 −2 3 21
2 6 −3 5 38
1 3 −4 6 33
−2 −6 3 −6 −42

, b =

 0
0
0
1

.
After some work, we conclude that:—

LS(A, b) has no solution.
We may present this conclusion as:—

S(A, b) = ∅.

(c) We solve the system of linear equations LS(A, b), in which A,b are given by

A =

 1 3 1 −2 1
1 3 2 −3 −3
2 6 1 −2 10
−1 −3 −3 1 −5

, b =

 −3
−4
−3
−1

.
After some work, we conclude that:—

t is a solution with real entries of LS(A, b) if and only if

there are some real numbers u, v such that t =


0
0
1
2
0

+ u


−3
1
0
0
0

+ v


−9
0
0
−4
1

.

We may present this conclusion as:—

S(A, b) =

x ∈ R5 There exist some u, v ∈ R such that x =


0
0
1
2
0

+ u


−3
1
0
0
0

+ v


−9
0
0
−4
1


.
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(d) We solve the system of linear equations LS(A, b), in which A,b are given by

A =

 0 0 2 3 5 −7
−1 2 1 −1 0 −2
2 −4 −1 3 2 1
3 −6 −1 5 4 0

, b =

 12
0
5
10

.
After some work, we conclude that:—

t is a solution with real entries of LS(A, b) if and only if

there are some real numbers u, v, w such that t =


1
0
3
2
0
0

+ u


2
1
0
0
0
0

+ v


0
0
−1
−1
1
0

+ w


−1
0
2
1
0
1

.

We may present this conclusion as:—

S(A, b) =

x ∈ R6 There exist some u, v, w ∈ R such that x =


1
0
3
2
0
0

+ u


2
1
0
0
0
0

+ v


0
0
−1
−1
1
0

+ w


−1
0
2
1
0
1


.

(e) We solve the system of homogeneous linear equations LS(A, 05), in which A is given by

A =


1 2 −1 2 −2 −6 3 8
−2 −4 3 −5 6 28 −9 −18
1 2 −2 4 −4 −15 7 19
−3 −6 5 −6 11 73 −14 −5
−1 −2 2 −5 4 8 −7 −27

.
After some work, we conclude that:—

t is a solution with real entries of LS(A, 05) if and only if

there are some real numbers u, v, w such that t = u



−2
1
0
0
0
0
0
0

+ v



−3
0
−5
−7
−9
1
0
0

+ w



2
0
3
−8
−6
0
−4
1

.

We may present this conclusion as:—

N (A) =


x ∈ R8 There exist some u, v, w ∈ R such that x = u



−2
1
0
0
0
0
0
0

+ v



−3
0
−5
−7
−9
1
0
0

+ w



2
0
3
−8
−6
0
−4
1




.

(f) We want to solve the homogeneous system of linear equations LS(A, 05), in which

A =


1 2 −5 15
−1 −1 3 −9
3 4 −10 31
2 3 −8 25
1 3 −4 13

.
After some work, we conclude that:—

the one and only one solution of LS(A, 05) is the trivial solution 04.
We may present this conclusion as:—

N (A) = {04}.

6. Example (3). (Illustration on how the definition for the notion of set equality is used in arguments.)
Let A be a (3× n)-matrix with real entries whose first and second rows are labelled A1, A2 and whose third row is
a row of 0’s.
Suppose α, β are real numbers, and B is the (3 × n)-matrix with real entries whose rows from top to bottom are
A1, A2, αA1 + βA2.
We verify that the equality N (A) = N (B):—
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(a) [We want to verify the statement (†): ‘For any x, if x ∈ N (A) then x ∈ N (B).’]
Pick any x. Suppose x ∈ N (A).

[We ask: Is it true that x ∈ N (B)?
This amounts to verifying: ‘Bx = 03.’
Now ask: How does the assumption Ax = 03 help?]

By the definition of matrix multiplication, we have[
A1x
A2x
0n

tx

]
=

[
A1
A2

0n
t

]
x = Ax = 03.

