3.4 Row-equivalence from the point of view of invertible matrices.

0. Assumed background.

e Whatever has been covered in Topics 1-2, especially:—

* 1.5 Linear combinations.
* 1.6 Linear dependence and linear independence.

* 1.8 Row operations and matrix multiplication.
x 2.2 Row-echelon forms and reduced row-echelon forms.
e 3.2 Invertibility and row operations.

Abstract.  We introduce:—

e how to visualize row-equivalence through left-multiplication by invertible matrices.

e how linear relations amongst various columns in a given matrix are ‘preserved’ upon application of row opera-
tions on the given matrix.

e the uniqueness of reduced row-echelon form which is row-equivalent to a given matrix.

o the notion of rank for an arbitrary matrix.

The proof of the uniqueness result on reduced row-echelon form row-equivalent to an arbitrarily given matrix is
contained in the appendiz, but the ideas in the proof is displayed in a ‘concrete’ example.

1. When we introduce the ‘dictionary’ between row operations and row-operation matrices, we discover the result
below, labelled (x) here:

Theorem ().
Suppose A, B are matrices with p rows. Then the statements below are logically equivalent:—
(1) A, B are row-equivalent to each other.

(2) there are (finitely many) row-operation matrices G1,Ga, - ,Gg—1, G such that B = GGg—1 - ... - GoG1 A.

Now suppose any one of the above holds (so that both hold). Then there are some row-operation matrices
Hy,Hs, -+, Hy_1, Hy such that:—

« A= H1H2 Cee kalHkB, and
o foreach j =1,2,--- ,k, the equalities H;G; = I, and G;H; = I,,.

In terms of the re-formulation for the notion of invertibility in terms of row operations and row-operation matrices,
we can re-formulate Theorem (x) as:—

2. Theorem (1). (Re-formulation of row-equivalence in terms of multiplication by invertible matrices
from the left.)

Suppose A, B are matrices with p rows. Then the statements below are logically equivalent:—
(1) A, B are row-equivalent to each other.

(2) There exists some invertible (p X p)-square matrix G such that B = GA.

Now suppose any one of the above holds (so that both hold). Then, for the same G, the equality A = G~'B holds.

Remark. Such a re-formulation of row-equivalence is useful in theoretical discussions because through it, we can
think and work in terms of equalities which are as ‘simple’ as possible.

3. Example (1). (Illustrations on the content of Theorem (1).)
1 011 2 0 0 4

02 11 1 2 2 2.

1 0 0 2 1 0 1 1

A is row-equivalent to B under the sequence of row operations below:

(a) Let A= , B=

1R1+Ra 2R3 Ri<+R:
A 1 2 3 1 5 B.

Coincidentally, the equality B = GA holds, in which G is the invertible (3 x 3)-square matrix given by

] |

1R1+R2 2R3 Ri1<>R3

I3 G =

]
oo
oo




0 -1 -2 2 6
2 -3 0 0 0
(b) Let A= 5 o 5 1 1
o 4 -2 2 6

A is row-equivalent to B under the sequence of ro

1030 6
012 0 4
B=10 001 5
0000 0

W

operations below:

A Ri<Ry %Rl —2R1+R2 2R1+R3 1Rx+Rs 2R>+Rs —1R3 2R>+R; 3R3+Ri_ 2R3+R> B

Coincidentally, the equality B = GA holds, in which G is the invertible (4 x 4)-square matrix given by

0 -4 -3 3/2
I Ri<>R4 %Rl —2R1+Rs 2R1+R3 1R2+ R4 2R2+Rs —1R3 2R2+R1 3R3+Ri1. 2R3+Ro G_ O —3 —2 1
4 -0 -2 -1 1
1 1 0o -1
0 0 2 3 5 —7 12 1 2000 1 1
-1 2 1 -1 0 -2 0 o 0 1 01 -2 3
() LetA=1 9 4 1 3 2 1 5 |"B=|l0o 0 011 -1 2
3 -6 -1 5 4 0 10 0O 0 0 0 0 0 O

A is row-equivalent to B under the sequence of row operations below:

A Ri<Rs —1Ry —2R1+R3 —3R1+Rs4 Ro<>R3 —2Ro+Rs —2Rs+R4 1R2+R;y —2R3+R1 —1R3+Rs B

Coincidentally, the equality B = G A holds, in which G is the invertible (4 x 4)-square matrix given by

