
3.4 Row-equivalence from the point of view of invertible matrices.

0. Assumed background.

• Whatever has been covered in Topics 1-2, especially:—
∗ 1.5 Linear combinations.
∗ 1.6 Linear dependence and linear independence.
∗ 1.8 Row operations and matrix multiplication.
∗ 2.2 Row-echelon forms and reduced row-echelon forms.

• 3.2 Invertibility and row operations.

Abstract. We introduce:—

• how to visualize row-equivalence through left-multiplication by invertible matrices.
• how linear relations amongst various columns in a given matrix are ‘preserved’ upon application of row opera-

tions on the given matrix.
• the uniqueness of reduced row-echelon form which is row-equivalent to a given matrix.
• the notion of rank for an arbitrary matrix.

The proof of the uniqueness result on reduced row-echelon form row-equivalent to an arbitrarily given matrix is
contained in the appendix, but the ideas in the proof is displayed in a ‘concrete’ example.

1. When we introduce the ‘dictionary’ between row operations and row-operation matrices, we discover the result
below, labelled (⋆) here:
Theorem (⋆).
Suppose A,B are matrices with p rows. Then the statements below are logically equivalent:—

(1) A,B are row-equivalent to each other.
(2) there are (finitely many) row-operation matrices G1, G2, · · · , Gk−1, Gk such that B = GkGk−1 · ... ·G2G1A.

Now suppose any one of the above holds (so that both hold). Then there are some row-operation matrices
H1,H2, · · · ,Hk−1,Hk such that:—

• A = H1H2 · ... ·Hk−1HkB, and
• for each j = 1, 2, · · · , k, the equalities HjGj = Ip and GjHj = Ip.

In terms of the re-formulation for the notion of invertibility in terms of row operations and row-operation matrices,
we can re-formulate Theorem (⋆) as:—

2. Theorem (1). (Re-formulation of row-equivalence in terms of multiplication by invertible matrices
from the left.)
Suppose A,B are matrices with p rows. Then the statements below are logically equivalent:—

(1) A,B are row-equivalent to each other.
(2) There exists some invertible (p× p)-square matrix G such that B = GA.

Now suppose any one of the above holds (so that both hold). Then, for the same G, the equality A = G−1B holds.
Remark. Such a re-formulation of row-equivalence is useful in theoretical discussions because through it, we can
think and work in terms of equalities which are as ‘simple’ as possible.

3. Example (1). (Illustrations on the content of Theorem (1).)

(a) Let A =

[
1 0 1 1
0 2 1 1
1 0 0 2

]
, B =

[
2 0 0 4
1 2 2 2
1 0 1 1

]
.

A is row-equivalent to B under the sequence of row operations below:

A
1R1+R2−−−−−→ 2R3−−→ R1↔R3−−−−−→ B.

Coincidentally, the equality B = GA holds, in which G is the invertible (3× 3)-square matrix given by

I3
1R1+R2−−−−−→ 2R3−−→ R1↔R3−−−−−→ G =

[
0 0 2
1 1 0
1 0 0

]
.
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(b) Let A =

 0 −1 −2 2 6
2 −3 0 0 0
−2 2 −2 1 1
2 −4 −2 2 6

, B =

 1 0 3 0 6
0 1 2 0 4
0 0 0 1 5
0 0 0 0 0

.

A is row-equivalent to B under the sequence of row operations below:

A
R1↔R4−−−−−→

1
2R1−−−→ −2R1+R2−−−−−−→ 2R1+R3−−−−−→ 1R2+R4−−−−−→ 2R2+R3−−−−−→ −1R3−−−→ 2R2+R1−−−−−→ 3R3+R1−−−−−→ 2R3+R2−−−−−→ B.

Coincidentally, the equality B = GA holds, in which G is the invertible (4× 4)-square matrix given by

I4
R1↔R4−−−−−→

1
2R1−−−→ −2R1+R2−−−−−−→ 2R1+R3−−−−−→ 1R2+R4−−−−−→ 2R2+R3−−−−−→ −1R3−−−→ 2R2+R1−−−−−→ 3R3+R1−−−−−→ 2R3+R2−−−−−→ G =

 0 −4 −3 3/2
0 −3 −2 1
0 −2 −1 1
1 1 0 −1

.