By the definition of matrix equality, we have A1x = 0 and A2x = 0.
Then (αA1 + βA2)x = 0.
Therefore A1x = 0 and A2x = 0 and (αA1 + βA2)x = 0.
By the definition of matrix multiplication and matrix equality, we have

Bx =

[
A1
A2

αA1 + βA2

]
x =

[
A1x
A2x

(αA1 + βA2)x

]
= 03.

Hence x ∈ N (B).
(b) [We want to verify the statement (‡): ‘For any y, if y ∈ N (B) then y ∈ N (A).’]

Pick any y. Suppose y ∈ N (B).
[We ask: Is it true that y ∈ N (A)?
This amounts to verifying: ‘Ay = 02.’
Now ask: How does the assumption By = 03 help?]

By the definition of matrix multiplication, we have[
A1y
A2y

(αA1 + βA2)y

]
=

[
A1
A2

αA1 + βA2

]
y = By = 02.

By the definition of matrix equality, we have A1y = 0 and A2y = 0 and (αA1 + βA2)y = 0.
In particular, A1y = 0 and A2y = 0.
Then

Ay =

[
A1
A2

0n
t

]
y =

[
A1y
A2y
0n

ty

]
= 03.

Hence y ∈ N (A).

Remark. In plain words, and in the language of systems of linear equations, this example informs us:—
In the homogeneous system

(T ) :

 a11x1 + a12x2 + · · · + a1nxn = 0
a21x1 + a22x2 + · · · + a2nxn = 0
a31x1 + a32x2 + · · · + a3nxn = 0

,

if its third equation
a31x1 + a32x2 + · · · + a3nxn = 0

can be ‘obtained’ as a ‘linear combination’ of its first and and second equations, in the sense that the row vector

[ a31 a32 · · · a3n ]

is a linear combination of the row vectors

[ a11 a12 · · · a1n ], [ a21 a22 · · · a2n ],

then the third equation may be ‘ignored’. It will happen that the collection of the solutions of the homogeneous
system

(S) :

 a11x1 + a12x2 + · · · + a1nxn = 0
a21x1 + a22x2 + · · · + a2nxn = 0

0 = 0

and the collection of the solutions of the homogeneous system (T ) are the same as each other.
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7. Example (3) can be regarded as a very special instance of a much more general result about null space.
Theorem (3). (Null spaces of row-equivalent matrices.)
Let A,A′ be (m× n)-matrices with real entries. Suppose A is row-equivalent to A′. Then N (A) = N (A′).
Remark. This is how the statement of Theorem (3) links up with the content of Example (2):—

• When m = 3 and the third row of A is a linear combination of the first and second rows of A, it happens that
A is row-equivalent to the matrix A′ whose first and second rows are respectively the same as that of A and
whose third row is a row of 0’s.

8. Theorem (3) is in fact a special case of a slightly more general result.
Theorem (4). (Solution sets of systems whose coefficients matrices and vectors of constants are
row-equivalent under the same sequence of row operations.)
Let A,A′ be (m× n)-matrices with real entries, and b,b′ be column vectors with m real entries.
Suppose A,b are respectively row-equivalent to A′,b′ under the same sequence of row operations.
Then S(A, b) = S(A′, b′).
Remark. This is no more than a re-formulation of an earlier result that we have learnt. In that earlier result,
whose assumption is the same as that of Theorem (), we have this conclusion:—

For any column vector t with q real entries,

t is a solution of LS(A, b) if and only if t is a solution of LS(A′, b′).

But this is simply a ‘wordy formulation’ of the set equality ‘S(A, b) = S(A′, b′)’.

9. As an illustration on how to use the definition of set equality in arguments, and how our knowledge on the relation
between invertibility and row-equivalence can be applied, we give a (re-)proof for Theorem (4).
Proof of Theorem (4).
Let A,A′ be (m× n)-matrices with real entries, and b,b′ be column vectors with m real entries.
Suppose A,b are respectively row-equivalent to A′,b′ under the same sequence of row operations.
By assumption, [ A b ] is row-equivalent to [ A′ b′ ].
Then there exist some invertible (m×m)-square matrix H such that [ A′ b′ ] = H[ A b ].
We have A′ = HA and b′ = Hb.
Moreover, since H is invertible, H−1 is well-defined as an (m×m)-square matrix and H−1H = Im.