Ri++Rs —1Ry —2R1+R3 —3R1+R4 Ro<>R3 —2Ro+R3 —2Ro+R4

Iy
-2 9 5 0
1Ro+ Ry, —2Rst+ Ry, —1Rs+Ra -1 6 3 0
- 1 -4 -2 0
0o -1 -2 1
2 7 =8 1 0 0
1 4 =5 01 0
-2 —6 6 0 0 O

A is row-equivalent to B under the sequence of row operations below:

A Ri1+R2 —2R1+Rs 1R1+R3 2R1+R4 3R2+Rs 2R2+R4 —1Ro %RB —4Ro+Ry —3R3+R1 2R3+R- B

Coincidentally, the equality B = GA holds, in which G is the invertible (4 x 4)-square matrix given by

I Ri<+R2 —2R1+R2 1Ri1+R3 2R:1+R4 3R2+R3 2R>+R4
4

-1/2  1/2 —3/2 0
—1R> 3Rs —4Ro4Ri_ —3Rs+Ri 2R3+R: G = 2 -3 1 0
B 3/2 =5/2 1/2 0
2 -2 0 1
111 -2 -3 1 10 -1 0 0 4
2 2 2 -7 -8 -3 01 2 00 -3
(e) Let A=|3 2 1 -5 -7 5 ,B=10 0 0 1 0 3
2 4 6 -4 -9 2 00 0 0 1 -2
o1 2 0 -2 1 00 0 0 0 O

A is row-equivalent to B under the sequence of row operations below:

A —2R1+R2 —3R1+R3 —2R1+Rs R2<*Rs_ 1R2+R3z —2R2+Rs 3R3+Rs 2R4+Rs —1Rzx+Ri 2R3+R; 1R4+R1_ 2R4+R2 B

Coincidentally, the equality B = GA holds, in which G is the invertible (5 x 5)-square matrix given by

—2R1+R2 —3R1+R3 —2R1+R4 Ro+Rs 1R+ R3 —2R2+R4 3R3+Rs 2R4+Rs

Is
-7 0 2 1 -1
-4 0 0 2 -3
—1R2+R1 2R3+R1. 1R4+R1. 2R4+R> G- _3 01 0 1
-2 0 0 1 -2
-15 1 3 2 -1



4. We are going to introduce a few results about linear combinations, linear dependence and linear independence
which can be applied in proving deep results. When seen from the point of view of invertible matrices, the results
themselves look obvious. However, they will give rise to highly non-trivial results when they are re-interpreted in
terms of row operations.

We start with a elementary result on ‘matrix algebra’:
Lemma (2). (‘Preservation’ of linear relations by left-multiplication by invertible matrices.)
Let uy,us,--- ,u,,v be column vectors with p entries, and ay, s, - - , «,, be numbers.
Suppose G is an invertible (p X p)-square matrix.
Then v = aju; + asus + - - - + apu, if and only if Gv = a1Guy + asGus + - - - + a,Gu,.
Remark. As it will become apparent in the argument, the invertibility of G is needed in only one ‘direction’ of
the conclusion, where we wish to ‘cancel’ G from both sides of an equality in which G is initially present. Here for
the sake of simplicity, we state such a ‘weaker’ version of a more precise and general result.
5. Proof of Lemma (2).
Let uy,us, - -+ ,u,,v be column vectors with p entries, and ay, as, - - - , ,, be numbers.

Suppose G is an invertible (p X p)-square matrix.

(a) Suppose v = aiju; + asug + -+ + apuy,.

Then multiplying G to both sides of the above equality from the left, we obtain:

Gv G(oqug + azup + -+ + apuy,)

= «a1Gu; + asGuy + - - - + o, Gu,,

(b) Suppose Gv = a1Guy + asGua + - - - + @, Gu,.
By assumption, the matrix inverse G~! of the matrix G is well-defined.

Multiplying G~ to both sides of the above equality from the left, we obtain:

v=1Lv=(G'G)v=G1Gv) G HoyGuy + asGuy + - - - + o, Guy,)
= G 'G(au 4+ asuy + -+ + ayuy)]
= (G7'G)(a1uy + avuy + - - - + ayuy,)
= I(aju; + asus + -+ + apuy,)

= aiu; +agug + -+ Uy,

6. Theorem (3), Theorem (4) and Theorem (5) are immediate consequences of Lemma (2).
Theorem (3). (‘Preservation’ of linear combinations by left-multiplication by invertible matrices.)
Let uj,us, -+ ,u,,v be column vectors with p entries.

