
2.3 Existence of reduced row-echelon form row-equivalent to given matrix, (and the
uniqueness question).

0. Assumed background.

• 1.7 Row operations on matrices.
• 1.8 Row operations and matrix multiplication.
• 2.2 Row-echelon forms and reduced row-echelon forms.

Abstract. We introduce:—
• Theorem of existence of row-echelon form which is row-equivalent to a given matrix.
• Theorem of existence and uniqueness of reduced row-echelon form which is row-equivalent to a given matrix.
• Gaussian elimination, as an ‘algorithm’ for finding in a systematic way a row-echelon form, and a reduced

row-echelon form, which are row-equivalent to a given matrix.

The proofs of the two existence theorems are contained in the appendix, but the ideas in the proofs are displayed in
the application of Gaussian elimination in every ‘concrete’ example.

1. Row-echelon forms and reduced row-echelon forms are special types of matrices. They are interesting because of the
fundamental theoretical results introduced below which relate arbitrary matrices to row-echelon forms and reduced
row-echelon forms through row operations.
Theorem (1). (Existence of row-echelon form which is row-equivalent to a given matrix.)
Suppose that C is a matrix.
Then there exists some row-echelon form C♯ such that C♯ is row-equivalent to C.
Theorem (2). (Existence and uniqueness of reduced row-echelon form which is row-equivalent to a
given matrix.)
Suppose that C is a matrix.
Then there exists some unique reduced row-echelon form C ′ such that C ′ is row-equivalent to C.
Remark. Theorem (2), which concerned with reduced row echelon forms, is an existence-and-uniqueness result.
It is a combination of two results, Theorem (3) and Theorem (4), which are logically independent of each other.

2. Theorem (3). (Existence of reduced row-echelon form which is row-equivalent to a given matrix.)
Suppose that C is a matrix.
Then there exists some reduced row-echelon form C ′ such that C ′ is row-equivalent to C.

3. Using the ‘dictionary’ between application of row-operations and left-multiplication by row-operation matrices, we
have the logically equivalent formulation of Theorem (3) below:—
Corollary to Theorem (3). (‘Factorization’ of a given matrix as a product of row-operation matrices
multiplied from the left to a reduced row-echelon form.)
Suppose that C is a matrix.
Then there exist some reduced row-echelon form C ′, and some square matrix H, such that the equality C ′ = HC

holds and H is a product of row-operation matrices.

4. Comments on Theorem (1) and Theorem (3).
Theorem (1) and Theorem (3) are useful devices in many theoretical discussions in this course. They will be used
very often.
An outline of the argument for these results will be given later. The nature of the argument is a ‘constructive’
argument.
The idea in the argument is displayed when we apply the idea in the concrete situation for systematically finding a
row-echelon form or a reduced row-echelon form which is row-equivalent to any arbitrarily given matrix.
This process (or ‘algorithm’) is known as Gaussian elimination.

5. Theorem (4). (Uniqueness of reduced row-echelon form which is row-equivalent to a given matrix.)
Suppose that C is a matrix, and C ′, C ′′ are reduced row-echelon forms.
Further suppose that C is row-equivalent to C ′, and C is also row-equivalent to C ′′.
Then C ′ = C ′′.
Remark. The proof of Theorem (4) is omitted for now.
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6. Because of the basic properties of row-equivalence, Theorem (4) is logically equivalent to the result below:—
Corollary to Theorem (4). (Uniqueness of reduced row-echelon form which is row-equivalent to each
other.)
Let D,E be reduced row-echelon forms. Suppose that D is row-equivalent to E.
Then D = E.

7. Comments on Theorem (2), Theorem (3) and Theorem (4).
Taking into account the basic properties of row equivalence, and also regarding Theorem (2), Theorem (3) and
Theorem (4) as valid, we will obtain the picture on the ‘world’ of all (p× q)-matrices below:—

• Row-equivalence partitions the ‘world’ of all (p× q)-matrices into ‘chambers’ of various (p× q)-matrices.
• The matrices within each ‘chamber’ are row-equivalent to each other.
• No matrix in a ‘chamber’ will be row-equivalent to any matrix in any distinct ‘chamber’.
• Within each chamber there is one and only one reduced row-echelon form (which is row-equivalent to every

other matrix in that ‘chamber’).

8. Example (1). (Idea of Gaussian elimination, introduced through a concrete example.)

Let C =

 0 −1 −2 2 6
2 −3 0 0 0
−2 2 −2 1 1
2 −4 −2 2 6

.