(a) [We verify the statement (‡): ‘For any t ∈ Rn, if t ∈ S(A, b) then t ∈ S(A′, b′).’]
Pick any t ∈ Rn. Suppose t ∈ S(A, b).
Then At = b.
Therefore A′t = (HA)t = H(At) = Hb = b′.
Hence t ∈ S(A′, b′).

(b) [We verify the statement (‡): ‘For any s ∈ Rn, if s ∈ S(A′, b′) then s ∈ S(A′, b′).’]
Pick any s ∈ Rn. Suppose s ∈ S(A′, b′).
Then A′s = b′.
Therefore As = Im(As) = (H−1H)(As) = H−1[H(As)] = H−1[(HA)s] = H−1(A′s) = H−1b′ = H−1(Hb) =

(H−1H)b = Imb = b.
Hence s ∈ S(A, b).

10. Example (4). (Illustration on how the definition for the notion of set equality is used in arguments.)
Suppose u1,u2 ∈ Rp, and α1, α2 ∈ R. Define v = α1u1 + α2u2.
We verify the equality Span({u1,u2,v}) = Span({u1,u2}):—
Write S = Span({u1,u2,v}), T = Span({u1,u2}).

(a) [We want to verify the statement (†): ‘For any x ∈ Rp, if x ∈ S then x ∈ T .’]
Pick any x ∈ Rp. Suppose x ∈ S.

[We ask: Is it true that x ∈ T?
This amounts to verifying: ‘there exist some β1, β2 ∈ R such that x = β1u1 + β2u2.’
Now ask: Can we name some appropriate real numbers β1, β2 satisfying x = β1u1 + β2u2?
Then ask: How does the assumption ‘x ∈ S’ help?]
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Since x ∈ S, there exist some a1, a2, c ∈ R such that x = a1u1 + a2u2 + cv.
For the same a1, a2, c, we have x = a1u1+a2u2+cv = a1u1+a2u2+c(α1u1+α2u2) = (a1+cα1)u1+(a2+cα2)u2.
Since a1, a2, c, α1, α2 are real numbers, a1 + cα1, a2 + cα2 are also real numbers.
Then, by definition, x ∈ T .

(b) [We want to verify the statement (‡): ‘For any y ∈ Rp, if y ∈ T then y ∈ S.’]
Pick any y ∈ Rp. Suppose y ∈ T .

[We ask: Is it true that y ∈ S?
This amounts to verifying: ‘there exist some γ1, γ2, δ ∈ R such that y = γ1u1 + γ2u2 + δv.’
Now ask: Can we name some appropriate real numbers γ1, γ2, δ satisfying y = γ1u1 + γ2u2 + δv?
Then ask: How does the assumption ‘y ∈ T ’ help?]

Since y ∈ T , there exist some a1, a2 ∈ R such that y = a1u1 + a2u2.
For the same a1, a2, we have y = a1u1 + a2u2 + 0p = a1u1 + a2u2 + 0 · v.
Note that a1, a2, 0 are real numbers.
Then, by definition, y ∈ T .

11. Example (4) is a special case of a more general result about span and linear combinations.
Theorem (5).
Let u1,u2, · · · ,uq,v ∈ Rp.
Suppose v is a linear combination of u1,u2, · · · ,uq over the reals.
Then Span({u1,u2, · · · ,uq,v}) = Span({u1,u2, · · · ,uq}).

12. Proof of Theorem (5).
Let u1,u2, · · · ,uq,v ∈ Rp.
Suppose v is a linear combination of u1,u2, · · · ,uq over the reals.
By definition, there exist some α1, α2, · · · , αq ∈ R such that v = α1u1 + α2u2 + · · ·+ αquq.
Write S = Span({u1,u2, · · · ,uq,v}), T = Span({u1,u2, · · · ,uq}).
We verify S = T according to the definition of set equality:—

(a) [We want to verify the statement (†): ‘For any x ∈ Rp, if x ∈ S then x ∈ T .’]
Pick any x ∈ Rp. Suppose x ∈ S.

