
2.5 Linear combinations from the point of view of systems of linear equations.

0. Assumed background.

• 1.5 Linear combinations.
• 2.4 Solving systems of linear equations.

Abstract. We introduce:—

• a necessary and sufficient condition, in terms of systems of linear equations, for a given column/row vector to
be a linear combination of a number of given column/row vectors, and

• a method for systematically determining whether a given column/row vector is a linear combination of a number
of given column/row vectors, and finding a corresponding linear relation when it is.

1. Recall the definition for the notion of linear combination for column vectors:
Let u1,u2, · · · ,uq be column vectors with p real (or complex) entries.

Let v be a column vector with p real (or complex) entries.
We say v is a linear combination of u1,u2, · · · ,up over the real (or complex) numbers if the statement
(LC) holds:

(LC) There exist some real (or complex) numbers α1, α2, · · · , αq such that v = α1u1 + α2u2 + · · ·+ αquq.

The expression α1u1 + α2u2 + · · · + αquq on its own is called the linear combination of the column vectors
u1,u2, · · · ,uq with respect to the real (or complex) scalars α1, α2, · · · , αq.
The equality ‘v = α1u1 + α2u2 + · · ·+ αquq’ is called a linear relation relating v with u1,u2, · · · ,up.
Remark. For simplicity of presentation, we will omit the explicit reference to ‘real numbers’ or ‘complex numbers’.
As long as we are consistently thinking in terms of either types of numbers throughout, everything result and
argument will work out fine.

2. Also recall the result below, labelled Lemma (⋆), which describes a ‘dictionary’ between linear combinations of
column vectors and matrix-vector products:—
Lemma (⋆).
Let A be an (p× q)-matrix and t be a column vector with q entries.
Suppose that for each j = 1, 2, · · · , q, the j-th column of A is aj and the j-th entry of t is tj .

(So A = [ a1 a2 · · · aq ] and t =


t1
t2
...
tq

.)

Then At = t1a1 + t2a2 + · · ·+ tqaq.

3. Question.
Suppose the column vectors u1,u2, · · · ,uq,v with p entries are given to us in ‘concrete’ terms.
How to determine whether v is a linear combination of u1,u2, · · · ,uq or not?
How do we approach this question?
Lemma (⋆) will be instrumental in answering this question.
With the help of Lemma (⋆), we are going to translate this question about a collection of column vectors into a
question about a system of linear equations determined by these columns vectors.
We can answer the latter question immediately and completely. Then with the help of Lemma (⋆) again, we will
translate the answer to the latter question back into a complete answer to the original question.
Answer to the question.
This is provided by Theorem (1) and Theorem (2).

4. Theorem (1). (Necessary and sufficient condition for a given column vector being a linear combination
of given column vectors, in terms of systems of linear equations.)
Suppose u1,u2, · · · ,uq,v be column vectors with q entries, and U is the (p×q)-matrix given by U = [ u1 u2 · · · uq ].
Then the statements (†), (†0) are logically equivalent:—

1



(†) v is a linear combination of u1,u2, · · · ,uq with respect to scalars α1, α2, · · · , αq.

(†0) The system LS(U, v) is consistent, with a solution


α1
α2
...
αn

.

Remark. When we do not mention the αj ’s, the conclusion in Theorem (1) gives:—

The statements (‡), (‡0) are logically equivalent:—

(‡) v is a linear combination of u1,u2, · · · ,uq.

(‡0) The system LS(U, v) is consistent.

5. With a purely logical consideration, we obtain Theorem (2) immediately from Theorem (1) as its corollary:—-
Theorem (2). (Corollary to Theorem (1).)
Suppose u1,u2, · · · ,uq,v are column vectors with p entries, and U = [ u1 u2 · · · uq ]. Then the statements
(∼‡), (∼‡0) are logically equivalent:—

(∼‡) v is not a linear combination of u1,u2, · · · ,uq.

(∼‡0) The system LS(U, v) is inconsistent.