We apply a sequence of row operations on C to:—

• first obtain a row-echelon form C♯ which is row-equivalent to C, and
• then obtain a reduced row-echelon form C ′ which is row-equivalent to C.

The systematic way that we are applying row operations to obtain C♯, C ′ from C is referred to as Gaussian
elimination.

(a) Apply row operations of the types ‘αRi +Rk’, ‘Ri ↔ Rk’ on C to obtain some matrix C1 in which:—
• the first non-zero entry in the first row is strictly to the left of the first non-zero entry in every row below

the first row.
Optional: apply a row operation of the type ‘βRk’ to make 1 the first non-zero entry of the top row in C1.

C =

 0 −1 −2 2 6
2 −3 0 0 0
−2 2 −2 1 1
2 −4 −2 2 6

 R1↔R4−−−−−→

 2 −4 −2 2 6
2 −3 0 0 0
−2 2 −2 1 1
0 −1 −2 2 6

 1
2R1−−−→

 1 −2 −1 1 3
2 −3 0 0 0
−2 2 −2 1 1
0 −1 −2 2 6


−2R1+R2−−−−−−→

 1 −2 −1 1 3
0 1 2 −2 −6
−2 2 −2 1 1
0 −1 −2 2 6

 2R1+R3−−−−−→

 1 −2 −1 1 3
0 1 2 −2 −6
0 −2 −4 3 7
0 −1 −2 2 6

 = C1

(b) Inspect C1 to see whether it is a row-echelon form.
If not, apply an appropriate sequence of row operations of the types ‘αRi + Rk’, ‘Ri ↔ Rk’ on C1 to obtain
some matrix C2 in which:—

• the first non-zero entry in the second row is strictly to the left of the first non-zero entry in every row
below the second row.

(c) Note that C1 is indeed not a row-echelon form.

C1=

 1 −2 −1 1 3
0 1 2 −2 −6
0 −2 −4 3 7
0 −1 −2 2 6

 1R2+R4−−−−−→

 1 −2 −1 1 3
0 1 2 −2 −6
0 −2 −4 3 7
0 0 0 0 0

 2R2+R3−−−−−→

 1 −2 −1 1 3
0 1 2 −2 −6
0 0 0 −1 −5
0 0 0 0 0

=C2

(d) Inspect C2 to see whether it is a row-echelon form. If not, we apply an appropriate sequence of row operations
of the types ‘αRi +Rk’, ‘Ri ↔ Rk’ on C2 to obtain some matrix C3 in which:—

• the first non-zero entry in the third row is strictly to the left of the first non-zero entry in every row below
the third row.

Et cetera.
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(e) C2 is a row-echelon form, and we re-label C2 as C♯.
Apply row operations of the types ‘αRi +Rk’, ‘βRk’ on C♯ to obtain C ′, which is a reduced row-echelon form:

C♯ =

 1 −2 −1 1 3
0 1 2 −2 −6
0 0 0 −1 −5
0 0 0 0 0

 −1R3−−−→

 1 −2 −1 1 3
0 1 2 −2 −6
0 0 0 1 5
0 0 0 0 0


2R2+R1−−−−−→

 1 0 3 −3 −9
0 1 2 −2 −6
0 0 0 1 5
0 0 0 0 0

 3R3+R1−−−−−→

 1 0 3 0 6
0 1 2 −2 −6
0 0 0 1 5
0 0 0 0 0

 2R3+R2−−−−−→

 1 0 3 0 6
0 1 2 0 4
0 0 0 1 5
0 0 0 0 0

 = C ′

(f) By construction, C ′ is a reduced row-echelon form which is row-equivalent to C.
As a bonus, we obtain the equality C ′ = HC, in which H is the resultant of the application on I4 of the
sequence of row operations below (with which we obtain C ′ from C):

I4
R1↔R4−−−−−→

1
2R1−−−→ −2R1+R2−−−−−−→ 2R1+R3−−−−−→ 1R2+R4−−−−−→ 2R2+R3−−−−−→ −1R3−−−→ 2R2+R1−−−−−→ 3R3+R1−−−−−→ 2R3+R2−−−−−→ H

We have H =

 0 −4 −3 3/2
0 −3 −2 1
0 −2 −1 1
1 1 0 −1

.

