1.8 Row operations and matrix multiplication.

0. Assumed background.

e 1.2 Matrix multiplication.

e 1.7 Row operations on matrices.

Abstract. We introduce:—

e the notion of row operations matrices,

o the ‘equivalence’ of application of row operations and left-multiplication by row operation matrices.

1. Definition. (‘Standard base’ for a ‘vector space of matrices’.)
Fix any positive integers p, q.
Foreachi=1,---,p, j=1,---,q, we define the (p X q)-matrix Ei’jq to be the (p x q)-matrix whose (i, j)-th entry
is 1 and whose other entries are all 0.

Remark. According to definition, there are altogether pg matrices Ef ’]9 as i, j vary. They are collectively referred

to as the ‘standard base’ for the ‘vector space of (p x ¢)-matrices’.

2. Example (1). (‘Standard base’ for various ‘vector spaces of matrices’.)

2,3 r1T 0 O 2,3 01 0 2.3 0 0 1
(@) Evy =10 o0 o}vELz:{o 0 o}’ELs:[o 0 0}»
23 [0 0 O 23 [0 0 O 23 [0 0 O
Ez,l—{l 0 0}’E272—{0 1 o}va—[o 0 1}

e [L 007 o f0O1 0] . [0O0 1]

M) E¥¥ =100 0/, E¥=|000|,E¥=|00 0],
Mlooo] M Jooo] Ky oo o]

70 0 0] 00 07 Bxrro o0 0]

E3?=110 0|, E=[0 10| E35=]00 1],

T lo oo o] o000 % |oo o]

L, [0007 [0 00] . [O0O0 0]
ESS =100 0,E¥=]00 0| E*=|00 0
Molr oo Joto] Y oo 1)

3. Lemma (1).
Let p, q be positive integers. Suppose s,t are integers between 1 and p.
Let A be a (p x q)-matrix, whose (i, j)-th entry is denoted by a;;.
Then EYf A is the (p x q)-matrix whose s-th row is [ ax1  az2 -+ atq |, and whose every other entry is 0.
Remark. In plain words, multiplying Ef,’f to A from the left results in a new (p X ¢)-matrix in which:—

e the s-th row is formed by the ¢-th row of A, and

e every other row is ‘set’ to zero.
4. Example (2). (Illustrations of Lemma (1).)

(a) Suppose A is the (3 x 4)-matrix whose (7, j)-th entry is given by a;;. Then:

53 0 10 a1l a2 a1z a4 a1 Az Q3 Gog |
i. E1 ’2A = 0 0 O a1 Q22 Q23 24 = 0 0
’ L 0 0 O 1L as3; Qs a3z as4 ] L 0 0 0 0 ]
[ 0 0 O 1T a11 Q12 Q13 dAig i [ 0 0 0 0 1
ii. Eg’fA = 0 0 O a1 Q22 Q23 24 = 0 0 0 0
Y |1 0 0] as1 az2 asz asa | | a1 a2 a1z aig |
\/"’/"3 0 0 O 1T a11 Q12 Q13 0Aai4 i I 0 0 0 0 ]
1ii. 1937 A= 0 0 0 a21 Q22 A23 A24 = 0 0 0 0
|0 0 1 || az1 as2 asz ass | | az1 as2 azz asq |
(b) Suppose A is the (4 x 6)-matrix whose (4, j)-th entry is given by a;;. Then:
r0O 0 0 O a11 Q12 Q13 Q14 Q15 Q1g 0 0 0 0 0 0
L prig=| 0 0 01 a1 Gz G23 G24 Q25 Q26 | _ | Q41 Q42 Q43 G4q4 Q45 Q46
T 24 00 0 O a3y a3z as3 0G34 G35 A3 0 0 0 0 0 0
L 0 0 0 O 41 Q42 A43 0A44 Q45 Q46 0 0 0 0 0 0
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r0 0 0 0777 a1 a2 a3 aisa a5 Qg | r 0 0 0 0 0 0 7
ii E4,4A _ 0 0 0 O a21 Q22 A23 Q24 Q25 Q24 _ 0 0 0 0 0 0
cs2 T 10 1 000 az1 a3z G33 A34 A35 Q36 | | Q21 G2z A3 Q24 Qg5 Agg
L 0 0 0 O 1 L aq1 Qg2 Q43 Q44 Q45 Q46 | L 0 0 0 0 0 0 B
r0 0 0 07717 a1 a2 a3 aisa a5 Gig | r 0 0 0 0 0 0 17
E4,4A _ 0 0 0 O as1 Q22 A23 A24 Q25 Q26 o 0 0 0 0 0 0
m. £y 4= 0 0 0 O a3y Qs a3z 0a34 ass A3 - 0 0 0 0 0 0
L1 0 0 0] L au aa2 a43 Gaa a5 Q46 ] L a1 a12 a3 ais a5 aie |