6. Proof of Theorem (1).
Let u1,u2, · · · ,uq,v be column vectors with p entries, and U = [ u1 u2 · · · uq ].

(a) Suppose the statement (†) holds:
v is a linear combination of u1,u2, · · · ,uq with respect to scalars α1, α2, · · · , αq.

[We want to deduce the statement (†0): ‘The system LS(U, v) is consistent, with a solution


α1
α2
...
αq

.’]

By assumption, α1u1 + α2u2 + · · ·+ αquq = v.

Define t =


α1
α2
...
αq

.

Then by Lemma (⋆), Ut = α1u1 + α2u2 + · · ·+ αquq = v.
Therefore t is a solution of the system LS(U, v). By definition, LS(U, v) is consistent.
Hence the statement (†0) holds.

(b) Suppose the statement (†0) holds:

The system LS(U, v) is consistent, with a solution


α1
α2
...
αq

.

[We want to deduce the statement (†): ‘v is a linear combination of u1,u2, · · · ,uq with respect to scalars
α1, α2, · · · , αq.’]

Define the column vector t by t =


α1
α2
...
αq

.

By definition, v = Ut.
Then, by Lemma (⋆), v = Ut = α1u1 + α2u2 + · · ·+ αquq.
Therefore, by definition, v is a linear combination of u1,u2, · · · ,uq with respect to scalars α1, α2, · · · , αq.
Hence the statement (†) holds.
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7. Theorem (1) and Theorem (2), combined with what we know about solving equations, suggest an ‘algorithm’ for
determining whether a ‘concretely’ given column vector is a linear combination of a ‘concretely’ given collection of
column vectors.
‘Algorithm’ associated to Theorem (1) and Theorem (2).
Let u1,u2, · · · ,uq,v be column vectors with p entries. We are going to determine whether v is a linear combination
of u1,u2, · · · ,uq, and to obtain a linear relation relating v with u1,u2, · · · ,uq when it is:
Step (1). Form the matrix U = [ u1 u2 · · · uq ].
Then form the augmented matrix representation C = [ U v ] for the system LS(U, v). Go to Step (2).
Step (2). Obtain some row-echelon form C♯ which is row-equivalent to C. Go to Step (3).
Step (3). Inspect C♯, and ask:—
Is the last column of C♯ a free column?

• If no, then conclude that LS(U, v) is inconsistent.
Further conclude that v is not a linear combination of u1,u2, · · · ,uq.

• If yes, then conclude that LS(U, v) is consistent.
Further conclude that v is a linear combination of u1,u2, · · · ,uq.
To obtain a linear relation relating v with u1,u2, · · · ,uq, go to Step (4).

Step (4). Further obtain from C♯ a reduced row-echelon form C ′ which is row equivalent to C.

Read off from C ′ a solution of LS(U, v), say,


α1
α2
...
αq

.

Conclude that v = α1u1 + α2u2 + · · ·+ αquq.

8. Example (1). (Illustrations on the algorithm associated to Theorem (1) and Theorem (2).)

(a) Let u1 =

[
−7
5
1

]
, u2 =

[
−6
5
0

]
, u3 =

[
−12
7
4

]
, v =

[
−33
24
5

]
.

We want to determine whether v is a linear combination of u1,u2,u3, and to write down a linear relation
relating v with u1,u2,u3 when it is.
Define U = [ u1 u2 u3 ].
The augmented matrix representation of LS(U, v) is

C =

[
−7 −6 −12 −33
5 5 7 24
1 0 4 5

]
.

We obtain a row-echelon form C♯ which is row-equivalent to C:

C −→ · · · · · · · · · −→ C♯ =

[
1 0 4 5
0 1 −3 −1
0 0 2 4

]
.

Note that the last column of C♯ is a free column. Then LS(U, v) is consistent (and v is a linear combination
of u1,u2,u3).
(What is done next is to obtain a linear relation relating v with u1,u2,u3.)
We further obtain from C♯ a reduced row-echelon form C ′ which is row-equivalent to C:

C −→ · · · · · · · · · −→ C♯ −→ · · · · · · · · · −→ C ′ =

[
1 0 0 −3
0 1 0 5
0 0 1 2

]

C ′ is the augmented matrix representation of the system x1 = −3
x2 = 5

x3 = 2

A solution of LS(U, v) is given by
[
−3
5
2

]
.