9. Example (2). (Another concrete example on Gaussian elimination.)

Let C =

 0 0 2 3 5 −7 12
−1 2 1 −1 0 −2 0
2 −4 −1 3 2 1 5
3 −6 −1 5 4 0 10

.

(a) Note that C is not a row-echelon form.
Apply row operations of the types ‘αRi +Rk’, ‘Ri ↔ Rk’ on C to obtain some matrix C1 in which:—

• the first non-zero entry in the top row is strictly to the left of the first non-zero entry in every other row.

C =

 0 0 2 3 5 −7 12
−1 2 1 −1 0 −2 0
2 −4 −1 3 2 1 5
3 −6 −1 5 4 0 10

 R1↔R2−−−−−→

 −1 2 1 −1 0 −2 0
0 0 2 3 5 −7 12
2 −4 −1 3 2 1 5
3 −6 −1 5 4 0 10


−1R1−−−→

 1 −2 −1 1 0 2 0
0 0 2 3 5 −7 12
2 −4 −1 3 2 1 5
3 −6 −1 5 4 0 10

 −2R1+R3−−−−−−→

 1 −2 −1 1 0 2 0
0 0 2 3 5 −7 12
0 0 1 1 2 −3 5
3 −6 −1 5 4 0 10


−3R1+R4−−−−−−→

 1 −2 −1 1 0 2 0
0 0 2 3 5 −7 12
0 0 1 1 2 −3 5
0 0 2 2 4 −6 10

 = C1

(b) Note that C1 is not a row-echelon form.
Apply an appropriate sequence of row operations of the types ‘αRi + Rk’, ‘Ri ↔ Rk’ on C1 to obtain some
matrix C2 in which:—

• the first non-zero entry in the second row is strictly to the left of the first non-zero entry in every row
below the second row.

C1 =

 1 −2 −1 1 0 2 0
0 0 2 3 5 −7 12
0 0 1 1 2 −3 5
0 0 2 2 4 −6 10

 R2↔R3−−−−−→

 1 −2 −1 1 0 2 0
0 0 1 1 2 −3 5
0 0 2 3 5 −7 12
0 0 2 2 4 −6 10


−2R2+R3−−−−−−→

 1 −2 −1 1 0 2 0
0 0 1 1 2 −3 5
0 0 0 1 1 −1 2
0 0 2 2 4 −6 10

 −2R2+R4−−−−−−→

 1 −2 −1 1 0 2 0
0 0 1 1 2 −3 5
0 0 0 1 1 −1 2
0 0 0 0 0 0 0

 = C2

(c) Note that C2 is a row-echelon form. Write C2 as C♯.
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Apply row operations of the types ‘αRi +Rk’, ‘βRk’ on C♯ to obtain C ′, which is a reduced row-echelon form:

C♯ =

 1 −2 −1 1 0 2 0
0 0 1 1 2 −3 5
0 0 0 1 1 −1 2
0 0 0 0 0 0 0

 1R2+R1−−−−−→

 1 −2 0 2 2 −1 5
0 0 1 1 2 −3 5
0 0 0 1 1 −1 2
0 0 0 0 0 0 0


−2R3+R1−−−−−−→

 1 −2 0 0 0 1 1
0 0 1 1 2 −3 5
0 0 0 1 1 −1 2
0 0 0 0 0 0 0

 −1R3+R2−−−−−−→

 1 −2 0 0 0 1 1
0 0 1 0 1 −2 3
0 0 0 1 1 −1 2
0 0 0 0 0 0 0

 = C ′

(d) By construction, C ′ is a reduced row-echelon form which is row-equivalent to C.
As a bonus, we obtain the equality C ′ = HC, in which H is the resultant of the application on I4 of the
sequence of row operations below (with which we obtain C ′ from C):

I4
R1↔R2−−−−−→ −1R1−−−→ −2R1+R3−−−−−−→ −3R1+R4−−−−−−→ R2↔R3−−−−−→ −2R2+R3−−−−−−→ −2R2+R4−−−−−−→ 1R2+R1−−−−−→ −2R3+R1−−−−−−→ −1R3+R2−−−−−−→ H

We have H =

 −2 9 5 0
−1 6 3 0
1 −4 −2 0
0 −1 −2 1

.

10. Gaussian Elimination as an algorithm.
Suppose C is a matrix with p rows.

We describe how to systematically obtain a row-echelon form C♯ and then a reduced row-echelon form C ′ which are
row-equivalent to C:—
Step (0). Write C0 = C. Inspect C0. Ask:—
Is C0 a row-echelon form?

