4.2 Set equality (for sets of matrices and sets of vectors).

0. Assumed background.

- Whatever has been covered in Topics 1-3.
- 4.1 Sets of matrices and sets of vectors.

Abstract. We introduce:—

- the notion of set equality (in the context of sets of matrices, and sets of column/row vectors),
- how the notion of set equality is used in the formulation of results,
- how the notion of set equality is used in arguments.

We also verify a few results about null space, solution set and span whose formulations involve set equalities.

1. Equality for sets.

As with other mathematical objects, we are interested in what we mean by 'equality for such objects'.

Definition. (Set equality.)

Suppose S, T are sets. Then we say that S is equal to T, and write S = T, if and only if every element of each of S, T belongs to the other of S, T.

Remark. The presentation of this 'defining condition' is rather terse. What we really mean is that the equality S = T holds if and only if both of $(\dagger), (\ddagger)$ are true:—

- (†) For any object x, if $x \in S$ then $x \in T$.
- (‡) For any object y, if $y \in T$ then $y \in S$.

The conditions (†), (‡) may be 'combined together' into one condition and (re-)expressed as:-

(†‡) For any object z, the statement ' $z \in S$ ' holds if and only if the statement ' $z \in T$ ' holds.

Further remark. According to definition (and also according to logic), S is not equal to T if and only if at least one of the statements $(\sim \dagger), (\sim \ddagger)$ hold:—

- (\sim^{\dagger}) There is some object x such that $x \in S$ and $x \notin T$.
- $(\sim \ddagger)$ There is some object y such that $y \in T$ and $y \notin S$.

In this situation, we write $S \neq T$. (Note that there is no requirement for both $(\sim \dagger), (\sim \ddagger)$ to hold.)

2. Example (1).

By inspection on the elements of the respective sets 'as listed', we know these equalities hold:—

(a)	$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\3\\1 \end{bmatrix}, \begin{bmatrix} 0\\2\\4 \end{bmatrix}, \right.$	$\begin{bmatrix} 3\\0\\5 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} 0\\2\\4 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\}$	$, \begin{bmatrix} 2\\3\\1 \end{bmatrix}, \begin{bmatrix} 3\\0\\5 \end{bmatrix} \right\}.$
(b)	$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\3\\1 \end{bmatrix}, \begin{bmatrix} 0\\2\\4 \end{bmatrix}, \right.$	$ \begin{bmatrix} 3\\0\\5 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} 0\\2\\4 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\} $	$, \begin{bmatrix} 2\\3\\1 \end{bmatrix}, \begin{bmatrix} 3\\0\\5 \end{bmatrix}, \begin{bmatrix} 0\\2\\4 \end{bmatrix}, \begin{bmatrix} 3\\0\\5 \end{bmatrix} \right\}.$

3. As an illustration on the the use of the notion of set equality, we re-formulate some definition concerned with systems of linear equations:—

Theorem (1). (Re-formulation of consistency of systems of linear equations in set language.)

Let A be an $(m \times n)$ -matrix with real entries.

- (a) Suppose $\mathbf{b} \in \mathbb{R}^m$. Then:
 - i. $\mathcal{LS}(A, \mathbf{b})$ is consistent if and only if $\mathcal{S}(A, \mathbf{b}) \neq \emptyset$.
 - ii. $\mathcal{LS}(A, \mathbf{b})$ is inconsistent if and only if $\mathcal{S}(A, \mathbf{b}) = \emptyset$.
- (b) i. *LS*(*A*, **0**_m) has some non-trivial solution with real entries if and only if *N*(*A*) ≠ {**0**_n}.
 ii. *LS*(*A*, **0**_m) has no non-trivial solution with real entries if and only if *N*(*A*) = {**0**_n}.

4. As another illustration on the use of the notion of set equality, we re-formulate a theoretical result that relates invertibility with systems of linear equations whose coefficient matrices are square matrices.

Theorem (2). (Re-formulation of invertibility in terms of null space and solution set.)

Suppose A is a $(p \times p)$ -square matrix with real entries. Then the statements below are logically equivalent:—

- (1) A is invertible.
- (2) $\mathcal{N}(A) = \{\mathbf{0}_p\}.$

Moreover, if either of (1), (2) holds, then, for any $\mathbf{b} \in \mathbb{R}^p$, the equality $\mathcal{S}(A, \mathbf{b}) = \{A^{-1}\mathbf{b}\}$ holds.

Remark. In the original presentation of the result, $S(A, \mathbf{b}) = \{A^{-1}\mathbf{b}\}$ is formulated as:—

'The system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution, namely, $A^{-1}\mathbf{b}$ '.