Then v is a linear combination of u1,u2,u3, with a linear relation given by v = −3u1 + 5u2 + 2u3.
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(b) Let u1 =

 1
3
−4
1

, u2 =

−1
−2
3
2

, u3 =

 2
6
−7
0

 , u4 =

 −7
−18
23
7

, v =

−23
−55
73
33

.

We want to determine whether v is a linear combination of u1,u2,u3,u4, and to write down a linear relation
relating v with u1,u2,u3,u4 when it is.
Define U = [ u1 u2 u3 u4 ].
The augmented matrix representation of LS(U, v) is

C =

 1 −1 2 −7 −23
3 −2 6 −18 −55
−4 3 −7 23 73
1 2 0 7 33

.
We obtain a row-echelon form C♯ which is row-equivalent to C:

C −→ · · · · · · · · · −→ C♯ =

 1 −1 2 −7 −23
0 1 0 3 14
0 0 1 −2 −5
0 0 0 1 4


(What is done next is to obtain a linear relation relating v with u1,u2,u3,u4.)
We further obtain from C♯ a reduced row-echelon form C ′ which is row-equivalent to C:

C −→ · · · · · · · · · −→ C♯ −→ · · · · · · · · · −→ C ′ =

 1 0 0 0 1
0 1 0 0 2
0 0 1 0 3
0 0 0 1 4


C ′ is the augmented matrix representation of the system

x1 = 1
x2 = 2

x3 = 3
x4 = 4

A solution of LS(U, v) is given by

12
3
4

.

Then v is a linear combination of u1,u2,u3,u4, with a linear relation given by v = 1 · u1 + 2u2 + 3u3 + 4u4.

(c) Let u1 =

 1
2
1
−2

, u2 =

 3
6
3
−6

, u3 =

−2
−3
−4
3

, u4 =

 3
5
6
−6

, u5 =

 21
38
33
−42

, v =

00
0
1

.

We want to determine whether v is a linear combination of u1,u2,u3,u4,u5, and to write down a linear relation
relating v with u1,u2,u3,u4,u5 when it is.
Define U = [ u1 u2 u3 u4 u5 ].
The augmented matrix representation of LS(U, v) is

C =

 1 3 −2 3 21 0
2 6 −3 5 38 0
1 3 −4 6 33 0
−2 −6 3 −6 −42 1


We obtain a row-echelon form C♯ which is row-equivalent to C:

C −→ · · · · · · · · · −→ C♯ =

 1 3 −2 3 21 0
0 0 1 −1 −4 0
0 0 0 1 4 0
0 0 0 0 0 1


Note that the last column of C♯ is not a free column. Then LS(U, v) is inconsistent.
Therefore v is not a linear combination of u1,u2,u3,u4,u5.

(d) Let u1 =

11
3
2

, u2 =

10
4
2

, u3 =

 1
−1
4
1

, u4 =

10
3
1

, v =

10
1
0

.
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We want to determine whether v is a linear combination of u1,u2,u3,u4, and to write down a linear relation
relating v with u1,u2,u3,u4 when it is.
Define U = [ u1 u2 u3 u4 ].
The augmented matrix representation of LS(U, v) is

C =

 1 1 1 1 1
1 0 −1 0 0
3 4 4 3 1
2 2 1 1 0

.
We obtain a row-echelon form C♯ which is row-equivalent to C:

C −→ · · · · · · · · ·C♯ =

 1 1 1 1 1
0 1 1 0 −2
0 0 1 1 3
0 0 0 0 1


Note that the last column of C♯ is not a free column.
Then LS(U, v) is inconsistent.
Therefore v is not a linear combination of u1,u2,u3,u4.

(e) Let u1 =

 1
1
2
−1

, u2 =

 3
3
6
−3

, u3 =

 1
2
1
−3

, u4 =

−2
−3
−2
1

, u5 =

 1
−3
10
−5

, v =

−3
−4
−3
−1

.