• If no, go to Step (1).

• If yes, write C♯ = C0 and go to Step (2).

Step (1). Suppose k = 1, 2, · · · , p.

(a) If Ck−1 is not a row-echelon form, then apply a sequence of row operations on Ck−1 to obtain some matrix Ck

in which:—
• the first non-zero entry in the k-th row of Ck is strictly to the left of the first non-zero entry in every row

below the k-th row.
(b) Next inspect Ck. Ask:—

Is Ck a row-echelon form?
• If no, iterate as described above to obtain Ck+1.
• If yes, write C♯ = Ck and go to Step (2).

Step (2). Inspect C♯.

If C♯ is not already a reduced row-echelon form, then apply a sequence of row operations on C♯ to obtain some
reduced row-echelon form C ′.

11. Example (3). (More illustrations on Gaussian elimination.)

(a) Let C =

 2 7 −8
1 4 −5
−1 −1 1
−2 −6 6

.

We apply row operations on C to obtain some row-echelon form C♯ which is row-equivalent to C:—

C =

 2 7 −8
1 4 −5
−1 −1 1
−2 −6 6

 R1↔R2−−−−−→

 1 4 −5
2 7 −8
−1 −1 1
−2 −6 6

 −2R1+R2−−−−−−→

 1 4 −5
0 −1 2
−1 −1 1
−2 −6 6

 1R1+R3−−−−−→

 1 4 −5
0 −1 2
0 3 −4
−2 −6 6


2R1+R4−−−−−→

 1 4 −5
0 −1 2
0 3 −4
0 2 −4

 3R2+R3−−−−−→

 1 4 −5
0 −1 2
0 0 2
0 2 −4

 2R2+R4−−−−−→

 1 4 −5
0 −1 2
0 0 2
0 0 0

 = C♯
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We apply further row operations on C♯ to obtain a reduced row-echelon form C ′ which is row-equivalent to C♯

(and hence C as well):—

C♯ =

 1 4 −5
0 −1 2
0 0 2
0 0 0

 −1R2−−−→

 1 4 −5
0 1 −2
0 0 2
0 0 0

 1
2R3−−−→

 1 4 −5
0 1 −2
0 0 1
0 0 0


−4R2+R1−−−−−−→

 1 0 3
0 1 −2
0 0 1
0 0 0

 −3R3+R1−−−−−−→

 1 0 0
0 1 −2
0 0 1
0 0 0

 2R3+R2−−−−−→

 1 0 0
0 1 0
0 0 1
0 0 0

 = C ′

We also obtain the equality C ′ = HC, in which H is the resultant of the application on I4 of the sequence of
row operations below (with which we obtain C ′ from C):

I4
R1↔R2−−−−−→ −2R1+R2−−−−−−→ 1R1+R3−−−−−→ 2R1+R4−−−−−→ 3R2+R3−−−−−→ 2R2+R4−−−−−→ −1R2−−−→

1
2R3−−−→ −4R2+R1−−−−−−→ −3R3+R1−−−−−−→ 2R3+R2−−−−−→ H

We have H =

 −1/2 1/2 −3/2 0
2 −3 1 0
3/2 −5/2 1/2 0
2 −2 0 1

.

(b) Let C =


1 1 1 −2 −3 1
2 2 2 −7 −8 −3
3 2 1 −5 −7 5
2 4 6 −4 −9 2
0 1 2 0 −2 1

.

We apply row operations on C to obtain some row-echelon form C♯ which is row-equivalent to C:—