5. We now illustrate how the notion of set equality is used in the presentation of the full description of solutions for systems of linear equations.

Example (2).

(a) We solve the system of linear equations $\mathcal{LS}(A, \mathbf{b})$, in which A, \mathbf{b} are given by

$$A = \begin{bmatrix} 1 & -1 & 2 & -7 \\ 3 & -2 & 6 & -18 \\ -4 & 3 & -7 & 23 \\ 1 & 2 & 0 & 7 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -23 \\ -55 \\ 73 \\ 33 \end{bmatrix}.$$

After some work, we conclude that:—

the one and only one solution with real entries of $\mathcal{LS}(A, \mathbf{b})$ is $\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$.

We may present this conclusion as:—

$$\mathcal{S}(A, \mathbf{b}) = \left\{ \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix} \right\}.$$

(b) We solve the system of linear equations $\mathcal{LS}(A, \mathbf{b})$, in which A, **b** are given by

$$A = \begin{bmatrix} 1 & 3 & -2 & 3 & 21 \\ 2 & 6 & -3 & 5 & 38 \\ 1 & 3 & -4 & 6 & 33 \\ -2 & -6 & 3 & -6 & -42 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

After some work, we conclude that:----

 $\mathcal{LS}(A, \mathbf{b})$ has no solution.

We may present this conclusion as:—

$$\mathcal{S}(A, \mathbf{b}) = \emptyset.$$

(c) We solve the system of linear equations $\mathcal{LS}(A, \mathbf{b})$, in which A, \mathbf{b} are given by

$$A = \begin{bmatrix} 1 & 3 & 1 & -2 & 1 \\ 1 & 3 & 2 & -3 & -3 \\ 2 & 6 & 1 & -2 & 10 \\ -1 & -3 & -3 & 1 & -5 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -3 \\ -4 \\ -3 \\ -1 \end{bmatrix}.$$

After some work, we conclude that:—

t is a solution with real entries of $\mathcal{LS}(A, \mathbf{b})$ if and only if

there are some real numbers
$$u, v$$
 such that $\mathbf{t} = \begin{bmatrix} 0\\0\\1\\2\\0 \end{bmatrix} + u \begin{bmatrix} -3\\1\\0\\0\\0 \end{bmatrix} + v \begin{bmatrix} -9\\0\\0\\-4\\1 \end{bmatrix}.$

We may present this conclusion as:—

$$\mathcal{S}(A, \mathbf{b}) = \left\{ \mathbf{x} \in \mathbb{R}^5 \middle| \text{There exist some } u, v \in \mathbb{R} \text{ such that } \mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \\ 0 \end{bmatrix} + u \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + v \begin{bmatrix} -9 \\ 0 \\ 0 \\ -4 \\ 1 \end{bmatrix} \right\}.$$

(d) We solve the system of linear equations $\mathcal{LS}(A, \mathbf{b})$, in which A, \mathbf{b} are given by

$$A = \begin{bmatrix} 0 & 0 & 2 & 3 & 5 & -7 \\ -1 & 2 & 1 & -1 & 0 & -2 \\ 2 & -4 & -1 & 3 & 2 & 1 \\ 3 & -6 & -1 & 5 & 4 & 0 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 12 \\ 0 \\ 5 \\ 10 \end{bmatrix}.$$

After some work, we conclude that:—

t is a solution with real entries of $\mathcal{LS}(A, \mathbf{b})$ if and only if

there are some real numbers
$$u, v, w$$
 such that $\mathbf{t} = \begin{bmatrix} 1\\0\\3\\2\\0\\0 \end{bmatrix} + u \begin{bmatrix} 2\\1\\0\\0\\0\\0 \end{bmatrix} + v \begin{bmatrix} 0\\0\\-1\\-1\\1\\0\\0 \end{bmatrix} + w \begin{bmatrix} -1\\0\\2\\1\\0\\1 \end{bmatrix}.$

We may present this conclusion as:—

$$\mathcal{S}(A, \mathbf{b}) = \left\{ \mathbf{x} \in \mathbb{R}^6 \middle| \text{There exist some } u, v, w \in \mathbb{R} \text{ such that } \mathbf{x} = \begin{bmatrix} 1\\0\\3\\2\\0\\0\end{bmatrix} + u \begin{bmatrix} 2\\1\\0\\0\\0\end{bmatrix} + v \begin{bmatrix} 0\\0\\-1\\-1\\1\\0\end{bmatrix} + w \begin{bmatrix} -1\\0\\2\\1\\0\\1\end{bmatrix} \right\}.$$

