
2.4 Solving systems of linear equations.

0. Assumed background.

• 2.1 Systems of linear equations.
• 2.2 Row-echelon forms and reduced row-echelon forms.
• 2.3 Existence of reduced row-echelon form row-equivalent to given matrix, (and the uniqueness question).

Preferred to have been prepared with.

• 1.5 Linear combinations.
• 1.6 Linear dependence and linear independence.

Abstract. We introduce:—

• how to systematically determine, through the use of row-equivalence and row-echelon forms, whether a given
system of linear equations is consistent or inconsistent, and whether the system has two or more solutions when
it is consistent,

• how to fully describe, through the use of reduced row-echelon forms, all solutions of a consistent system of
linear equations.

1. Whenever we are given an equation (of any kind), we are interested in the three questions:—

(1) How to determine whether the equation has any solution (with or without writing down a solution of the system
explicitly), or any solution beyond the ‘obvious’ ones?

(2) How to write down one solution of the the equation?
(3) How to describe fully and systematically all solutions of the equation?

When the equation is a system of linear equations, we can answer these questions comprehensively.
At the heart of the answers to these questions is Theorem (1), which is a theoretical result about row-equivalent
matrices.

2. Theorem (1).
Let A,A′ be (m× n)-matrices, and b,b′ be column vectors with m entries.
Suppose A,b and A′,b′ are row-equivalent under the same sequence of row operations.
Suppose t is a column vector with n entries.
Then t is a solution of LS(A, b) if and only if t is a solution of LS(A′, b′).
Remark on terminology. In set language, the conclusion of Theorem (1) can be presented as:—

• ‘The solution set of LS(A, b) is equal to the solution set of LS(A′, b′).’

3. Proof of Theorem (1).
Let A,A′ be (m× n)-matrices, and b,b′ be column vectors with m entries.
Suppose A,b are respectively row-equivalent to A′,b′ under the same sequence of row operations, say,

A
ρ1−−−−−→ ρ2−−−−−→ · · · · · · · · · ρk−−−−−→ A′, b

ρ1−−−−−→ ρ2−−−−−→ · · · · · · · · · ρk−−−−−→ b′.

• Preparation.
The row operations ρ1, ρ2, · · · , ρk correspond to row-operation matrices M [ρ1],M [ρ2], · · · ,M [ρk] respectively,
and the equalities

A′ = M [ρk] · · ·M [ρ2]M [ρ1]A, b′ = M [ρk] · · ·M [ρ2]M [ρ1]b

hold.
For each ℓ, denote by ρ̃ℓ the ‘reverse row operation’ for ρℓ.
ρ̃ corresponds to the row-operation matrix M [ρ̃], and the equality M [ρ̃]M [ρ] = Ip holds.
Then the equalities

A = M [ρ̃1]M [ρ̃2] · · ·M [ρ̃k]A
′, b = M [ρ̃1]M [ρ̃2] · · ·M [ρ̃k]b

′

hold.

Suppose t is a column vector with n entries.
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(a) Suppose t is a solution of LS(A, b). Then by definition, we have At = b.
Therefore A′t = M [ρk] · · ·M [ρ2]M [ρ1]At = M [ρk] · · ·M [ρ2]M [ρ1]b = b′.
Hence t is a solution of LS(A, b).

(b) Suppose t is a solution of LS(A′, b′). Then A′t = b′.
We have At = M [ρ̃1]M [ρ̃2] · · ·M [ρ̃k]A

′t = M [ρ̃1]M [ρ̃2] · · ·M [ρ̃k]b
′ = b.

Hence t is a solution of LS(A′, b′).

4. Comments on the implication of Theorem (1), in the context of solving systems of linear equations.
According to Theorem (1), to solve any given system of linear equations LS(A, b), it suffices for us to look for some
appropriate system LS(A′, b′) for which it happens that:—

• the respective augmented matrix representations

[ A b ], [ A′ b′ ]

of the two systems are row-equivalent to each other, (so that A,b are respectively row-equivalent to A′,b′

under the same sequence of row operations),
• it is easy to read off from the system LS(A′, b′) the answer to the question whether the system is consistent,

and
• (where the system is consistent,) it is easy to read off all solutions of the system LS(A′, b′), and to give a full

and systematic description of the solutions.