(c) Let A =

 0 0 2 3 5 −7 12
−1 2 1 −1 0 −2 0
2 −4 −1 3 2 1 5
3 −6 −1 5 4 0 10

, B =

 1 −2 0 0 0 1 1
0 0 1 0 1 −2 3
0 0 0 1 1 −1 2
0 0 0 0 0 0 0

.

A is row-equivalent to B under the sequence of row operations below:

A
R1↔R2−−−−−→ −1R1−−−→ −2R1+R3−−−−−−→ −3R1+R4−−−−−−→ R2↔R3−−−−−→ −2R2+R3−−−−−−→ −2R2+R4−−−−−−→ 1R2+R1−−−−−→ −2R3+R1−−−−−−→ −1R3+R2−−−−−−→ B.

Coincidentally, the equality B = GA holds, in which G is the invertible (4× 4)-square matrix given by

I4
R1↔R2−−−−−→ −1R1−−−→ −2R1+R3−−−−−−→ −3R1+R4−−−−−−→ R2↔R3−−−−−→ −2R2+R3−−−−−−→ −2R2+R4−−−−−−→

1R2+R1−−−−−→ −2R3+R1−−−−−−→ −1R3+R2−−−−−−→ G =

 −2 9 5 0
−1 6 3 0
1 −4 −2 0
0 −1 −2 1

.

(d) Let A =

 2 7 −8
1 4 −5
−1 −1 1
−2 −6 6

, B =

 1 0 0
0 1 0
0 0 1
0 0 0

.

A is row-equivalent to B under the sequence of row operations below:

A
R1↔R2−−−−−→ −2R1+R2−−−−−−→ 1R1+R3−−−−−→ 2R1+R4−−−−−→ 3R2+R3−−−−−→ 2R2+R4−−−−−→ −1R2−−−→

1
2R3−−−→ −4R2+R1−−−−−−→ −3R3+R1−−−−−−→ 2R3+R2−−−−−→ B.

Coincidentally, the equality B = GA holds, in which G is the invertible (4× 4)-square matrix given by

I4
R1↔R2−−−−−→ −2R1+R2−−−−−−→ 1R1+R3−−−−−→ 2R1+R4−−−−−→ 3R2+R3−−−−−→ 2R2+R4−−−−−→

−1R2−−−→
1
2R3−−−→ −4R2+R1−−−−−−→ −3R3+R1−−−−−−→ 2R3+R2−−−−−→ G =

 −1/2 1/2 −3/2 0
2 −3 1 0

3/2 −5/2 1/2 0
2 −2 0 1

.

(e) Let A =


1 1 1 −2 −3 1
2 2 2 −7 −8 −3
3 2 1 −5 −7 5
2 4 6 −4 −9 2
0 1 2 0 −2 1

, B =


1 0 −1 0 0 4
0 1 2 0 0 −3
0 0 0 1 0 3
0 0 0 0 1 −2
0 0 0 0 0 0

.

A is row-equivalent to B under the sequence of row operations below:

A
−2R1+R2−−−−−−→ −3R1+R3−−−−−−→ −2R1+R4−−−−−−→ R2↔R5−−−−−→ 1R2+R3−−−−−→ −2R2+R4−−−−−−→ 3R3+R5−−−−−→ 2R4+R5−−−−−→ −1R2+R1−−−−−−→ 2R3+R1−−−−−→ 1R4+R1−−−−−→ 2R4+R2−−−−−→ B.

Coincidentally, the equality B = GA holds, in which G is the invertible (5× 5)-square matrix given by