(e) We solve the system of homogeneous linear equations $\mathcal{LS}(A, \mathbf{0}_5)$, in which A is given by

$$A = \begin{bmatrix} 1 & 2 & -1 & 2 & -2 & -6 & 3 & 8\\ -2 & -4 & 3 & -5 & 6 & 28 & -9 & -18\\ 1 & 2 & -2 & 4 & -4 & -15 & 7 & 19\\ -3 & -6 & 5 & -6 & 11 & 73 & -14 & -5\\ -1 & -2 & 2 & -5 & 4 & 8 & -7 & -27 \end{bmatrix}.$$

After some work, we conclude that:—

t is a solution with real entries of $\mathcal{LS}(A, \mathbf{0}_5)$ if and only if

there are some real numbers
$$u, v, w$$
 such that $\mathbf{t} = u \begin{bmatrix} -2\\1\\0\\0\\0\\0\\0\\0\end{bmatrix} + v \begin{bmatrix} -3\\0\\-5\\-7\\-9\\1\\0\\0\end{bmatrix} + w \begin{bmatrix} 2\\0\\3\\-8\\-6\\0\\-4\\1\end{bmatrix}.$

We may present this conclusion as:----

$$\mathcal{N}(A) = \left\{ \mathbf{x} \in \mathbb{R}^8 \middle| \text{ There exist some } u, v, w \in \mathbb{R} \text{ such that } \mathbf{x} = u \begin{bmatrix} -2\\1\\0\\0\\0\\0\\0\\0\end{bmatrix} + v \begin{bmatrix} -3\\0\\-5\\-7\\-9\\1\\0\\0\end{bmatrix} + w \begin{bmatrix} 2\\0\\-8\\-8\\-6\\0\\-4\\1\end{bmatrix} \right\}.$$

(f) We want to solve the homogeneous system of linear equations $\mathcal{LS}(A, \mathbf{0}_5)$, in which

$$A = \begin{bmatrix} 1 & 2 & -5 & 15 \\ -1 & -1 & 3 & -9 \\ 3 & 4 & -10 & 31 \\ 2 & 3 & -8 & 25 \\ 1 & 3 & -4 & 13 \end{bmatrix}.$$

After some work, we conclude that:—

the one and only one solution of $\mathcal{LS}(A, \mathbf{0}_5)$ is the trivial solution $\mathbf{0}_4$.

We may present this conclusion as:—

$$\mathcal{N}(A) = \{\mathbf{0}_4\}.$$

6. Example (3). (Illustration on how the definition for the notion of set equality is used in arguments.)

Let A be a $(3 \times n)$ -matrix with real entries whose first and second rows are labelled A_1, A_2 and whose third row is a row of 0's.

Suppose α, β are real numbers, and B is the $(3 \times n)$ -matrix with real entries whose rows from top to bottom are $A_1, A_2, \alpha A_1 + \beta A_2$.

We verify that the equality $\mathcal{N}(A) = \mathcal{N}(B)$:—

(a) [We want to verify the statement (†): 'For any \mathbf{x} , if $\mathbf{x} \in \mathcal{N}(A)$ then $\mathbf{x} \in \mathcal{N}(B)$.']

Pick any **x**. Suppose $\mathbf{x} \in \mathcal{N}(A)$.

[We ask: Is it true that $\mathbf{x} \in \mathcal{N}(B)$?

This amounts to verifying: $B\mathbf{x} = \mathbf{0}_3$.

Now ask: How does the assumption $A\mathbf{x} = \mathbf{0}_3$ help?]

By the definition of matrix multiplication, we have

$$\begin{bmatrix} A_1 \mathbf{x} \\ A_2 \mathbf{x} \\ \mathbf{0}_n^t \mathbf{x} \end{bmatrix} = \begin{bmatrix} \underline{A_1} \\ \underline{A_2} \\ \hline \mathbf{0}_n^t \end{bmatrix} \mathbf{x} = A \mathbf{x} = \mathbf{0}_3.$$

By the definition of matrix equality, we have $A_1 \mathbf{x} = 0$ and $A_2 \mathbf{x} = 0$. Then $(\alpha A_1 + \beta A_2)\mathbf{x} = 0$.

Therefore $A_1 \mathbf{x} = 0$ and $A_2 \mathbf{x} = 0$ and $(\alpha A_1 + \beta A_2) \mathbf{x} = 0$.