5. Proof of Lemma (1).

For convenience, denote the (g, h)-th entry of E{ by £gp,.

g _J 1 if g=sandh=t
Ofh =9 0 if g#sorh#t

By definition, the (g, k)-th entry of E¥f A is given by
Eg1Q1k + Eg2a2}k 4+t Estai + -+ Egplpk-

s [We first focus on the s-th row of EYTA.]

For each k = 1,2,--- , g, the (s, k)-th entry of E{’f A is the product of the s-th row of EY’} and the k-th column
of A, and therefore is given by

€s101k + €202k + - -+ + EstOk + -+ - + Esplpk = EstAtk = Atk-

all terms being 0 except possibly the term involving et

Hence the s-th row of Eg’fA is [ an ap - ayg .

+ [We now turn to every other row of EY/fA.]

Whenever g # s, we have €45, = 0 for each h. Then, no matter which k is, the (g, k)-th entry of EY'Y A is a sum
of p copies of 0’s, and hence is 0.

6. Lemma (2).
Let A be a matrix with p rows. Let i,k be integers between 1 and p.
(a) For any number «, the application of the row operation aR; + Ry on A results in (I, + aEzjf)A.
(b) For any non-zero number 3, the application of the row operation SRy on A results in (I, + (5 — 1)E,’::£)A.
(c) The application of the row operation R; <+ Ry on A results in (I, — E}}} — Eg:i + Eﬁ’,f + Eng)A.
Proof of Lemma (2). Exercise. (Straightforward calculation with the help of Lemma (1).)

7. Example (3). (Illustrations of Lemma (2).)
Suppose A is the (3 x 4)-matrix whose (¢, j)-th entry is given by a;;. Then:

(a)

4B+ R, daz1 +an dage + a1z 4dagz +aiz 4ags + arg
A—— as1 a22 as3 a4
asi as2 as3 a34
a21 QAg22 (23 (24 aip a2 ai3 G4 33 33
= 40 0 0 0 0 |+|an axn ap au | =4E}5A+ A= (I3+4E}5)A
0 0 0 0 asyl as2 azz Qas4
(b)
5Ro a1 a2 a3 a14
A —= 5&21 5a22 5&23 5&24

a3 as2 as3 a34

ail1 a2 a3 a4 0 0 0 53 53
= az1 a2 azz ags | +4| azi azy a3 apy | = A+4AE A= (I3 +4Ey5)A
a3z1 Q32 a33 A34 0 0 0
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Ry Rs a3z1 asz G33 Aa34

a21 QA22 (23 (24

a1l a2 a1z a4
0 0 0 0
a3z1 asz G33 0a34

G21 Q22 (23 (24
a3z1 agz Ga33 Aa34

ailp a2 ais (114]

a1l a2 a13 a14] l 0 0 0 0
0 _

as1 Qa32 Q33 034
0 0 0 0 0 0
0 0 0 0 a11 a1z a1z A1q

A—-EPA - EPJA+ EYJA+ Ey3A= (I — By — Eys + EVs + Ep3)A.