I5
−2R1+R2−−−−−−→ −3R1+R3−−−−−−→ −2R1+R4−−−−−−→ R2↔R5−−−−−→ 1R2+R3−−−−−→ −2R2+R4−−−−−−→ 3R3+R5−−−−−→ 2R4+R5−−−−−→

−1R2+R1−−−−−−→ 2R3+R1−−−−−→ 1R4+R1−−−−−→ 2R4+R2−−−−−→ G =


−7 0 2 1 −1
−4 0 0 2 −3
−3 0 1 0 1
−2 0 0 1 −2
−15 1 3 2 −1

.
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4. We are going to introduce a few results about linear combinations, linear dependence and linear independence
which can be applied in proving deep results. When seen from the point of view of invertible matrices, the results
themselves look obvious. However, they will give rise to highly non-trivial results when they are re-interpreted in
terms of row operations.
We start with a elementary result on ‘matrix algebra’:
Lemma (2). (‘Preservation’ of linear relations by left-multiplication by invertible matrices.)
Let u1,u2, · · · ,un,v be column vectors with p entries, and α1, α2, · · · , αn be numbers.
Suppose G is an invertible (p× p)-square matrix.
Then v = α1u1 + α2u2 + · · ·+ αnun if and only if Gv = α1Gu1 + α2Gu2 + · · ·+ αnGun.
Remark. As it will become apparent in the argument, the invertibility of G is needed in only one ‘direction’ of
the conclusion, where we wish to ‘cancel’ G from both sides of an equality in which G is initially present. Here for
the sake of simplicity, we state such a ‘weaker’ version of a more precise and general result.

5. Proof of Lemma (2).
Let u1,u2, · · · ,un,v be column vectors with p entries, and α1, α2, · · · , αn be numbers.
Suppose G is an invertible (p× p)-square matrix.

(a) Suppose v = α1u1 + α2u2 + · · ·+ αnun.
Then multiplying G to both sides of the above equality from the left, we obtain:

Gv = G(α1u1 + α2u2 + · · ·+ αnun)

= α1Gu1 + α2Gu2 + · · ·+ αnGun

(b) Suppose Gv = α1Gu1 + α2Gu2 + · · ·+ αnGun.
By assumption, the matrix inverse G−1 of the matrix G is well-defined.
Multiplying G−1 to both sides of the above equality from the left, we obtain:

v = Ipv = (G−1G)v = G−1(Gv) = G−1(α1Gu1 + α2Gu2 + · · ·+ αnGun)

= G−1[G(α1u1 + α2u2 + · · ·+ αnun)]

= (G−1G)(α1u1 + α2u2 + · · ·+ αnun)

= Ip(α1u1 + α2u2 + · · ·+ αnun)

= α1u1 + α2u2 + · · ·+ αnun

6. Theorem (3), Theorem (4) and Theorem (5) are immediate consequences of Lemma (2).
Theorem (3). (‘Preservation’ of linear combinations by left-multiplication by invertible matrices.)
Let u1,u2, · · · ,un,v be column vectors with p entries.
Suppose G is an invertible (p× p)-square matrix. Then the statements below are logically equivalent:—

(1) v is a linear combination of u1,u2, · · · ,un with respect to scalars α1, α2, · · · , αn.
(2) Gv is a linear combination of Gu1, Gu2, · · · , Gun with respect to scalars α1, α2, · · · , αn.

Theorem (4). (‘Preservation’ of linear dependence and non-trivial linear relations by left-multiplication
by invertible matrices.)
Let u1,u2, · · · ,un be column vectors with p entries.
Suppose G is an invertible (p× p)-square matrix. Then the statements below are logically equivalent:—

(1) u1,u2, · · · ,un are linearly dependent.
(2) Gu1, Gu2, · · · , Gun are linearly dependent.

Now suppose any one of the above holds (so that both hold).
Then, for any numbers α1, α2, · · · , αn which are not all zero, the non-trivial linear relation α1u1+α2u2+· · ·+αnun =

0p holds if and only if the non-trivial linear relation α1Gu1 + α2Gu2 + · · ·+ αnGun = 0p holds.

Theorem (5). (‘Preservation’ of linear independence by left-multiplication by invertible matrices.)
Let u1,u2, · · · ,un be column vectors with p entries.
Suppose G is an invertible (p× p)-square matrix. Then the statements below are logically equivalent:—
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(1) u1,u2, · · · ,un are linearly independent.
(2) Gu1, Gu2, · · · , Gun are linearly independent.

Remark. We provide the proof for Theorem (5). That for Theorem (3) and Theorem (4) are left as exercises.

7. Proof of Theorem (5).
Let u1,u2, · · · ,un be column vectors with p entries.
Suppose G is an invertible (p× p)-square matrix.