By the definition of matrix multiplication and matrix equality, we have

$$B\mathbf{x} = \begin{bmatrix} A_1 \\ A_2 \\ \hline \alpha A_1 + \beta A_2 \end{bmatrix} \mathbf{x} = \begin{bmatrix} A_1 \mathbf{x} \\ A_2 \mathbf{x} \\ (\alpha A_1 + \beta A_2) \mathbf{x} \end{bmatrix} = \mathbf{0}_3.$$

Hence $\mathbf{x} \in \mathcal{N}(B)$.

(b) [We want to verify the statement (‡): 'For any \mathbf{y} , if $\mathbf{y} \in \mathcal{N}(B)$ then $\mathbf{y} \in \mathcal{N}(A)$.'] Pick any \mathbf{y} . Suppose $\mathbf{y} \in \mathcal{N}(B)$.

[We ask: Is it true that $\mathbf{y} \in \mathcal{N}(A)$?

This amounts to verifying: $A\mathbf{y} = \mathbf{0}_2$.

Now ask: How does the assumption $B\mathbf{y} = \mathbf{0}_3$ help?]

By the definition of matrix multiplication, we have

$$\begin{bmatrix} A_1 \mathbf{y} \\ A_2 \mathbf{y} \\ (\alpha A_1 + \beta A_2) \mathbf{y} \end{bmatrix} = \begin{bmatrix} A_1 \\ \hline A_2 \\ \hline \alpha A_1 + \beta A_2 \end{bmatrix} \mathbf{y} = B \mathbf{y} = \mathbf{0}_2.$$

By the definition of matrix equality, we have $A_1 \mathbf{y} = 0$ and $A_2 \mathbf{y} = 0$ and $(\alpha A_1 + \beta A_2) \mathbf{y} = 0$. In particular, $A_1 \mathbf{y} = 0$ and $A_2 \mathbf{y} = 0$.

Then

$$A\mathbf{y} = \begin{bmatrix} A_1 \\ \hline A_2 \\ \hline \mathbf{0}_n^t \end{bmatrix} \mathbf{y} = \begin{bmatrix} A_1 \mathbf{y} \\ A_2 \mathbf{y} \\ \mathbf{0}_n^t \mathbf{y} \end{bmatrix} = \mathbf{0}_3$$

Hence $\mathbf{y} \in \mathcal{N}(A)$.

Remark. In plain words, and in the language of systems of linear equations, this example informs us:— In the homogeneous system

 $(T): \begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0\\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = 0\\ a_{31}x_1 + a_{32}x_2 + \cdots + a_{3n}x_n = 0 \end{cases},$

if its third equation

 $a_{31}x_1 + a_{32}x_2 + \cdots + a_{3n}x_n = 0$

can be 'obtained' as a 'linear combination' of its first and and second equations, in the sense that the row vector

 $[a_{31} \ a_{32} \ \cdots \ a_{3n}]$

is a linear combination of the row vectors

$$[a_{11} a_{12} \cdots a_{1n}], [a_{21} a_{22} \cdots a_{2n}],$$

then the third equation may be 'ignored'. It will happen that the collection of the solutions of the homogeneous system

$$(S): \begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0\\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = 0\\ 0 = 0 \end{cases}$$

and the collection of the solutions of the homogeneous system (T) are the same as each other.

7. Example (3) can be regarded as a very special instance of a much more general result about null space.

Theorem (3). (Null spaces of row-equivalent matrices.)

Let A, A' be $(m \times n)$ -matrices with real entries. Suppose A is row-equivalent to A'. Then $\mathcal{N}(A) = \mathcal{N}(A')$.

Remark. This is how the statement of Theorem (3) links up with the content of Example (2):—

- When m = 3 and the third row of A is a linear combination of the first and second rows of A, it happens that A is row-equivalent to the matrix A' whose first and second rows are respectively the same as that of A and whose third row is a row of 0's.
- 8. Theorem (3) is in fact a special case of a slightly more general result.

Theorem (4). (Solution sets of systems whose coefficients matrices and vectors of constants are row-equivalent under the same sequence of row operations.)

Let A, A' be $(m \times n)$ -matrices with real entries, and **b**, **b**' be column vectors with m real entries.

Suppose A, \mathbf{b} are respectively row-equivalent to A', \mathbf{b}' under the same sequence of row operations.

Then $\mathcal{S}(A, \mathbf{b}) = \mathcal{S}(A', \mathbf{b}').$

Remark. This is no more than a re-formulation of an earlier result that we have learnt. In that earlier result, whose assumption is the same as that of Theorem (), we have this conclusion:—

For any column vector \mathbf{t} with q real entries,

t is a solution of $\mathcal{LS}(A, \mathbf{b})$ if and only if **t** is a solution of $\mathcal{LS}(A', \mathbf{b}')$.