Suppose G is an invertible (p X p)-square matrix. Then the statements below are logically equivalent:—

(1) v is a linear combination of uy,ug, - -+ ,u, with respect to scalars oy, g, - , auy,.

(2) Gv is a linear combination of Guy, Gua, - -- ,Gu,, with respect to scalars oy, s, - , .
Theorem (4). (‘Preservation’ of linear dependence and non-trivial linear relations by left-multiplication
by invertible matrices.)
Let uj,us, -+ ,u, be column vectors with p entries.

Suppose G is an invertible (p X p)-square matrix. Then the statements below are logically equivalent:—

(1) uy,ug,- - ,u, are linearly dependent.

(2) Guy,Guy,---,Gu, are linearly dependent.

Now suppose any one of the above holds (so that both hold).

Then, for any numbers oy, as, - -+ , ay, which are not all zero, the non-trivial linear relation cyu; +asus+- - -+ayu, =
0, holds if and only if the non-trivial linear relation o; Gu; + axGuy + - - - + a,, Gu,, = 0, holds.

Theorem (5). (‘Preservation’ of linear independence by left-multiplication by invertible matrices.)
Let uy,us,--- ,u, be column vectors with p entries.

Suppose G is an invertible (p X p)-square matrix. Then the statements below are logically equivalent:—



(1) uy,ug, - ,u, are linearly independent.

(2) Guy,Guy,---,Gu, are linearly independent.
Remark. We provide the proof for Theorem (5). That for Theorem (3) and Theorem (4) are left as exercises.

7. Proof of Theorem (5).
Let up,us, -+ ,u, be column vectors with p entries.

Suppose G is an invertible (p x p)-square matrix.

(a) Suppose the statement (1) holds: uj, us,--- ,u, are linearly independent.
[We want to deduce that Guy, Gug, - -, Gu, are linearly independent.
This amounts to deducing: For any numbers oy, ao,- - , 0y, if 0iGu; + aeGuy + -+ - + a,Gu,, = 0, then
ap=ag =+ =ay,=0]
Pick any numbers oy, as, -+, op,. Suppose a1 Guy + axGus + - - - + a, Guy, = 0.

Note that 0, = GO,. Then a;Gu; + axGuz + - - - + a,Gu, = GO,.
Then, by Lemma (2), ayu; + agug + - - - + a,u, = 0,.

Since up,uy, -+ ,u, are linearly independent, a; = as = -+ = a,, = 0.
Hence the statement (2) holds.

(b) Suppose the statement (2) holds: Guy, Gug, - - ,Gu,, are linearly independent.
[We want to deduce that uj,us,--- ,u, are linearly independent.
This amounts to deducing: For any numbers o, as, - , o, if cyu; +agus + -+ +apu, = 0, then o = ay =
=, =0]
Pick any numbers o, as, -, 0p,. Suppose aju; + asuy + - + apu, = 0.
Then by Lemma (2), we have a;Gu; + a2Gug + - - - + a,, Gu,, = GO, = 0,,.
Since Guy,Gus, - - - , Gu, are linearly independent, a; = g = --- = a,, = 0.

Hence the statement (1) holds.

8. Re-interpretation of the results described by Theorem (3), Theorem (4), Theorem (5) in terms of
row operations and row-equivalence.

Let uy,us, - -+ ,u,,v be column vectors with p entries.

Suppose uj, ub, - - ,u,, v’ are row-equivalent to uj, us, - -, u,, v under the same sequence of row operations.

(a) According to Theorem (3):—

if v is a linear combination of ui,us,--- ,u, with respect to scalars ai,as,--- ,q, then v' is a linear
combination of uj,u, -+ ,u), with respect to scalars ay, g, -+, ay,.

(b) According to Theorem (4):—

ifuy,uy,- - ,u, are linearly dependent with the non-trivial relation a;u; + agug + - - - + apu, = 0,, then
u’,uy, -+, u), are linear dependent with the non-trivial relation aju} + apuf + - - - + a,u), = 0,,.

(¢) According to Theorem (5):—
if uy,ug,- - ,u, are linearly independent, then u’,u),--- ,u}, are linear independent.

Remark. These conclusions are not obvious (and not easy to prove) when we think in terms of row operations
alone, because the ‘equality symbol’ does not appear in a relevant way in a discussion purely about row operations.

9. To give the intended application of Theorem (3), Theorem (4), Theorem (5) below, we embed the above re-
interpretation into the context of relations amongst columns of row-equivalent matrices.
Theorem (6). (Corollary to Theorem (3), Theorem (4) and Theorem (5).)
Let B,C be (p x q)-matrix. Denote the j-th columns of B,C by bj,c; respectively for each j =1,2,--- ,q.