(a) Suppose the statement (1) holds: u1,u2, · · · ,un are linearly independent.
[We want to deduce that Gu1, Gu2, · · · , Gun are linearly independent.
This amounts to deducing: For any numbers α1, α2, · · · , αn, if α1Gu1 + α2Gu2 + · · · + αnGun = 0p then
α1 = α2 = · · · = αn = 0.]
Pick any numbers α1, α2, · · · , αn. Suppose α1Gu1 + α2Gu2 + · · ·+ αnGun = 0p.
Note that 0p = G0p. Then α1Gu1 + α2Gu2 + · · ·+ αnGun = G0p.
Then, by Lemma (2), α1u1 + α2u2 + · · ·+ αnun = 0p.
Since u1,u2, · · · ,un are linearly independent, α1 = α2 = · · · = αn = 0.
Hence the statement (2) holds.

(b) Suppose the statement (2) holds: Gu1, Gu2, · · · , Gun are linearly independent.
[We want to deduce that u1,u2, · · · ,un are linearly independent.
This amounts to deducing: For any numbers α1, α2, · · · , αn, if α1u1 +α2u2 + · · ·+αnun = 0p then α1 = α2 =

· · · = αn = 0.]
Pick any numbers α1, α2, · · · , αn. Suppose α1u1 + α2u2 + · · ·+ αnun = 0p.
Then by Lemma (2), we have α1Gu1 + α2Gu2 + · · ·+ αnGun = G0p = 0p.
Since Gu1, Gu2, · · · , Gun are linearly independent, α1 = α2 = · · · = αn = 0.
Hence the statement (1) holds.

8. Re-interpretation of the results described by Theorem (3), Theorem (4), Theorem (5) in terms of
row operations and row-equivalence.
Let u1,u2, · · · ,un,v be column vectors with p entries.
Suppose u′

1,u
′
2, · · · ,u′

n,v
′ are row-equivalent to u1,u2, · · · ,un,v under the same sequence of row operations.

(a) According to Theorem (3):—
if v is a linear combination of u1,u2, · · · ,un with respect to scalars α1, α2, · · · , αn then v′ is a linear
combination of u′

1,u
′
2, · · · ,u′

n with respect to scalars α1, α2, · · · , αn.
(b) According to Theorem (4):—

if u1,u2, · · · ,un are linearly dependent with the non-trivial relation α1u1 +α2u2 + · · ·+αnun = 0p, then
u′
1,u

′
2, · · · ,u′

n are linear dependent with the non-trivial relation α1u
′
1 + α2u

′
2 + · · ·+ αnu

′
n = 0p.

(c) According to Theorem (5):—
if u1,u2, · · · ,un are linearly independent, then u′

1,u
′
2, · · · ,u′

n are linear independent.

Remark. These conclusions are not obvious (and not easy to prove) when we think in terms of row operations
alone, because the ‘equality symbol’ does not appear in a relevant way in a discussion purely about row operations.

9. To give the intended application of Theorem (3), Theorem (4), Theorem (5) below, we embed the above re-
interpretation into the context of relations amongst columns of row-equivalent matrices.
Theorem (6). (Corollary to Theorem (3), Theorem (4) and Theorem (5).)
Let B,C be (p× q)-matrix. Denote the j-th columns of B,C by bj , cj respectively for each j = 1, 2, · · · , q.
Suppose B is row-equivalent to C. Then the statements below hold:—

(a) If bj is a linear combination of bk1
,bk2

, · · · ,bkn
with respect to scalars α1, α2, · · · , αn then cj is a linear

combination of ck1 , ck2 , · · · , ckn with respect to scalars α1, α2, · · · , αn.
(b) If bk1 ,bk2 , · · · ,bkn are linearly dependent with the non-trivial relation α1bk1 + α2bk2 + · · · + αnbkn = 0p,