+

0 0 0 0
+

8. Symbols and labels associated with Lemma (2).

In symbolic terms, what we have described in Lemma (2) is the validity, for every matrix with p rows, say, A, ofi—

v~

o A SRR (1 +QEDD)A.
BRi = Bxsiene Qﬁ ' }V\ RP&
o« A—5 (I, + (B — l)Eﬁzi)A.

o ATCT (1, EPP - EPT 4 EPP 4+ EPT)A.
Because of their behaviour, it makes sense to give special labels for these matrices. From now on:—

o We label I, + aE}? as M[aR; + Ry).

©
o We label I,, + (8 — 1)E}"} as M[BRy).
o Welabel I, = EVF — BV + EUY + BV as M[R; <> Ry].

Despite their seemingly complex formulae, these matrices are easy to write down explicitly, because they are the
resultants of applications of the respective row operations on the identity matrix:—

Dul‘, "(l\g
o I, SR 14 GEPP = M[aR; + Ry). AT MR e -4
BR ;
o I, 2 1+ (8- DEPT = MIBRy). e e )L
I, Bl gPP_EPP L EPP 4 EPP = MR, > Ry R
e Ip p—Hi Kk T ki i €7 Lkl \
9. Definition. (Row-operation matrices.) }/L [O(R; + R&}

(a) Let p be a row operation on matrices with p rows. The matrix M|p] is called the row-operation matrix (or
elementary matrix) associated with p.

(b) A row-operation matrix (or elementary matrix) of size p’is a (p X p)-square matrix|which is the row-

. . . . . . .
operation matrix associated with some row-operation p on matrices with p rows.

10. Example (4). (Illustrations on row operation matrices.) @\u&’éﬂ\'\ o Com La'\?l_‘ Aefp olurn

(a) For the row operation 3Ry + Rz on matrices with 5 rows, its row operation matrix M[3R4 + Rs] is given by 1

Ay On redesd
hrobnas, to e R

(b) For the row operation 4R3 on matrices with 5 rows, its row operation matrix M[4R3] is given by

9% do Ve
" Queecrin th 0

DL‘\j r%p S O

; han |

1000 0
01030
Is 2Bt AfBR,+Ry)=1{ 0 0 1 0 0
00010
0000 1

Is 25 MR, & R3] =

[lerReNanl g
SOoOOoO—RO
OO OO
O, OOoOO
—OoOOoOOoOO
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(c) For the row operation Ry ¢+ Rs on matrices with 5 rows, its row operation matrix M[Rs < Rs] is given by

I 2221 AfRy 5 Ry) =

SooOoO
—OoOOoOOoOO
SO OO
OO OO
oo oOo—Oo

11. Theorem (3). (‘Dictionary’ between row operations and matrix multiplication from the leftt)

Let p, q be positive integers.

For any row operation p on matrices with p rows, there exists some unique (p X p) EmH , namely,
H = M]|p], such that for any matrix with p rows, say, A, the matrix HA is the resultant of the application of p on
the matrix A.

Remark. Theorem (3) below describes a ‘dictionary’ between the collection of all row operations on matrices
with p rows and the collection of all row-operation matrices of size p.

This ‘dictionary’ tells us the ‘application of row operations’ and the ‘multiplication from the left by row-operation
matrices’ are two ways of thinking about the same thing.

To write

€

‘the row operation A -2 A’ is valid’ ,.__;7 A —7 HA
\

mle] A

is the same as writing
‘the equality A’ = M|[p]A holds’.

12. Proof of Theorem (3).

The ‘existence’ part of the argument follows immediately from Lemma (2). We only need to handle the ‘uniqueness’
part of the argument.