But this is simply a 'wordy formulation' of the set equality ' $\mathcal{S}(A, \mathbf{b}) = \mathcal{S}(A', \mathbf{b}')$ '.

9. As an illustration on how to use the definition of set equality in arguments, and how our knowledge on the relation between invertibility and row-equivalence can be applied, we give a (re-)proof for Theorem (4).

Proof of Theorem (4).

Let A, A' be $(m \times n)$ -matrices with real entries, and **b**, **b'** be column vectors with m real entries.

Suppose A, \mathbf{b} are respectively row-equivalent to A', \mathbf{b}' under the same sequence of row operations.

By assumption, $[A \mid \mathbf{b}]$ is row-equivalent to $[A' \mid \mathbf{b}']$.

Then there exist some invertible $(m \times m)$ -square matrix H such that $\begin{bmatrix} A' & b' \end{bmatrix} = H\begin{bmatrix} A & b \end{bmatrix}$.

We have A' = HA and $\mathbf{b}' = H\mathbf{b}$.

Moreover, since H is invertible, H^{-1} is well-defined as an $(m \times m)$ -square matrix and $H^{-1}H = I_m$.

- (a) [We verify the statement (‡): 'For any $\mathbf{t} \in \mathbb{R}^n$, if $\mathbf{t} \in \mathcal{S}(A, \mathbf{b})$ then $\mathbf{t} \in \mathcal{S}(A', \mathbf{b}')$.'] Pick any $\mathbf{t} \in \mathbb{R}^n$. Suppose $\mathbf{t} \in \mathcal{S}(A, \mathbf{b})$. Then $A\mathbf{t} = \mathbf{b}$. Therefore $A'\mathbf{t} = (HA)\mathbf{t} = H(A\mathbf{t}) = H\mathbf{b} = \mathbf{b}'$. Hence $\mathbf{t} \in \mathcal{S}(A', \mathbf{b}')$.
- (b) [We verify the statement (‡): 'For any $\mathbf{s} \in \mathbb{R}^n$, if $\mathbf{s} \in \mathcal{S}(A', \mathbf{b}')$ then $\mathbf{s} \in \mathcal{S}(A', \mathbf{b}')$.'] Pick any $\mathbf{s} \in \mathbb{R}^n$. Suppose $\mathbf{s} \in \mathcal{S}(A', \mathbf{b}')$. Then $A'\mathbf{s} = \mathbf{b}'$. Therefore $A\mathbf{s} = I_m(A\mathbf{s}) = (H^{-1}H)(A\mathbf{s}) = H^{-1}[H(A\mathbf{s})] = H^{-1}[(HA)\mathbf{s}] = H^{-1}(A'\mathbf{s}) = H^{-1}\mathbf{b}' = H^{-1}(H\mathbf{b}) = (H^{-1}H)\mathbf{b} = I_m\mathbf{b} = \mathbf{b}$. Hence $\mathbf{s} \in \mathcal{S}(A, \mathbf{b})$.
- 10. Example (4). (Illustration on how the definition for the notion of set equality is used in arguments.) Suppose u₁, u₂ ∈ ℝ^p, and α₁, α₂ ∈ ℝ. Define v = α₁u₁ + α₂u₂. We verify the equality Span({u₁, u₂, v}) = Span({u₁, u₂}):—

Write $S = \text{Span}(\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{v}\}), T = \text{Span}(\{\mathbf{u}_1, \mathbf{u}_2\}).$

(a) [We want to verify the statement (†): 'For any $\mathbf{x} \in \mathbb{R}^p$, if $\mathbf{x} \in S$ then $\mathbf{x} \in T$.'] Pick any $\mathbf{x} \in \mathbb{R}^p$. Suppose $\mathbf{x} \in S$.

> [We ask: Is it true that $\mathbf{x} \in T$? This amounts to verifying: 'there exist some $\beta_1, \beta_2 \in \mathbb{R}$ such that $\mathbf{x} = \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2$.' Now ask: Can we name some appropriate real numbers β_1, β_2 satisfying $\mathbf{x} = \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2$? Then ask: How does the assumption ' $\mathbf{x} \in S$ ' help?]

Since $\mathbf{x} \in S$, there exist some $a_1, a_2, c \in \mathbb{R}$ such that $\mathbf{x} = a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + c\mathbf{v}$. For the same a_1, a_2, c , we have $\mathbf{x} = a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + c\mathbf{v} = a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + c(\alpha_1\mathbf{u}_1 + \alpha_2\mathbf{u}_2) = (a_1 + c\alpha_1)\mathbf{u}_1 + (a_2 + c\alpha_2)\mathbf{u}_2$. Since $a_1, a_2, c, \alpha_1, \alpha_2$ are real numbers, $a_1 + c\alpha_1, a_2 + c\alpha_2$ are also real numbers. Then, by definition, $\mathbf{x} \in T$.