We want to determine whether v is a linear combination of u1,u2,u3,u4,u5, and to write down a linear relation
relating v with u1,u2,u3,u4,u5 when it is.
Define U = [ u1 u2 u3 u4 u5 ].
The augmented matrix representation of LS(U, v) is

C =

 1 3 1 −2 1 −3
1 3 2 −3 −3 −4
2 6 1 −2 10 −3
−1 −3 −3 1 −5 −1

.
We obtain a row-echelon form C♯ which is row-equivalent to C:

C −→ · · · · · · · · · −→ C♯ =

 1 3 1 −2 1 −3
0 0 1 −1 −4 −1
0 0 0 1 4 2
0 0 0 0 0 0


Note that the last column of C♯ is a free column. Then LS(U, v) is consistent (and v is a linear combination
of u1,u2,u3,u4,u5).
(What is done next is to obtain a linear relation relating v with u1,u2,u3,u4,u5.)
We further obtain from C♯ a reduced row-echelon form C ′ which is row-equivalent to C:

C −→ · · · · · · · · · −→ C♯ −→ · · · · · · · · · −→ C ′ =

 1 3 0 0 9 0
0 0 1 0 0 1
0 0 0 1 4 2
0 0 0 0 0 0

.
C ′ is the augmented matrix representation of the system

x1 + 3x2 + 9x5 = 0
x3 = 1

x4 + 4x5 = 2
0 = 0

,

A solution of LS(U, v) is given by

 3
−1
0
−2

.

Then v is a linear combination of u1,u2,u3,u4,u5,u6, with a linear relation given by v = 1 · u1 + 0 · u2 +
3u3 + 2u4 + 0 · u5 + 0 · u6.
Then v is a linear combination of u1,u2,u3,u4,u5 with a linear relation given by v = 3u1−1 ·u2+0 ·u3−2u4.
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(f) Let u1 =

 0
−1
2
3

, u2 =

 0
2
−4
−6

, u3 =

 2
1
−1
−1

, u4 =

 3
−1
3
5

, u5 =

50
2
4

, u6 =

−7
−2
1
0

, v =

120
5
10

.

We want to determine whether v is a linear combination of u1,u2,u3,u4,u5,u6, and to write down a linear
relation relating v with u1,u2,u3,u4,u5,u6 when it is.
Define U = [ u1 u2 u3 u4 u5 u6 ].
The augmented matrix representation of LS(U, v) is

C =

 0 0 2 3 5 −7 12
−1 2 1 −1 0 −2 0
2 −4 −1 3 2 1 5
3 −6 −1 5 4 0 10

.
We obtain a row-echelon form C♯ which is row-equivalent to C:

C −→ · · · · · · · · · −→ C♯ =

 1 −2 −1 1 0 2 0
0 0 1 1 2 −3 5
0 0 0 1 1 −1 2
0 0 0 0 0 0 0


Note that the last column of C♯ is a free column. Then LS(U, v) is consistent (and v is a linear combination
of u1,u2,u3,u4,u5,u6).
(What is done next is to obtain a linear relation relating v with u1,u2,u3,u4,u5,u6.)
We further obtain from C♯ a reduced row-echelon form C ′ which is row-equivalent to C:

C −→ · · · · · · · · · −→ C♯ · · · · · · · · · −→ C ′ =

 1 −2 0 0 0 1 1
0 0 1 0 1 −2 3
0 0 0 1 1 −1 2
0 0 0 0 0 0 0


C ′ is the augmented matrix representation of the system

x1 − 2x2 + x6 = 1
x3 + x5 − 2x6 = 3

x4 + x5 − x6 = 2
0 = 0

A solution of LS(U, v) is given by


1
0
3
2
0
0

.

Then v is a linear combination of u1,u2,u3,u4,u5,u6, with a linear relation given by v = 1 · u1 + 0 · u2 +
3u3 + 2u4 + 0 · u5 + 0 · u6.