then ck1
, ck2

, · · · , ckn
are linear dependent with the non-trivial relation α1ck1

+ α2ck2
+ · · ·+ αnckn

= 0p.
(c) If bk1

,bk2
, · · · ,bkn

are linearly independent, then ck1
, ck2

, · · · , ckn
are linear independent.
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10. Theorem (6) is the crucial piece of theoretical machinery needed in an argument for Theorem (7), about the
uniqueness of reduced row-echelon form row-equivalent to an arbitrarily given matrix.
With Theorem (7) established, we can confirm the validity of Theorem (8), which has been stated earlier.
Theorem (7). (Uniqueness of reduced row-echelon form which is row-equivalent to a given matrix.)
Suppose that A is a matrix, and B,C are reduced row-echelon forms.
Further suppose that B is row-equivalent to A, and C is also row-equivalent to A.
Then B = C.
Theorem (8). (Existence and uniqueness of reduced row-echelon form which is row-equivalent to a
given matrix.)
Suppose A is a matrix.
Then there exists some unique reduced row-echelon form A′ such that A′ is row-equivalent to A.
Remark. In the light of Theorem (8), it makes sense to write something like

‘the reduced row-echelon form which is row-equivalent to the matrix blah-blah-blah’.

11. Now, in view of Theorem (8), it makes sense to introduce the notion of ‘rank’ for an arbitrary matrix.
Definition. (Rank of an arbitrary matrix.)
Suppose A is a matrix.
Then the rank of A is defined to be the rank of the reduced row-echelon form which is row-equivalent to A.
Remark. This is one of several ways of formulating the definition for the notion of rank. They are, however,
logically equivalent to this formulation.

12. The proof of Theorem (7) is contained in the appendix. The idea of the argument is illustrated in ‘concrete terms’
in Example (2) below.
In the argument for Theorem (7), we will need to use some observations about the ‘linear relations’ amongst the
columns of reduced row-echelon forms. These observations are of interest on their own, and are stated below in
the form of a theoretical result on its own. Example (2) will also serve as a ‘concrete’ illustration of the content of
Theorem (9.)
Theorem (9). (‘Linear relations’ amongst columns of a reduced row-echelon form.)
Let C be a reduced row-echelon form with q columns. Denote the j-th column of C by cj for each j = 1, 2, · · · , q,
and denote the (k, ℓ)-th entry of C by γkℓ for each k, ℓ.
Denote the rank of C by r, and suppose the pivot columns of C, from left to right, are the d1-th, d2-th, .... dr-th
columns of C.
Then:—

(a) cd1 , cd2 , · · · , cdr are linearly independent.
(b) For each j = 1, 2, · · · , q, if cj is a free column, and the pivot columns strictly to the left of cj are the

d1-th, d2-th, ..., dh-th columns, then cj is a linear combination of cd1
, cd2

, · · · , cdh
, with the linear relation

cj = γ1jcd1
+ γ2jcd2

+ · · ·+ γhjcdh
.

(c) For each k = 1, 2, · · · , r, the dk-th column of C, (which is the column vector cdk
,) is not a linear combination

of the columns of C strictly to its left.
In particular, the dk-th column of C is not a linear combination of the d1-th, d2-th, ..., dk−1-th columns of C.

Proof of Theorem (9). Exercise (on working with the definition of reduced row-echelon form).

13. Example (2). (Illustration on the content of Theorem (9), and on the argument for Theorem (7).)

Let C =


1 −2 0 0 0 1 1 0 −2
0 0 1 0 1 −2 3 0 2
0 0 0 1 1 −1 2 0 3
0 0 0 0 0 0 0 1 −3
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

.

Denote the columns of C, from left to right, by cj for each j = 1, 2, · · · , 9.

(a) C is a reduced row-echelon form with rank 4.
The pivot columns of C are the 1-st, 3-rd, 4-th, 8-th columns, which are c1, c3, c4, c8.
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(b) We verify that These four column vectors

c1 =


1
0
0
0
0
0

 , c3 =


0
1
0
0
0
0

 , c4 =


0
0
1
0
0
0

 , c8 =


0
0
0
1
0
0


are linearly independent:—

• Pick any numbers α1, α2, α3, α4. Suppose α1c1 + α2c3 + α3c4 + α4c8 = 06.

Then


α1
α2
α3
α4
0
0

 = 06.