Suppose B is row-equivalent to C. Then the statements below hold:—

(a) If b; is a linear combination of by, ,by,, -+, by

‘.

with respect to scalars o, ao, -+, then c; is a linear
combination of ¢, ,Cg,,- - - ,Ck, With respect to scalars oy, ag, -+ , oy,

(b) If by, ,bg,, -+ , by, are linearly dependent with the non-trivial relation a1by, + asbg, + -+ + a,bg, = 0y,
then cy,,Ck,, - ,Cy, are linear dependent with the non-trivial relation o;cy, + aaCp, + -+ - + pCr, = 0y,

(¢) If bg,,bk,, -+, by, are linearly independent, then cy,,Ck,, - ,Cg, are linear independent.



10. Theorem (6) is the crucial piece of theoretical machinery needed in an argument for Theorem (7), about the

11.

12.

13.

uniqueness of reduced row-echelon form row-equivalent to an arbitrarily given matrix.

With Theorem (7) established, we can confirm the validity of Theorem (8), which has been stated earlier.
Theorem (7). (Uniqueness of reduced row-echelon form which is row-equivalent to a given matrix.)
Suppose that A is a matrix, and B, C are reduced row-echelon forms.

Further suppose that B is row-equivalent to A, and C is also row-equivalent to A.

Then B =C.

Theorem (8). (Existence and uniqueness of reduced row-echelon form which is row-equivalent to a
given matrix.)

Suppose A is a matrix.
Then there exists some unique reduced row-echelon form A’ such that A’ is row-equivalent to A.

Remark. In the light of Theorem (8), it makes sense to write something like
‘the reduced row-echelon form which is row-equivalent to the matrix blah-blah-blah’.

Now, in view of Theorem (8), it makes sense to introduce the notion of ‘rank’ for an arbitrary matrix.
Definition. (Rank of an arbitrary matrix.)

Suppose A is a matrix.

Then the rank of A is defined to be the rank of the reduced row-echelon form which is row-equivalent to A.
Remark. This is one of several ways of formulating the definition for the notion of rank. They are, however,
logically equivalent to this formulation.

The proof of Theorem (7) is contained in the appendiz. The idea of the argument is illustrated in ‘concrete terms’

in Example (2) below.

In the argument for Theorem (7), we will need to use some observations about the ‘linear relations’ amongst the
columns of reduced row-echelon forms. These observations are of interest on their own, and are stated below in
the form of a theoretical result on its own. Example (2) will also serve as a ‘concrete’ illustration of the content of
Theorem (9.)

Theorem (9). (‘Linear relations’ amongst columns of a reduced row-echelon form.)

Let C be a reduced row-echelon form with q columns. Denote the j-th column of C by c; for each j =1,2,--- g,
and denote the (k,£)-th entry of C' by ~yye for each k,¢.

Denote the rank of C' by r, and suppose the pivot columns of C, from left to right, are the d;-th, ds-th, .... d,.-th
columns of C'.

Then:—

(a) ¢g4,,Cd,, " ,Cq, are linearly independent.

(b) For each j = 1,2,---,q, if ¢; is a free column, and the pivot columns strictly to the left of c; are the
dq-th, da-th, ..., dy-th columns, then c; is a linear combination of cq,,¢q,, - ,Cq,, With the linear relation

Cj =71jCdy +72jCdy +*** + VhjCdy -

(¢) For each k =1,2,---,r, the di-th column of C, (which is the column vector cg,,) is not a linear combination
of the columns of C' strictly to its left.

In particular, the di-th column of C' is not a linear combination of the dy-th, ds-th, ..., di_1-th columns of C'.
Proof of Theorem (9). Exercise (on working with the definition of reduced row-echelon form).

Example (2). (Illustration on the content of Theorem (9), and on the argument for Theorem (7).)

1 =2 000 1 10 -2
00 101 -2 30 2
0 0 011 -120 3
LetC=109 0 000 0 01 -3
0O 0 000 0 00 0
00 000 0 00 0

Denote the columns of C, from left to right, by c¢; for each j =1,2,---,9.

(a) C is a reduced row-echelon form with rank 4.

The pivot columns of C' are the 1-st, 3-rd, 4-th, 8-th columns, which are ¢y, c3, cq4, csg.