(b) [We want to verify the statement (‡): 'For any $\mathbf{y} \in \mathbb{R}^p$, if $\mathbf{y} \in T$ then $\mathbf{y} \in S$.'] Pick any $\mathbf{y} \in \mathbb{R}^p$. Suppose $\mathbf{y} \in T$.

[We ask: Is it true that $\mathbf{y} \in S$? This amounts to verifying: 'there exist some $\gamma_1, \gamma_2, \delta \in \mathbb{R}$ such that $\mathbf{y} = \gamma_1 \mathbf{u}_1 + \gamma_2 \mathbf{u}_2 + \delta \mathbf{v}$.' Now ask: Can we name some appropriate real numbers $\gamma_1, \gamma_2, \delta$ satisfying $\mathbf{y} = \gamma_1 \mathbf{u}_1 + \gamma_2 \mathbf{u}_2 + \delta \mathbf{v}$? Then ask: How does the assumption ' $\mathbf{y} \in T$ ' help?]

Since $\mathbf{y} \in T$, there exist some $a_1, a_2 \in \mathbb{R}$ such that $\mathbf{y} = a_1\mathbf{u}_1 + a_2\mathbf{u}_2$. For the same a_1, a_2 , we have $\mathbf{y} = a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \mathbf{0}_p = a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \mathbf{0} \cdot \mathbf{v}$. Note that $a_1, a_2, \mathbf{0}$ are real numbers. Then, by definition, $\mathbf{y} \in T$.

11. Example (4) is a special case of a more general result about span and linear combinations.

Theorem (5).

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q, \mathbf{v} \in \mathbb{R}^p$.

Suppose **v** is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q$ over the reals.

Then $\operatorname{Span}({\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q, \mathbf{v}}) = \operatorname{Span}({\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q}).$

12. Proof of Theorem (5).

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q, \mathbf{v} \in \mathbb{R}^p$.

Suppose **v** is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q$ over the reals.

By definition, there exist some $\alpha_1, \alpha_2, \cdots, \alpha_q \in \mathbb{R}$ such that $\mathbf{v} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \cdots + \alpha_q \mathbf{u}_q$.

Write $S = \text{Span}(\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q, \mathbf{v}\}), T = \text{Span}(\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q\}).$

We verify S = T according to the definition of set equality:—

(a) [We want to verify the statement (†): 'For any $\mathbf{x} \in \mathbb{R}^p$, if $\mathbf{x} \in S$ then $\mathbf{x} \in T$.']

Pick any $\mathbf{x} \in \mathbb{R}^p$. Suppose $\mathbf{x} \in S$.

[We ask: Is it true that $\mathbf{x} \in T$?

This amounts to verifying: 'there exist some $\beta_1, \beta_2, \dots, \beta_q \in \mathbb{R}$ such that $\mathbf{x} = \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \dots + \beta_q \mathbf{u}_q$.' Now ask: How does the assumption ' $\mathbf{x} \in S$ ' help?]

Since $\mathbf{x} \in S$, there exist some $a_1, a_2, \dots, a_q, c \in \mathbb{R}$ such that $\mathbf{x} = a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \dots + a_q \mathbf{u}_q + c \mathbf{v}$. For the same a_1, a_2, \dots, a_q, c , we have

$$\mathbf{x} = a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \dots + a_q \mathbf{u}_q + c \mathbf{v}$$

= $a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \dots + a_q \mathbf{u}_q + c(\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_q \mathbf{u}_q)$
= $(a_1 + c\alpha_1) \mathbf{u}_1 + (a_2 + c\alpha_2) \mathbf{u}_2 + \dots + (a_q + c\alpha_q) \mathbf{u}_q$

Since $a_1, a_2, \dots, a_q, c, \alpha_1, \alpha_2, \dots, \alpha_q$ are real numbers, $a_1 + c\alpha_1, a_2 + c\alpha_2, \dots, a_q + c\alpha_q$ are also real numbers. Then, by definition, $\mathbf{x} \in T$.

(b) [We want to verify the statement (‡): 'For any $\mathbf{y} \in \mathbb{R}^p$, if $\mathbf{y} \in T$ then $\mathbf{y} \in S$.'] Pick any $\mathbf{y} \in \mathbb{R}^p$. Suppose $\mathbf{y} \in T$.