[We ask: Is it true that x ∈ T?
This amounts to verifying: ‘there exist some β1, β2, · · · , βq ∈ R such that x = β1u1 + β2u2 + · · ·+ βquq.’
Now ask: How does the assumption ‘x ∈ S’ help?]

Since x ∈ S, there exist some a1, a2, · · · , aq, c ∈ R such that x = a1u1 + a2u2 + · · ·+ aquq + cv.
For the same a1, a2, · · · , aq, c, we have

x = a1u1 + a2u2 + · · ·+ aquq + cv

= a1u1 + a2u2 + · · ·+ aquq + c(α1u1 + α2u2 + · · ·+ αquq)

= (a1 + cα1)u1 + (a2 + cα2)u2 + · · ·+ (aq + cαq)uq

Since a1, a2, · · · , aq, c, α1, α2, · · · , αq are real numbers, a1 + cα1, a2 + cα2, · · · , aq + cαq are also real numbers.
Then, by definition, x ∈ T .

(b) [We want to verify the statement (‡): ‘For any y ∈ Rp, if y ∈ T then y ∈ S.’]
Pick any y ∈ Rp. Suppose y ∈ T .

[We ask: Is it true that y ∈ S?
This amounts to verifying: ‘there exist some γ1, γ2, · · · , γq, δ ∈ R such that y = γ1u1 + γ2u2 + + · · · +
γquq + δv.’
Now ask: Can we name some appropriate real numbers γ1, γ2, · · · , γq, δ satisfying y = γ1u1 + γ2u2 + · · ·+
γquq + δv?
Then ask: How does the assumption ‘y ∈ T ’ help?]

Since y ∈ T , there exist some a1, a2, · · · , aq ∈ R such that y = a1u1 + a2u2 + · · ·+ aquq.
For the same a1, a2, · · · , aq, we have y = a1u1 + a2u2 + · · ·+ aquq + 0p = a1u1 + a2u2 + · · ·+ aquq + 0 · v.
Note that a1, a2, · · · , aq, 0 are real numbers.
Then, by definition, y ∈ T .
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13. The converse of Theorem (5) is also true.
Theorem (6). (Converse of Theorem (5).)
Let u1,u2, · · · ,uq,v ∈ Rp.

Suppose Span({u1,u2, · · · ,uq,v}) = Span({u1,u2, · · · ,uq}).
Then v is a linear combination of u1,u2, · · · ,uq over the reals.

14. We combine Theorem (5) and Theorem (6) into one result:—
Theorem (7).
Suppose u1,u2, · · · ,uq,v ∈ Rp. Then the statements below are logically equivalent:—

(1) v is a linear combination of u1,u2, · · · ,uq over the reals.

(2) Span({u1,u2, · · · ,uq,v}) = Span({u1,u2, · · · ,uq}).

15. Proof of Theorem (7).
Let u1,u2, · · · ,uq,v ∈ Rp.

Suppose Span({u1,u2, · · · ,uq,v}) = Span({u1,u2, · · · ,uq}).
Note that v = 0 · u1 + 0 · u2 + · · ·+ 0 · uq + 1 · v.
So v is a linear combination of u1,u2, · · · ,uq,v.

Then by definition of span, we have v ∈ Span({u1,u2, · · · ,uq,v}).

Therefore, by definition of set equality, we have v ∈ Span({u1,u2, · · · ,uq}).
Hence, by definition of span, v is a linear combination of u1,u2, · · · ,uq over the reals.

16. A key step in the proof of Theorem (7) deserves to be singled out and formulated as a result about the notion of
span.
Lemma (8).
Suppose w1,w2, · · · ,wm ∈ Rp. Then each of w1,w2, · · · ,wm belongs to Span({w1,w2, · · · ,wm}).

17. Applying mathematical induction, we deduce the result below.
Theorem (9).
Suppose u1,u2, · · · ,uq,v1,v2, · · · ,vn ∈ Rp. Then the statements below are logically equivalent:—

(1) Each of v1,v2, · · · ,vn is a linear combination of u1,u2, · · · ,uq over the reals.

(2) Span({u1,u2, · · · ,uq,v1,v2, · · · ,vn}) = Span({u1,u2, · · · ,uq}).