9. Now also recall the result below, labelled Lemma (⋆⋆), which describes a‘dictionary’ between linear combinations of
column vectors and that of row vectors:—
Lemma (⋆⋆). (‘Dictionary’ between linear combinations of column vectors and that of row vectors.)
Suppose v,u1,u2, · · · ,uq are column/row vectors with p entries, and α1, α2, · · · , αq are scalars.
Then the statements below are logically equivalent:

(1) The column/row vector v is a linear combination of the column/row vectors u1,u2, · · · ,uq with respect to
scalars α1, α2, · · · , αq.

(2) The row/column vector vt is a linear combination of the row/column vectors ut
1,u

t
2, · · · ,ut

q with respect to
scalars α1, α2, · · · , αq.

10. Combining Theorem (1), Theorem (2), and Lemma (⋆⋆), we obtain the result below:—-
Theorem (3). (Necessary and sufficient condition for a given row vector being a linear combination
of given row vectors, in terms of systems of linear equations.)

Suppose w1,w2, · · · ,wp, z are row vectors with q entries, and W =


w1
w2

...
wp

. Then the statements below hold:—
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(a) The statements (†∗), (†∗0) are logically equivalent:—
(†∗) z is a linear combination of w1,w2, · · · ,wp with regard to scalars β1, β2, · · · , βp.

(†∗0) The system LS(W t, zt) is consistent, with a solution


β1
β2
...
βp

.

(b) The statements (∼‡∗), (∼‡∗0) are logically equivalent:—
(∼‡∗) z is not a linear combination of w1,w2, · · · ,wp.
(∼‡∗0) The system LS(W t, zt) is inconsistent.

11. Example (2). (Illustrations on the application of Theorem (3).)

(a) Let w1 = [ −7 5 1 1 ], w2 = [ −6 5 0 1 ], w3 = [ −12 7 4 1 ], z = [ −33 24 5 4 ].
We want to determine whether z is a linear combination of w1,w2,w3, and to write down a linear relation
relating z with w1,w2,w3 when it is.

Define W =

[
w1
w2
w3

]
.

The augmented matrix representation of LS(W t, zt) is

C =

 −7 −6 −12 −33
5 5 7 24
1 0 4 5
1 1 1 4

.
We obtain a row-echelon form C♯ which is row-equivalent to C:

C −→ · · · · · · · · · −→ C♯ =

 1 0 4 5
0 1 −3 −1
0 0 2 4
0 0 0 0

.
Note that the last column of C♯ is a free column. Then LS

(
W t, zt

)
is consistent (and z is a linear combination

of w1,w2,w3).
(What is done next is to obtain a linear relation relating z with w1,w2,w3.)
We further obtain from C♯ a reduced row-echelon form C ′ which is row-equivalent to C:

C −→ · · · · · · · · · −→ C♯ −→ · · · · · · · · · −→ C ′ =

 1 0 0 −3
0 1 0 5
0 0 1 2
0 0 0 0


C ′ is the augmented matrix representation of the system

x1 = −3
x2 = 5

x3 = 2
0 = 0

A solution of LS(W t, zt) is given by
[
−3
5
2

]
.

Then z is a linear combination of w1,w2,w3, with a linear relation given by z = −3w1 + 5w2 + 2w3.
(b) Let w1 = [ 1 1 3 2 0 ], w2 = [ 1 0 4 2 2 ], w3 = [ 1 −1 4 1 4 ], w4 = [ 1 0 3 1 2 ],

z = [ 1 0 1 0 1 ].
We want to determine whether z is a linear combination of w1,w2,w3,w4, and to write down a linear relation
relating z with w1,w2,w3,w4 when it is.

Define W =

 w1
w2
w3
w4

.
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The augmented matrix representation of LS(W t, zt) is

C =


1 1 1 1 1
1 0 −1 0 0
3 4 4 3 1
2 2 1 1 0
0 2 4 2 1

.
We obtain a row-echelon form C♯ which is row-equivalent to C:

C −→ · · · · · · · · · −→ C♯ =


1 1 1 1 1
0 1 1 0 −2
0 0 1 1 3
0 0 0 0 1
0 0 0 0 0


Note that the last column of C♯ is not a free column.
Then LS(W t, zt) is inconsistent.
Therefore z is not a linear combination of w1,w2,w3,w4.
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