Question. But what kind of A′,b′ shall we choose?
Answer. We have learnt about reduced row-echelon forms, and we know that:—

• it is easy to handle a system of linear equations when its augmented matrix representation is a reduced row-
echelon form, and

• every matrix is row-equivalent to some reduced row-echelon form, which can be obtained methodically, say,
with an application of Gaussian elimination.

For this reason, it is very often convenient to choose A′,b′ in such a way that [ A′ b′ ] is a reduced row echelon
form.
(That said, it is not an absolute necessity to do so all the time.)
You have in fact worked in this spirit when ‘solving simultaneous linear equations’ in school maths despite knowing
little of the terminologies here.
Below is an illustration from school maths.

5. Illustration.
Solve the simultaneous equations

(S) :

{
x1 + 3x2 = 3

2x1 − x2 = 4

(a) What we would do in school maths to handle this problem would be to present such a chain of manipulations:—

(S1)

{
2x1 + 3x2 = 3 —– (1)
x1 − x2 = 4 —– (2)

‘Adding (−2 times Equation (2)) to Equation (2)’: (S2)

{
5x2 = −5 —– (3)

x1 − x2 = 4 —– (2)

‘Multiplying 1/5 to Equation (3)’: (S3)

{
x2 = −1 —– (4)

x1 − x2 = 4 —– (2)

‘Adding Equation (4) to Equation (2)’: (S4)

{
x2 = −1 —– (4)

x1 = 3 —– (5)

‘Swapping Equation (4) and Equation (5)’: (S′)

{
x1 = 3 —– (5)

x2 = −1 —– (4)

And then we conclude that:—
• A solution of (S) is given by ‘x1 = 3 and x2 = −1’, and it is the only solution of (S).
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(b) Translated in terms of matrices and vectors, and further presented in terms of augmented matrix representations
of various systems, what we have actually done by writing down this chain of manipulations is nothing but
presenting the sequence of row operations below, starting with the augmented matrix representation C of (S)
and endinig at some reduced row-echelon form C ′:—

C=
[
2 3 3
1 −1 4

]
−2R2+R1−−−−−−→

[
0 5 −1
1 −1 4

] − 1
5R2−−−−→

[
0 1 −1
1 −1 4

]
1R1+R2−−−−−→

[
0 1 −1
1 0 3

]
R1↔R2−−−−−→C ′=

[
1 0 3
0 1 −1

]
(Seen in this way, the symbols ‘x1’, ‘x2’, ‘+’, ‘=’ in the chain of manipulations are just book-keeping devices
for keeping track of the ‘givens’ in the various systems presented in the chain of manipulation.)
Then we reason:—

• Theorem (1) says that:—
t is a solution of the system (S), whose augmented matrix representation is C,

if and only if
t is a solution of the system (S′), whose augmented matrix representation is C ′.

Since
[

3
−1

]
is the only solution of (S′), it is the only solution of (S).

6. Coupled with what we have learnt about row-echelon forms and reduced row-echelon forms, Theorem (1) gives
Theorem (2) and Theorem (3).
Theorem (2).
Let A be an (m× n)-matrix, and b be a column vector with m entries.
Suppose C = [ A b ], which is the augmented matrix representation of LS(A, b).

Further suppose C♯ is a row-echelon form which is row-equivalent to C.
Write C♯ =

[
A♯ b♯

]
, in which A♯ stands for the (m×n)-matrix given by the first n columns of C♯, and b♯ stands

for the last column of C♯.
Then A♯ is a row-echelon form which is row-equivalent to A.
Moreover, the statements below are logically equivalent:—

(a) The system LS(A, b) is consistent.

(b) the last column of C♯ is a free column.

(c) The rank of A♯ is equal to the rank of C♯.

Theorem (3).
Let A be an (m× n)-matrix, and b be a column vector with m entries.
Suppose C = [ A b ], which is the augmented matrix representation of LS(A, b).

Further suppose C♯ is a row-echelon form which is row-equivalent to C.
Write C♯ =

[
A♯ b♯

]
, in which A♯ stands for the (m×n)-matrix given by the first n columns of C♯, and b♯ stands

for the last column of C♯.
Suppose LS(A, b) is consistent. (So the last column of C♯ is a free column, and the rank of A♯ is equal to the rank
of C♯.)