[We ask: Is it true that $\mathbf{y} \in S$? This amounts to verifying: 'there exist some $\gamma_1, \gamma_2, \dots, \gamma_q, \delta \in \mathbb{R}$ such that $\mathbf{y} = \gamma_1 \mathbf{u}_1 + \gamma_2 \mathbf{u}_2 + \dots + \gamma_q \mathbf{u}_q + \delta \mathbf{v}$.' Now ask: Can we name some appropriate real numbers $\gamma_1, \gamma_2, \dots, \gamma_q, \delta$ satisfying $\mathbf{y} = \gamma_1 \mathbf{u}_1 + \gamma_2 \mathbf{u}_2 + \dots + \gamma_q \mathbf{u}_q + \delta \mathbf{v}$?

Then ask: How does the assumption ' $\mathbf{y} \in T$ ' help?]

Since $\mathbf{y} \in T$, there exist some $a_1, a_2, \dots, a_q \in \mathbb{R}$ such that $\mathbf{y} = a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \dots + a_q \mathbf{u}_q$. For the same a_1, a_2, \dots, a_q , we have $\mathbf{y} = a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \dots + a_q \mathbf{u}_q + \mathbf{0}_p = a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \dots + a_q \mathbf{u}_q + \mathbf{0} \cdot \mathbf{v}$. Note that $a_1, a_2, \dots, a_q, 0$ are real numbers. Then, by definition, $\mathbf{y} \in T$. 13. The converse of Theorem (5) is also true.

Theorem (6). (Converse of Theorem (5).)

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q, \mathbf{v} \in \mathbb{R}^p$.

Suppose $\operatorname{Span}({\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q, \mathbf{v}}) = \operatorname{Span}({\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q}).$

Then **v** is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q$ over the reals.

14. We combine Theorem (5) and Theorem (6) into one result:—

Theorem (7).

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q, \mathbf{v} \in \mathbb{R}^p$. Then the statements below are logically equivalent:—

- (1) **v** is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q$ over the reals.
- (2) $\operatorname{Span}(\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q, \mathbf{v}\}) = \operatorname{Span}(\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q\}).$

15. Proof of Theorem (7).

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q, \mathbf{v} \in \mathbb{R}^p$.

Suppose $\operatorname{Span}({\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q, \mathbf{v}}) = \operatorname{Span}({\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q}).$

Note that $\mathbf{v} = 0 \cdot \mathbf{u}_1 + 0 \cdot \mathbf{u}_2 + \dots + 0 \cdot \mathbf{u}_q + 1 \cdot \mathbf{v}$.

So **v** is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q, \mathbf{v}$.

Then by definition of span, we have $\mathbf{v} \in \text{Span}({\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q, \mathbf{v}}).$

Therefore, by definition of set equality, we have $\mathbf{v} \in \text{Span}({\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q})$.

Hence, by definition of span, \mathbf{v} is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q$ over the reals.

16. A key step in the proof of Theorem (7) deserves to be singled out and formulated as a result about the notion of span.

Lemma (8).

Suppose $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_m \in \mathbb{R}^p$. Then each of $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_m$ belongs to $\text{Span}(\{\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_m\})$.

17. Applying mathematical induction, we deduce the result below.

Theorem (9).

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q, \mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n \in \mathbb{R}^p$. Then the statements below are logically equivalent:

- (1) Each of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q$ over the reals.
- (2) $\operatorname{Span}(\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q, \mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}) = \operatorname{Span}(\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q\}).$
- 18. The result below is a consequence of Theorem (9). But it is in fact a 'user-friendly' re-formulation of Theorem (9).

Theorem (10). (Corollary to Theorem (9).)

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q, \mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n \in \mathbb{R}^p$. Then the statements below are logically equivalent:—

- (1) Each of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q$ over the reals, and each of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q$ is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ over the reals.
- (2) $\operatorname{Span}(\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q\}) = \operatorname{Span}(\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}).$

19. Proof of Theorem (10).

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q, \mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n \in \mathbb{R}^p$.

- (a) Suppose the statement (1) holds:—
 - Each of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q$ over the reals, and
 - each of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q$ is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ over the reals.

Since each of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q$ over the reals, we have

 $\operatorname{Span}(\{\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_q\})=\operatorname{Span}(\{\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_q,\mathbf{v}_1,\mathbf{v}_2,\cdots,\mathbf{v}_n\}).$

Since each of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q$ is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ over the reals, we have

 $\operatorname{Span}(\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}) = \operatorname{Span}(\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n, \mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q\}).$

Then

$$Span({\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q}) = Span({\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q, \mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n})$$
$$= Span({\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n, \mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q})$$
$$= Span({\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n})$$

Hence the statement (2) holds.