18. The result below is a consequence of Theorem (9). But it is in fact a ‘user-friendly’ re-formulation of Theorem (9).
Theorem (10). (Corollary to Theorem (9).)
Suppose u1,u2, · · · ,uq,v1,v2, · · · ,vn ∈ Rp. Then the statements below are logically equivalent:—

(1) Each of v1,v2, · · · ,vn is a linear combination of u1,u2, · · · ,uq over the reals, and each of u1,u2, · · · ,uq is a
linear combination of v1,v2, · · · ,vn over the reals.

(2) Span({u1,u2, · · · ,uq}) = Span({v1,v2, · · · ,vn}).

19. Proof of Theorem (10).
Suppose u1,u2, · · · ,uq,v1,v2, · · · ,vn ∈ Rp.

(a) Suppose the statement (1) holds:—
• Each of v1,v2, · · · ,vn is a linear combination of u1,u2, · · · ,uq over the reals, and
• each of u1,u2, · · · ,uq is a linear combination of v1,v2, · · · ,vn over the reals.

Since each of v1,v2, · · · ,vn is a linear combination of u1,u2, · · · ,uq over the reals, we have

Span({u1,u2, · · · ,uq}) = Span({u1,u2, · · · ,uq,v1,v2, · · · ,vn}).

Since each of u1,u2, · · · ,uq is a linear combination of v1,v2, · · · ,vn over the reals, we have

Span({v1,v2, · · · ,vn}) = Span({v1,v2, · · · ,vn,u1,u2, · · · ,uq}).
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Then

Span({u1,u2, · · · ,uq}) = Span({u1,u2, · · · ,uq,v1,v2, · · · ,vn})
= Span({v1,v2, · · · ,vn,u1,u2, · · · ,uq})
= Span({v1,v2, · · · ,vn})

Hence the statement (2) holds.
(b) Suppose the statement (2) holds:—

• Span({u1,u2, · · · ,uq}) = Span({v1,v2, · · · ,vn}).

By Lemma (8), for each j = 1, 2, · · · , q, the column vector uj belongs to Span({u1,u2, · · · ,uq}).
Then by assumption, uj belongs to Span({v1,v2, · · · ,vn}).
Now by definition of span, uj is a linear combination of v1,v2, · · · ,vn.
Repeating the arguments above, we deduce that for each k = 1, 2, · · · , n, the column vector vk is a linear
combination of u1,u2, · · · ,uq.

20. Example (5). (Illustration of the content of Theorem (9) and Theorem (10).)

(a) Span
({[

1
3
5

]
,

[
2
4
6

]
,

[
3
7
11

]
,

[
2
6
10

]
,

[
1
1
1

]})
= Span

({[
1
3
5

]
,

[
2
4
6

]})
.

Reason:—

Each of
[
3
7
11

]
,

[
2
6
10

]
,

[
1
1
1

]
is a linear combination of

[
1
3
5

]
,

[
2
4
6

]
. Below is the detail:

[
3
7
11

]
=

[
1
3
5

]
+

[
2
4
6

]
,

[
2
6
10

]
= 2

[
1
3
5

]
,

[
1
1
1

]
=

[
2
4
6

]
−

[
1
3
5

]
.

(b) Span
({[

1
3
5

]
,

[
2
4
6

]})
= Span

({[
3
7
11

]
,

[
1
1
1

]})
.

Reason:—

Each of
[
3
7
11

]
,

[
1
1
1

]
is a linear combination of

[
1
3
5

]
,

[
2
4
6

]
. Below is the detail:

[
3
7
11

]
=

[
1
3
5

]
+

[
2
4
6

]
,

[
1
1
1

]
=

[
2
4
6

]
−

[
1
3
5

]
.

Also, each of
[
1
3
5

]
,

[
2
4
6

]
is a linear combination of

[
3
7
11

]
,

[
1
1
1

]
. Below is the detail:

[
1
3
5

]
=

1

2

[
3
7
11

]
− 1

2

[
1
1
1

]
,

[
2
4
6

]
=

1

2

[
3
7
11

]
+

1

2

[
1
1
1

]
.
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