(a) Denote the rank of C♯ by r. Then r ≤ n.
Moreover, there are two alternatives:—

• (Case 1.) Suppose r = n. Then LS(A, b) has a unique solution.
• (Case 2.) Suppose r < n. Then LS(A, b) has two or more solutions.

(b) Further suppose the pivot columns of C♯ are, from left to right, the d1-th, d2-th, ..., dr-th columns of C♯, with
d1 = 1.
Then there is some reduced row-echelon form C ′ of rank r, whose pivot columns, from left to right, are the
d1-th, d2-th, ..., dr-th columns of C ′, such that C ′ is row-equivalent to C.

(c) Write C ′ = [ A′ b′ ], in which:
• A′ stands for the (m× n)-matrix given by the first n columns of C ′, and
• b′ stands for the last column of C ′.

Then:—
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• A′ is a reduced row-echelon form of rank r which is row-equivalent to A♯, and
• the pivot columns of A′ are, from left to right, the d1-th, d2-th, ..., dr-th columns of A′.

(d) Denote the top r entries of b′, which is the last column of C ′, by β1, β2, · · · , βr, from the top downwards.
Denote by p the column vectors with n entries, in which:—

• the d1-th, d2-th, ..., dr-th entries are β1, β2, · · · , βr respectively, and
• all other entries are 0.

Then p is a (particular) solution of LS((, A) , b).
(e) Suppose r = n.

(So there is no free column in C ′ other than the last column of C ′.)
Then p is the one and only one solution of LS(A, b).

(f) Suppose r < n (instead of supposing ‘r = n’).
Now further suppose the free columns of C ′, from left to right, are f1-th, f2-th, ..., fn−r-th, fn+1−r-th columns.
For each ℓ = 1, 2, · · · , n − r, denote the top r entries of the fℓ-th column of C ′ by α1ℓ, α2ℓ, · · · , αrℓ, from the
top downwards.
Further denote by qℓ the column vector with n entries, in which:—

• the d1-th, d2-th, ..., dr-th entries are −α1ℓ,−α2ℓ, · · · ,−αrℓ,
• the fℓ-th entry is 1, and
• all other entries are 0.

Then the statements below hold:—
i. The column vectors q1,q2, · · · ,qn−r are linearly independent.
ii. Suppose t is a column vector with n entries.

Then t is a solution of LS(A, b) if and only if
there are some numbers u1, u2, · · · , un−r such that t = p+ u1q1 + u2q2 + · · ·+ un−rqn−r.

7. Example (1). (How to solve a system of linear equations, through finding a reduced row-echelon
form, as suggested by Theorem (2) and Theorem (3).)

(a) We solve the system of linear equations LS(A, b), in which A,b are given by

A =

 1 −1 2 −7
3 −2 6 −18
−4 3 −7 23
1 2 0 7

, b =

 −23
−55
73
33

.
The augmented matrix representation C of LS(A, b) is given by

C =

 1 −1 2 −7 −23
3 −2 6 −18 −55
−4 3 −7 23 73
1 2 0 7 33

.
We obtain a row-echelon form C♯ and a reduced row-echelon form C ′ which are row-equivalent to C, through
the sequence of row operations below:

C
−3R1+R2−−−−−−→ 4R1+R3−−−−−→ −1R1+R4−−−−−−→ 1R2+R3−−−−−→ −3R2+R4−−−−−−→ 2R3+R4−−−−−→ C♯ 1R2+R1−−−−−→ −2R3+R1−−−−−−→ −3R4+R2−−−−−−→ 2R4+R3−−−−−→ C ′

Note that C ′ =

 1 0 0 0 1
0 1 0 0 2
0 0 1 0 3
0 0 0 1 4

, and it is the augmented matrix representation for the system LS(A′, b′),

in which

A′ =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, b′ =

 1
2
3
4


(Note that LS(A′, b′) reads 

x1 = 1
x2 = 2

x3 = 3
x4 = 4

when it is written out explicitly.)
It follows that:—
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the one and only one solution of LS(A, b) is

 1
2
3
4

.