- (b) Suppose the statement (2) holds:—
 - $\operatorname{Span}({\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_q}) = \operatorname{Span}({\mathbf{v}_1,\mathbf{v}_2,\cdots,\mathbf{v}_n}).$

By Lemma (8), for each $j = 1, 2, \dots, q$, the column vector \mathbf{u}_j belongs to $\text{Span}({\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_q})$.

Then by assumption, \mathbf{u}_j belongs to $\text{Span}(\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\})$.

Now by definition of span, \mathbf{u}_j is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$.

Repeating the arguments above, we deduce that for each $k = 1, 2, \dots, n$, the column vector \mathbf{v}_k is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_q$.

•

20. Example (5). (Illustration of the content of Theorem (9) and Theorem (10).)

(a)
$$\operatorname{Span}\left(\left\{\begin{bmatrix}1\\3\\5\end{bmatrix},\begin{bmatrix}2\\4\\6\end{bmatrix},\begin{bmatrix}3\\7\\11\end{bmatrix},\begin{bmatrix}2\\6\\10\end{bmatrix},\begin{bmatrix}1\\1\\1\end{bmatrix}\right\}\right) = \operatorname{Span}\left(\left\{\begin{bmatrix}1\\3\\5\end{bmatrix},\begin{bmatrix}2\\4\\6\end{bmatrix}\right)\right)$$
.
Reason:—
Each of $\begin{bmatrix}3\\7\\11\end{bmatrix},\begin{bmatrix}2\\6\\10\end{bmatrix},\begin{bmatrix}1\\1\\1\end{bmatrix}$ is a linear combination of $\begin{bmatrix}1\\3\\5\end{bmatrix},\begin{bmatrix}2\\4\\6\end{bmatrix}$. Below is the detail:
 $\begin{bmatrix}3\\7\\11\end{bmatrix} = \begin{bmatrix}1\\3\\5\end{bmatrix} + \begin{bmatrix}2\\6\end{bmatrix}, \begin{bmatrix}2\\6\\6\end{bmatrix} = 2\begin{bmatrix}1\\3\\5\end{bmatrix}, \begin{bmatrix}1\\1\\1\end{bmatrix} = \begin{bmatrix}2\\4\\6\end{bmatrix} - \begin{bmatrix}1\\3\\5\end{bmatrix}$
(b) $\operatorname{Span}\left(\left\{\begin{bmatrix}1\\3\\5\end{bmatrix},\begin{bmatrix}2\\4\\6\end{bmatrix}\right\}\right) = \operatorname{Span}\left(\left\{\begin{bmatrix}3\\7\\11\end{bmatrix},\begin{bmatrix}1\\1\\1\end{bmatrix}\right\}\right)$.
Reason:—
Each of $\begin{bmatrix}3\\7\\11\end{bmatrix},\begin{bmatrix}1\\1\\1\end{bmatrix}$ is a linear combination of $\begin{bmatrix}1\\3\\5\end{bmatrix},\begin{bmatrix}2\\4\\6\end{bmatrix}$. Below is the detail:
 $\begin{bmatrix}3\\7\\11\end{bmatrix} = \begin{bmatrix}1\\3\\5\end{bmatrix} + \begin{bmatrix}2\\4\\6\end{bmatrix}$. Below is the detail:
 $\begin{bmatrix}3\\7\\11\end{bmatrix} = \begin{bmatrix}1\\3\\5\end{bmatrix} + \begin{bmatrix}2\\4\\6\end{bmatrix}, \begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}2\\4\\6\end{bmatrix} - \begin{bmatrix}1\\3\\5\end{bmatrix}$.
Also, each of $\begin{bmatrix}1\\3\\5\end{bmatrix},\begin{bmatrix}2\\4\\6\end{bmatrix}$ is a linear combination of $\begin{bmatrix}3\\7\\11\end{bmatrix},\begin{bmatrix}1\\1\end{bmatrix}$. Below is the detail:
 $\begin{bmatrix}1\\3\\5\end{bmatrix} = \frac{1}{2}\begin{bmatrix}3\\7\\11\end{bmatrix} - \frac{1}{2}\begin{bmatrix}1\\1\\1\end{bmatrix}, \begin{bmatrix}2\\4\\6\end{bmatrix} = \frac{1}{2}\begin{bmatrix}3\\7\\11\end{bmatrix} + \frac{1}{2}\begin{bmatrix}1\\1\\1\end{bmatrix}$.