Therefore α1 = α2 = α3 = α4 = 0.
(c) The free columns of C are the 2-nd, 5-th, 6-th, 7-th, 9-th columns, which are the column vectors c2, c5, c6, c7, c9

respectively.
Note that:—

• c2 = −2c1,
• c5 = 0 · c1 + 1 · c3 + 1 · c4,
• c6 = 1 · c1 − 2c3 − 1 · c4,
• c7 = 1 · c1 + 3c3 + 2c4,
• c9 = 2c1 + 0 · c3 + 3c4 + 0 · c8,
• c9 = −2c1 + 2c3 + 3c4 − 3c8.

(d) Note that:—
• c3 is not a linear combination of c1.
• c4 is not a linear combination of c1, c3.
• c8 is not a linear combination of c1, c3, c4.

In fact, more can be said:—
• c3 is not a linear combination of c1, c2.

(Reason: c2 is just a scalar multiple of c1.)
• c4 is not a linear combination of c1, c2, c3.

(Reason: c2 is just a linear combination of c1, c3.)
• c8 is not a linear combination of c1, c2, c3, c4, c5, c6, c7.

(Reason: Each of c2, c5, c6, c7 is just a linear combination of c1, c3, c4.)
(e) Let B be a (6× 9)-matrix.

Denote the columns of B, from left to right, by bj for each j = 1, 2, · · · , 9.
Denote the (k, ℓ)− th entries of B by βkℓ for each k, ℓ.
Suppose B is a reduced row-echelon form, and suppose B is row-equivalent to C.
We want to verify that B = C:—

i. Recall that c1, c3, c4, c8 are linearly independent.
Then, since B is row-equivalent to C, b1,b3,b4,b8 are linearly independent.

ii. In particular, b1 is linearly independent.
Then b1 ̸= 06.

Since B is a reduced row-echelon form, b1 =


1
0
0
0
0
0

 = c1.

iii. Note that c2 = −2c1.
Then, since B is row-equivalent to C, we have b2 = −2b1 = −2c1 = c2.

So now B =


1 −2 β13 β14 β15 β16 β17 β18 β19
0 0 β23 β24 β25 β26 β27 β28 β29
0 0 β33 β34 β35 β36 β37 β38 β39
0 0 β43 β44 β45 β46 β47 β48 β49
0 0 β53 β54 β55 β56 β57 β58 β59
0 0 β63 β64 β65 β66 β67 β68 β69

.
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iv. Note that b3 is not a linear combination of b1.
Then there is at least one non-zero entry in b3 from the second entry downwards.

Now, since B is a reduced row-echelon form, b3 =


0
1
0
0
0
0

 = c3.

v. Note that b4 is not a linear combination of b1,b3.
Then there is at least one non-zero entry in b3 from the third entry downwards.

Now, since B is a reduced row-echelon form, b4 =


0
0
1
0
0
0

 = c4.

vi. Recall that c5 = c3 + c4, c6 = c1 − 2c3 − c4, and c7 = c1 + 3c3 + 2c4.
Then, since B is row-equivalent to C, b5 = b3 + b4, b6 = b1 − 2b3 − b4, b7 = b1 + 3b3 + 2b4.
Since b1 = c1, b3 = c3 and b4 = c4, we have b5 = c5, b6 = c6 and b7 = c7 also.

So now B =


1 −2 0 0 0 1 1 β18 β19
0 0 1 0 1 −2 3 β28 β29
0 0 0 1 1 −1 2 β38 β39
0 0 0 0 0 0 0 β48 β49
0 0 0 0 0 0 0 β58 β59
0 0 0 0 0 0 0 β68 β69

.

vii. Note that b8 is not a linear combination of b1,b3,b4.
Then there is at least one non-zero entry in b8 from the fourth entry downwards.

Now, since B is a reduced row-echelon form, b4 =


0
0
0
1
0
0

 = c8.

viii. Recall that c9 = −2c1 + 2c3 + 3c4 − 3c8.
Then, since B is row-equivalent to C, b9 = −2b1 + 2b3 + 3b4 − 3b8.
Since b1 = c1, b3 = c3, b4 = c4 and b8 = c8, we have b9 = c9 also.

Hence B =


1 −2 0 0 0 1 1 0 −2
0 0 1 0 1 −2 3 0 2
0 0 0 1 1 −1 2 0 3
0 0 0 0 0 0 0 1 −3
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 = C.
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