(b) We solve the system of linear equations LS(A, b), in which A,b are given by

A =

 1 3 −2 3 21
2 6 −3 5 38
1 3 −4 6 33
−2 −6 3 −6 −42

, b =

 0
0
0
1

.
The augmented matrix representation C of LS(A, b) is given by

C =

 1 3 −2 3 21 0
2 6 −3 5 38 0
1 3 −4 6 33 0
−2 −6 3 −6 −42 1

.
We obtain a row-echelon form C♯ which is row-equivalent to C, through the sequence of row operations below:

C
−2R1+R2−−−−−−→ −1R1+R3−−−−−−→ 2R1+R4−−−−−→ 2R2+R3−−−−−→ 1R2+R4−−−−−→ 1R3+R4−−−−−→ C♯

Note that C♯ =

 1 3 −2 3 21 0
0 0 1 −1 −4 0
0 0 0 1 4 0
0 0 0 0 0 1

, and it is the augmented matrix representation for the system

LS
(
A♯, b♯

)
, in which

A♯ =

 1 3 −2 3 21
0 0 1 −1 −4
0 0 0 1 4
0 0 0 0 0

, b♯ =

 0
0
0
1


(Note that LS

(
A♯, b♯

)
reads

x1 + 3x2 − 2x3 + 3x4 + 21x5 = 0
x3 − x4 − 4x5 = 0

x4 + 4x5 = 0
0 = 1

when it is written out explicitly.)
It follows that:—

LS(A, b) has no solution.
(c) We solve the system of linear equations LS(A, b), in which A,b are given by

A =

 1 3 1 −2 1
1 3 2 −3 −3
2 6 1 −2 10
−1 −3 −3 1 −5

, b =

 −3
−4
−3
−1

.
The augmented matrix representation C of LS(A, b) is given by

C =

 1 3 1 −2 1 −3
1 3 2 −3 −3 −4
2 6 1 −2 10 −3
−1 −3 −3 1 −5 −1

.
We obtain a row-echelon form C♯ and a reduced row-echelon form C ′ which are row-equivalent to C, through
the sequence of row operations below:

C
−1R1+R2−−−−−−→ −2R1+R3−−−−−−→ 1R1+R4−−−−−→ 1R2+R3−−−−−→ 2R2+R4−−−−−→ 3R3+R4−−−−−→C♯ −1R2+R1−−−−−−→ 1R3+R1−−−−−→ 1R3+R2−−−−−→C ′

Note that C ′ =

 1 3 0 0 9 0
0 0 1 0 0 1
0 0 0 1 4 2
0 0 0 0 0 0

, and it is the augmented matrix representation for the system LS(A′, b′),

in which

A′ =

 1 3 0 0 9
0 0 1 0 0
0 0 0 1 4
0 0 0 0 0

, b′ =

 0
1
2
0
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(Note that LS(A′, b′) reads 
x1 + 3x2 + 9x5 = 0

x3 = 1
x4 + 4x5 = 2

0 = 0

,

or equivalently,  x1 = −3x2 −9x5

x3 = 1
x4 = 2 −4x5

when it is written out explicitly.)
It follows that a full description of all solutions of LS(A, b) is given by:—

• t is a solution of LS(A, b) if and only if

there are some numbers u, v such that t =


0
0
1
2
0

+ u


−3
1
0
0
0

+ v


−9
0
0
−4
1

.

(d) We solve the system of linear equations LS(A, b), in which A,b are given by

A =

 0 0 2 3 5 −7
−1 2 1 −1 0 −2
2 −4 −1 3 2 1
3 −6 −1 5 4 0

, b =

 12
0
5
10

.
The augmented matrix representation C of LS(A, b) is given by

C =

 0 0 2 3 5 −7 12
−1 2 1 −1 0 −2 0
2 −4 −1 3 2 1 5
3 −6 −1 5 4 0 10

.
We obtain a row-echelon form C♯ and a reduced row-echelon form C ′ which are row-equivalent to C, through
the sequence of row operations below:

C
R1↔R2−−−−−→ −1R5−−−→ −2R1+R3−−−−−−→ −3R1+R4−−−−−−→ R2↔R3−−−−−→ −2R2+R3−−−−−−→ −2R2+R4−−−−−−→ C♯ 1R2+R1−−−−−→ −2R3+R1−−−−−−→ −1R3+R2−−−−−−→ C ′