(b) We verify that These four column vectors

C1 = C3 = Cyq = Cg —

OO?OO}—'
OO?O»—‘O
OO?»—‘OO
OOrROOO

are linearly independent:—

e Pick any numbers a1, as, as, ay. Suppose ajcy + ascs + azcy + aycg = Og.

aq
Q2

Then gi = 06-

0
0

Therefore a; = g = a3 = a4 = 0.
(¢) The free columns of C' are the 2-nd, 5-th, 6-th, 7-th, 9-th columns, which are the column vectors co, 5, cg, €7, Cy
respectively.
Note that:—
* C2 = —2cy,
e c5=0-ci1+1-c3+1-cy,
e cg=1-c1 —2c3—1-cy,
e ¢ =1-c1 + 3c3 + 2¢y4,
e cg=2c;1+0-c3+3c4+0-cg,
e Cc9g = —2c1 + 2¢c3 + 3c4 — 3cs.
(d) Note that:—

e C3 is not a linear combination of c;.
e c4 is not a linear combination of c¢q, c3.
e cCg is not a linear combination of ¢y, c3, c4.
In fact, more can be said:—
e cC3 is not a linear combination of cq, cs.
(Reason: cg is just a scalar multiple of c;.)

e cy4 is not a linear combination of c¢q, co, c3.
(Reason: cg is just a linear combination of ¢1,cs3.)

e cg is not a linear combination of ¢y, cs, c3, ¢4, C5, Cg, C7.
(Reason: Each of ca, c5, cg, €7 is just a linear combination of ¢q, c3,cq4.)
(e) Let B be a (6 x 9)-matrix.
Denote the columns of B, from left to right, by b; for each j =1,2,---,9.
Denote the (k, ) — th entries of B by Sk, for each k, £.
Suppose B is a reduced row-echelon form, and suppose B is row-equivalent to C.
We want to verify that B = C:—

i. Recall that ¢y, c3, ¢y, cg are linearly independent.
Then, since B is row-equivalent to C, by, bs, by, bg are linearly independent.

ii. In particular, by is linearly independent.

Then b17é06.
1
0
Since B is a reduced row-echelon form, by = 8 =cj.
0
0
iii. Note that co = —2c;.
Then, since B is row-equivalent to C', we have by = —2b; = —2¢; = cs.
1 =2 Bz B Bis Bie Bir Bis Bio
0 0 Baz Poa Pas Pas Por Pog Pao
Sonmow B— | 0 0 B B3a [Bss Pz P DBas Pao
0 0 43 Baa Bas Bas Par Bas  Pag
0 0 P53 Bsa Bss Bse Bsv Bss Bso
0 0 PBe3 Bea Bes Bes Ber Bes Beo



iv.

vi.

vii.

viii.

Note that bs is not a linear combination of by.
Then there is at least one non-zero entry in bg from the second entry downwards.

Now, since B is a reduced row-echelon form, bs = = c3.

OOoOOoOoOrO

Note that by is not a linear combination of by, bs.
Then there is at least one non-zero entry in bs from the third entry downwards.

Now, since B is a reduced row-echelon form, by = = cy4.

SO, OO

Recall that ¢; = ¢c3 + ¢4, ¢g = ¢1 — 2c3 — ¢4, and c7 = ¢; + 3¢c3 + 2¢4.
Then, since B is row-equivalent to C', bs = b3 + by, bg = by — 2bg — by, b7 = by + 3bs + 2by.
Since by = ¢1, by = ¢3 and by = ¢4, we have bs = ¢5, bg = ¢g and b7 = c7 also.

1 =20 00 1 1 Big P
0 0 1 0 1 —2 3 fBag P

_ |0 0 0 1 1 -1 2 B35 P
SomowB= 19 g 0 00 0 0 Bag  Bao
0 0 0 0 0 0 0 pBss PBso

0 0 0 0 0 0 0 PBss Beo

Note that bg is not a linear combination of by, bs, by.
Then there is at least one non-zero entry in bg from the fourth entry downwards.

Now, since B is a reduced row-echelon form, by = = cg.

OO OOO

Recall that cg = —2¢q + 2¢3 + 3¢4 — 3cg.
Then, since B is row-equivalent to C, bg = —2by + 2bs + 3bs — 3bs.
Since by = ¢y, bg = ¢3, by = ¢4 and bg = cg, we have bg = cg also.

1 2000 1 10 -2
0 0 101 -2 30 2
0 0 011 -1 20 3
Hence B=13 o o g0 0 01 -3|=¢
0 0 000 0 00 0
0 0 000 0 00 0