Suppose p is a row operation on (p X ¢) matrix, and H is a (p X p)-square matrix for which the following holds:—

e For any (p x g)-matrix A, the application of p on A results in HA. ‘[) =t
Now, in particular, the application of p on I, results in H. 10 — H~ :[f B \
Recall that by the definition of M p], the application of p on I, results in M|[p]. [ \\
It follows that H = M|p]. mrly M[fl

13. The ‘dictionary’ informs us that to apply a sequence of row operations on a matrix is the same as to multiply the
product of the corresponding row-operation matrices (put in an appropriate order) to the same matrix from the left.

Theorem (4). (Corollary to Theorem (3).)
Let Ay, As,--- , An be (p X ¢)-matrices.

Suppose Ay, As, -+, Ay are row-equivalent to each other, and A; is joint to Ay by some sequence of row operations
P1,P2," " s PN—1:

Pr—
Alp_1>A2p_2> 3p_3> —2>AN 1—>AN

Then the equalities I"\tf\\ A\ M[(A M[ﬁ ] A, - "

Mip1]A1, As= M]|ps]As, ------ . An—1=Mpy,JAn—2, An = M]|py,]AN_1,
(AN - pN 1 pN 2 PB P2 pl Vi \')K C,M'f“’\ ‘\{\;’t\{\ ‘\/M W
hold. Mlb‘[*icﬂ,’c\l)\’\s,

Proof of Theorem (4). This is an immediate consequence of Theorem (3).

14. Comment on the content of Theorem (4).

Implicit in this result is the information on:—

e how we can obtain the product
M[pN—l]M[pN—Q] e M[p?J]M[p?]M[pl]

without having to perform matrix multiplication.
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This product is the resultant of the application of the sequence of row operations p1, p2, p3, - , PN—2, PN—1 On the
identity matrix Ip:

I, %5 Mpi] 2 M{ps]Mp1] 2 M{ps]M|pa] M|p]

P4 Pn—2

IR 252 Mipy ]+ Mips]M{pa]M[p1] 255 Mpe 1Mpy,] -+ Mlps]M[po] M [p1]

15. Example (5). (Illustrations on Theorem (4).)

(a) The sequence of row operations below joins A and A”:

101 1 101 1 3 45 5
A=]0 2 1 1 |BatRe p_ |1 9 9 o |2BFtR yn_| 1 2 9 9|
100 2 100 2 100 2
Then A” = HyH; A, in which
100 1 20
Hi=M[IR +Ry)=|1 1 0|, H=M2R+R]=]0 1 0|
00 1 00 1

3 20
SOA”:HA,inWhichH:Hng:ll 1 O].
0 0 1

(b) The sequence of row operations below joins B and B”:

L2 2 -11 .. L2 2 -1 _,, -2 -4 -4 2
B=|2 -2 1 0 = pB=18 -8 4 0 —4 B = 8§ -8 4 0
1 0 0 2 1 0 0 2 1 0 0 2

Then B"” = HyH, B, in which

1 0 O -2 0 0
Hy=M[4R]=| 0 4 0 [, Hy=M[-2R;]=| 0 1 0 |.
0 0 1 0 0 1
-2 0 0
So B” = HB, in which H = HyH{ = 0 4 0
0 0 1
(¢) The sequence of row operations below joins C' and C”:
1 2 2 0 3 3 1 3 0 3 1
C=|303 1|22 o1 220|828 cor_|2 10 1].
2 1 0 1 2 1 0 1 1 2 2 0
01 0 1 0 0
Then C" = HQch, in which H; = M[Rl d RQ] = 1 0 O s Hy = M[RQ d Rg] = 0 0 1.
0 0 1 010
01 0
So C" = HC,in which H=H,H;=| 0 0 1 |.
1 00
(d) The sequence of row operations below joins A; and Ay:
1 0 1 1 0 1 1 1 0 1 1 2 0 0 4
A= 0 2 1 1 |[MatF 11 2 2 2 | 2B 4,1 2 2 2 | B2fs 4|1 2 2 2|
1 0 0 2 1 0 0 2 2 0 0 4 1 0 1 1
Then A4 = ]".]:),]{2]{11417 in Wthh
1 0 0 1 0 0 0 0 1
H1:M[1R1+R2]: 1 1 0 s HQZM[2R3]: 0 1 0 s HgZM[RlﬁRg}: 0 1 0 .
0 0 1 0 0 2 1 00