Note that C ′ =

 1 −2 0 0 0 1 1
0 0 1 0 1 −2 3
0 0 0 1 1 −1 2
0 0 0 0 0 0 0

, and it is the augmented matrix representation for the system

LS(A′, b′), in which

A′ =

 1 −2 0 0 0 1
0 0 1 0 1 −2
0 0 0 1 1 −1
0 0 0 0 0 0

, b′ =

 1
3
2
0


(Note that LS(A′, b′) reads

x1 − 2x2 + x6 = 1
x3 + x5 − 2x6 = 3

x4 + x5 − x6 = 2
0 = 0

,

or equivalently,  x1 = 1 +2x2 −x6

x3 = 3 −x5 +2x6

x4 = 2 −x5 +x6

when it is written out explicitly.)
It follows that a full description of all solutions of LS(A, b) is given by:—

• t is a solution of LS(A, b) if and only if
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there are some numbers u, v, w such that t =


1
0
3
2
0
0

+ u


2
1
0
0
0
0

+ v


0
0
−1
−1
1
0

+ w


−1
0
2
1
0
1

.

8. Example (2). (How to solve a homogeneous system of linear equations, through finding a reduced
row-echelon form, as suggested by Theorem (2) and Theorem (3).)
Remember:—

• Every homogeneous system is consistent, with a trivial solution 0. (The question is whether it has any non-
trivial solution.)

• Suppose A,A′ are row-equivalent (m×n)-matrices. Then [ A 0m ], [ A′ 0m ] are row-equivalent. Moreover,
if A′ is a (reduced) row-echelon form, then [ A′ 0m ] is a (reduced) row-echelon form.

(a) We want to solve the homogeneous system of linear equations LS(A, 05), in which

A =


1 2 −1 2 −2 −6 3 8
−2 −4 3 −5 6 28 −9 −18
1 2 −2 4 −4 −15 7 19
−3 −6 5 −6 11 73 −14 −5
−1 −2 2 −5 4 8 −7 −27

.

We obtain a reduced row-echelon form A′ which are row-equivalent to A, through the sequence of row operations
below:

A
2R1+R2−−−−−→ −1R1+R3−−−−−−→ 3R1+R4−−−−−→ 1R1+R5−−−−−→ 1R2+R3−−−−−→ −2R2+R4−−−−−−→ −1R2+R5−−−−−−→ −2R3+R4−−−−−−→ 2R3+R5−−−−−→

1R2+R1−−−−−→ −1R3+R1−−−−−−→ 1R3+R2−−−−−→ −2R4+R2−−−−−−→ 1R5+R1−−−−−→ −1R5+R3−−−−−−→ 1R5+R4−−−−−→ A′

Note that A′ =


1 2 0 0 0 3 0 −2
0 0 1 0 0 5 0 −3
0 0 0 1 0 7 0 8
0 0 0 0 1 9 0 6
0 0 0 0 0 0 1 4

.

(Note that LS(A′, 05) reads
x1 + 2x2 + 3x6 − 2x8 = 0

x3 + 5x6 − 3x8 = 0
x4 + 7x6 + 8x8 = 0

x5 + 9x6 + 6x8 = 0
x7 + 4x8 = 0

or equivalently 
x1 = −2x2 −3x6 +2x8

x3 = −5x6 +3x8

x4 = −7x6 −8x8

x5 = −9x6 −6x8

x7 = −4x8

when it is written out explicitly.)
It follows that a full description of all solutions of LS(A, 05) is given by:—

• t is a solution of LS(A, 05) if and only if

there are some numbers u, v, w such that t = u



−2
1
0
0
0
0
0
0

+ v



−3
0
−5
−7
−9
1
0
0

+ w



2
0
3
−8
−6
0
1
−4

.

(b) We want to solve the homogeneous system of linear equations LS(A, 05), in which

A =


1 2 −5 15
−1 −1 3 −9
3 4 −10 31
2 3 −8 25
1 3 −4 13

.
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We obtain a reduced row-echelon form A′ which are row-equivalent to A, through the sequence of row operations
below:

A
1R1+R2−−−−−→ −3R1+R3−−−−−−→ −2R1+R4−−−−−−→ −1R1+R5−−−−−−→ 2R2+R3−−−−−→ 1R2+R4−−−−−→ −1R2+R5−−−−−−→ −3R3+R5−−−−−−→ 2R4+R5−−−−−→

−2R2+R1−−−−−−→ 1R3+R1−−−−−→ 2R3+R2−−−−−→ −1R4+R1−−−−−−→ −2R4+R2−−−−−−→ 2R4+R3−−−−−→ A′

Note that A′ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

.