C =


1 1 1 −2 −3 1
2 2 2 −7 −8 −3
3 2 1 −5 −7 5
2 4 6 −4 −9 2
0 1 2 0 −2 1

 −2R1+R2−−−−−−→


1 1 1 −2 −3 1
0 0 0 −3 −2 −5
3 2 1 −5 −7 5
2 4 6 −4 −9 2
0 1 2 0 −2 1

 −3R1+R3−−−−−−→


1 1 1 −2 −3 1
0 0 0 −3 −2 −5
0 −1 −2 1 2 2
2 4 6 −4 −9 2
0 1 2 0 −2 1


−2R1+R4−−−−−−→


1 1 1 −2 −3 1
0 0 0 −3 −2 −5
0 −1 −2 1 2 2
0 2 4 0 −3 0
0 1 2 0 −2 1

 R2↔R5−−−−−→


1 1 1 −2 −3 1
0 1 2 0 −2 1
0 −1 −2 1 2 2
0 2 4 0 −3 0
0 0 0 −3 −2 −5


1R2+R3−−−−−→


1 1 1 −2 −3 1
0 1 2 0 −2 1
0 0 0 1 0 3
0 2 4 0 −3 0
0 0 0 −3 −2 −5

 −2R2+R4−−−−−−→


1 1 1 −2 −3 1
0 1 2 0 −2 1
0 0 0 1 0 3
0 0 0 0 1 −2
0 0 0 −3 −2 −5


3R3+R5−−−−−→


1 1 1 −2 −3 1
0 1 2 0 −2 1
0 0 0 1 0 3
0 0 0 0 1 −2
0 0 0 0 −2 4

 2R4+R5−−−−−→


1 1 1 −2 −3 1
0 1 2 0 −2 1
0 0 0 1 0 3
0 0 0 0 1 −2
0 0 0 0 0 0

=C♯

We apply further row operations on C♯ to obtain a reduced row-echelon form C ′ which is row-equivalent to C♯

(and hence C as well):—

C♯ =


1 1 1 −2 −3 1
0 1 2 0 −2 1
0 0 0 1 0 3
0 0 0 0 1 −2
0 0 0 0 0 0

 −1R2+R1−−−−−−→


1 0 −1 −2 −1 0
0 1 2 0 −2 1
0 0 0 1 0 3
0 0 0 0 1 −2
0 0 0 0 0 0

 2R3+R1−−−−−→


1 0 −1 0 −1 6
0 1 2 0 −2 1
0 0 0 1 0 3
0 0 0 0 1 −2
0 0 0 0 0 0


1R4+R1−−−−−→


1 0 −1 0 0 4
0 1 2 0 −2 1
0 0 0 1 0 3
0 0 0 0 1 −2
0 0 0 0 0 0

 2R4+R2−−−−−→


1 0 −1 0 0 4
0 1 2 0 0 −3
0 0 0 1 0 3
0 0 0 0 1 −2
0 0 0 0 0 0

=C ′

We also obtain the equality C ′ = HC, in which H is the resultant of the application on I5 of the sequence of
row operations below (with which we obtain C ′ from C):

I5
−2R1+R2−−−−−−→ −3R1+R3−−−−−−→ −2R1+R4−−−−−−→ R2↔R5−−−−−→ 1R2+R3−−−−−→ −2R2+R4−−−−−−→ 3R3+R5−−−−−→ 2R4+R5−−−−−→ −1R2+R1−−−−−−→ 2R3+R1−−−−−→ 1R4+R1−−−−−→ 2R4+R2−−−−−→ H

We have H =


−7 0 2 1 −1
−4 0 0 2 −3
−3 0 1 0 1
−2 0 0 1 −2
−15 1 3 2 −1

.
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12. The examples on Gaussian elimination that we have seen above suggest Lemma (5) and Theorem (6). The former
will turn out to be a preparatory step for the proof of Theorem (3), while the latter will turn out to be a by-product
of the proof of Theorem (6). Their proofs are given alongside that of Theorem (3).
Lemma (5).
For any natural number r, if A is a row-echelon form of rank r, there exists some reduced row-echelon form A′ of
rank r such that A′ is row-equivalent to A.
Theorem (6).
Suppose A is a row-echelon form of rank r, whose pivot columns are, say, the d1-th, d2-th, ..., dr-th columns of A.
Then there is some reduced row-echelon form A′ of rank r, whose pivot columns are the d1-th, d2-th, ..., dr-th
columns of A′, so that A′ is row-equivalent to A.

13. We never talk about ‘the row-echelon form which is row-equivalent to a given matrix’. The reason is that:—

• given any matrix, there are in general many row-echelon forms which are row-equivalent to the matrix concerned.

Illustration on the non-uniqueness of row-echelon forms which are row-equivant to a given matrix.

Let C1 =

[
1 1 0 0
0 0 1 0
0 0 0 1

]
, C2 =

[
1 1 1 0
0 0 1 0
0 0 0 1

]
, C3 =

[
1 1 1 1
0 0 1 0
0 0 0 1

]
, C4 =

[
1 1 1 1
0 0 1 1
0 0 0 1

]
.

Note that C1, C2, C3, C4 are row-echelon forms which are row-equivalent to each other. In fact, there are many more
row-echelon forms which are row-equivalent to them.
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