——= O
OO

So Ay = HAy, in which H = H3HyHy = [

2
0].
0
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16. Theorem (5). (Matrix of ‘reverse row-operation’)

Suppose p is a row operation on matrices with p rows, and p is its corresponding ‘reverse row operation’ on matrices
~

with p rows. € /_\,/ E : ) A\

Then M(7|Mp] = I and M{p]M[p] = I, IA
Proof of Theorem (5). {"1[\" A [ ] M [f")

Suppose p is a row operation on matrices with p rows, and p is its corresponding ‘reverse row operation’ on matrlces
with p rows. A

:q N
By the definition of row-operation matrices, we have the sequence of row operations: (\/\{ f} N— [‘e]

1, %5 M) % MIIM[p]. blds G oy petics 1R
As p is the ‘reverse row operation’ for p, M[p|Mp] = I,,. a Y

Note that p is the ‘reverse row operation’ for p. Repeating the argument, with the roles'of p, p interchanged, we

deduce that M [p]M|[p] = I,. ) l~4 ﬁ;} M[?]

Remark. The ‘formulae’ for the row-operation matrices of ‘reverse row operations’ for row operations of various
types are explicitly described below:—

pRC())‘g ﬁ?airr?ge(;n Row-operation ;Evivggsjration’ Row-operation
with p rows. matrix M p]. 3 for p. matrix M [p].
aR; + Ry. Ip—|—aE . —aR; + Ry. I, —ang.
BRy. I, + (8 — )Eﬁ’ﬁ (1/8)Ry. I, + (1/ﬁ — 1)Eﬁ’£
R; & Ry. Ip—Eﬁ’p Eﬁ’i—i—Ep’p—i—Ep’p R; & Ry. Ip—Ep,’p EZ’Q—}—Ef’,f—&—Ep’p

17. Example (6). (Row operation matrices and matrices of corresponding ‘reverse row operations’.)

(a) For the ro\zg operation 3Ry + R2 on matrices with 5 rows, 1t§'-;ow operaﬁl matrix M[3R, + Ry] is given by

17, v ot Bee) (Lo o Bae™y ohy 1
[heddc dhott . Iy 22 ABR, 4+ Ry)= | 0 0 1 0 0
FERS

The corresponding ‘reverse row operation’ on matrices with 5 rows is —3R4 + R, and its row operation matrix
M[—3R4 + Rs] is given by

100 0 0
010 -3 0
Iy 2t AR+ RJ=|0 0 1 0 0
000 1 0
000 0 1

(b) For the row operation 4R3 on matrices with 5 rows, its row operation matrix M[4R3] is given by

Is 25 MR, & Ry) =

OO OoOOH
SO O—O
OO OO
O, OOO
—HOOoOOoOOo

The corresponding ‘reverse row operation’ on matrices with 5 rows is 1 R3, and its row operation matrix M [%Rg]

4

is given by
10 0 00
. 1 01 0 00
Is 22 M[=Rs]=| 0 0 1/4 0 0
4 00 0 10
00 0 01

(c) For the row operation Rz <+ Rs on matrices with 5 rows, its row operation matrix M[Rs <> Rs] is given by

I 2221 ArRy 5 Ry) =

SooOoOH
—OoOOoOOoOO
OO OO
OO OO
oo oOo—O

The corresponding ‘reverse row operation’ on matrices with 5 rows is Ry > Rj itself, and its row operation
matrix is MRy > Rs] itself.
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18. Because of the ‘dictionary’ between row operations and row-operation matrices (Theorem (3)):—
o whatever can be done through the application of row operations can also be done through the multiplication
from the left by their corresponding row-operation matrices, and

o whatever can be done through the multiplication from the left by row-operation matrices can also be done
through the application of the corresponding row operations which determine these row-operation matrices.