(Note that LS(A′, 05) reads 
x1 = 0

x2 = 0
x3 = 0

x4 = 0
= 0

when it is written out explicitly.)
It follows that:—

• the one and only one solution of LS(A, 05) is the trivial solution 04.

9. We state a result which relates the number of rows of the coefficient matrix of a consistent system of linear equations
and the rank of a row-echelon form of the coefficient matrix. It is an immediate consequence of Theorem (2) and
Theorem (3).
Theorem (4).

Suppose A is an (m× n)-matrix, and r is the rank of a row-echelon form A♯ which is row-equivalent to A.
Then the statements below hold:

(a) r ≤ m and r ≤ n.
(b) Suppose m < n. Then:—

i. For any column vector b with m entries, if the system LS(A, b) is consistent, then LS(A, b) has two or
more solutions.

ii. If r = m, then for any column vector b with m entries, the system LS(A, b) is consistent and has two or
more solutions.

iii. The homogeneous system LS(A, 0m) has a non-trivial solution.

Remark. In plain words (about equations), part (b.i) the conclusion can be expressed as:—

‘If the number of (linear) equations in a system of linear equations is less than the number of unknowns, then
either there is no solution, or there are two or more solutions.’

In order for a consistent system of linear equations to have one and only one solution, it is necessary for the number
of equations to be at least as many as the number of unknowns.
This idea is a cornerstone in many areas of mathematics.

10. Example (3). (‘Baby examples’ from school maths that illustrates Theorem (4).)

(a) Let A = [ 1 2 ]. Note that A is a row-echelon form.

For each number b, the system of linear equations A
[
x1
x2

]
= [b], which is the equation x1+2x2 = b in disguise,

has two or more solution.

(b) Let
[
1 2 3
2 4 6

]
. A row-echelon form A♯ which is row-equivalent to A is given by A♯ =

[
1 2 3
0 0 0

]
.

For any numbers b1, b2, the system of linear equations A

[
x1
x2
x3

]
=

[
b1
b2

]
either has no solution, or has two or

more solution.
When it is written out explicitly, the system reads:—{

x1 + 2x2 + 3x3 = b1
2x1 + 4x2 + 6x3 = b2

It is a system with two equations and three unknowns.
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• The system has no solution if and only if b2 ̸= 2b1.
• The system has two or more solutions if and only if b2 = 2b1.

(c) Let
[
1 1 1
0 1 1

]
. A row-echelon form A♯ which is row-equivalent to A is given by A♯ =

[
1 0 0
0 1 1

]
.

For any numbers b1, b2, the system of linear equations A

[
x1
x2
x3

]
=

[
b1
b2

]
either has no solution, or has two or

more solution.
When it is written out explicitly, the system reads:—{

x1 + x2 + x3 = b1
x2 + x3 = b2

It is a system with two equations and three unknowns.
The system is consistent and has infinitely many solutions.

11. Example (4). (Illustrations on Theorem (4).)

(a) Let A =

 1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8

.

Note that a row-echelon form A♯ which is row equivalent to A is given by A♯ =

 1 2 3 4 5
0 1 2 3 4
0 0 0 0 0
0 0 0 0 0

.

Given any column vector b with 4 entries, it will happen that:—
• either LS(A, b) is inconsistent,
• or LS(A, b) is consistent and has two or more solutions.

In fact:—

• when c =

 0
0
1
0

, LS(A, c) is inconsistent.

• LS(A, 04) is consistent and has two or more solutions.

(b) Let A =

 1 1 1 1 1
1 2 3 4 5
1 4 9 16 25
1 8 27 64 125

.

Note that a row-echelon form A♯ which is row equivalent to A is given by A♯ =

 1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4

.

Given any column vector b with 4 entries, it will happen that LS(A, b) is consistent and has two or more
solutions.
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