For this reason, you may wonder why we need to learn both.
It will transpire that dependent on the situation, to think (and work) with one of them may be more advantageous.

Below is an illustration of a problem which is easy to handle in terms of row operation matrices (and equalities
amongst matrices), but not so easy in terms of row operations.

Illustration.

1 2
LetC=1|1 2
1 2

DN — O
|
1
— N =
L= W

\ 1
on -
We verify that C' is not row-equivalent, to D: A\’ j’l/\:( bg C/SN’(’VC\CL Cﬁ "

m«g that C' was row—equivale@

Then there would be some sequence of row operations joining C' to D:

pP1 P2 Pk—1 Pk
C D.

Denote the row-operation matrix of p; by M|p;] for each j.
Then the equality
D = Mpp]Mpx—1] - ... - M[p2] M[p1]C “) ~HC .
would hold.
Write H = M[pp|M[pp_1] - ... - M[p2] M|p1]. A ds OQA . H(C\ (. CA}

For each ¢, denote the ¢-th column of C, D by cy, dy respectively. Then the equalities

d1 = HC17 d2 = HCQ = LH C/i\ )V(CJ_ M Cj)

would hold.
Note that co = 2c1. Then =1 (‘l\ - [/( C—\

H HE
4 :dQ:Hc2:H(201):2Hcl:2d1:2 2 = 4 5
3 1 2

which is im ible.

lieas e
Hence, in the first place, C is not row-equivalent to D. T}W\« (L\ @ —(}‘NLF] 1opre o \ >
19. Theorem (6). (Re-formulation of row-equivalence between matrices in terms of equalities for matri-
ces.) "% [\\V@v\ ™M {heorems

Suppose A, B are matrices with p rows. Then the statements below are logically equivalent:—

(1) A, B are row-equivalent to each other.

(2) There are (finitely many) row-operation matrices G1,Ga, - ,Gr—1, Gk such that B = GyGg_1 - ... - GaG1 A.

Now suppose any one of the above holds (so that both hold). Then there are some row-operation matrices
H{,Hy,--- ,Hy_1,Hy such that:—

« A= H1H2 Cae Hk_lHkB, and
o foreach j=1,2,---,k, the equalities H;G; = I, and G;H; = I,,.

Proof of Theorem (6). Exercise. (Apply Theorem (3) and Theorem (5).)

Remark. This result is a useful device for theoretical discussions in the future, because we can make use of it to
introduce equalities (instead of just row operations) in such discussions.

20. A seemingly trivial consequence of Theorem (6) is that:—

o if a square matrix is row-equivalent to the identity matrix then the square matrix concerned is a product of
row-operation matrices.
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In fact, much more can be said when we combine what is (implicitly) stated in Theorem (4) about products of
row-operation matrices. This will become relevant when we introduce the notion of invertibility of square matrices.

Theorem (7).

Suppose A is a (p X p)-square matrix. Then the statements below are logically equivalent:—
(1) A is row-equivalent to I,.
(2) A is a product of row-operation matrices.

Proof of Theorem (7).

Suppose A is a (p X p)-square matrix.

(a) By Theorem (6), if A is row-equivalent to I, then A is a product of row-operation matrices.

(b) Suppose that A is a product of row-operation matrices, say, Hy, Ha,- -+, Hi_1, Hg, and that the equality
A= H1H2 s Hk—lHk holds.
Denote by 1,792, ,Yk—1,7k the respective row operations on (p X p)-matrices to which the row-operation
matrices Hy, Hy,--- , Hr_1, Hj, are associated.

We have A = H1H2 N 'kalHk = HlHQ o 'kalHkIp~

Then we have the sequence of row operations

[pLHkak_lHkh ......... By Hy Hy 1 Hy 2 HyHs - - Hy_1Hy, 2 HiHoHs - - Hy_1Hpy=A

Therefore I, is row-equivalent to A. Hence A is row-equivalent to Ij,.



