1.7 Row operations on matrices.

0. Assumed background.
e 1.1 Matrices, matrix addition, and scalar multiplication for matrices.

Abstract. We introduce:—
e the notion of row operations on matrices,
e the notions of ‘reverse’ row operations, and sequences of row operations,

¢ the notion of row equivalence.

1. Definition. (Row operation ‘adding a scalar multiple of one row to another’.)
Let A be a (p x q)-matrix whose (i, j)-th entry is denoted by a;;, and whose k-th row is denoted by Ry,.
Suppose « is a number.

When we replace the k-th row | ax1  ar2 --+ Grq | of A by
[ aai +arr  qap+age - Qag+agg |,

in which i # k, to obtain some resultant matrix A’, we say we are applying the row operation ‘a - R; + Ry’ to A,
. aR;+ Ry /
and write A —— A",

Such a row operation is called adding a scalar multiple of one row of A to another row of A.

2. Example (1). (Adding a scalar multiple of one row to another.)

3. Definition. (Row operation ‘multiplying a non-zero scalar to a row”)
Let A be a (p x q)-matrix whose (i, j)-th entry is denoted by a,;, and whose k-th row is denoted by Rj,.
Suppose [ is a non-zero number.

When replace the k-th row [ ax1  ax2 -+ arq | of A by

[ Bari Barz -+ Pagg ]

. . . . . Ry
to obtain some resultant matrix A’, we say we are applying the row operation ‘8 - Ry’ to A, and write A LLINyT

Such a row operation is called multiplying a non-zero scalar to a row of A.

4. Example (2). (Multiplying a non-zero scalar to a row.)

1 2 -17 ,» 1 2 2 -1
@) B=|2 -2 1 0 | p=|8 8 4 0
1 0 0 2 1 0 0 2
12 2 1] . 2 4 —4 2
b)B=|8 -84 0 | 2Eyp—| 8 8 4 0].
1 0 0 2 1 0 0 2

5. Definition. (Row operation ‘interchanging two rows’)
Let A be a (p x q)-matrix whose (i, j)-th entry is denoted by a;;, and whose k-th row is denoted by Ry,.

When we interchange the i-th row [ a;1 @iz -+ Qi | and the k-th row [ ap1  ag2 -+  arq | of A, in which
i # k, to obtain some resultant matrix A’, we say we are applying the row operation ‘R; +— Ry’ to A, and write

A BioBe g
Such a row operation is called interchanging two rows of A.

6. Example (3). (Interchanging two rows.)

(a) C =

1 2 2 0
3 0 3 1| BueBe v
2 1 0 1

3 0 3 1
12 2 0.
21 01



10.

11.

303 17 4on 30 3
b)yc'=|12 2 0| 225¢"=2 10
2 1 0 1 12 2

1
1].
0

We say we are applying a row operation on A to obtain A’ if and only if A’ is the resultant of the application of

. Definition. (Row operations.)

Let A, A’ be (p x q)-matrices.

e one row operation adding a scalar multiple of one row of A to another row of A, or
e one row operation multiplying a non-zero scalar to a row of A, or

e one row operation interchanging two rows of A.

. Definition. (Sequences of row operations.)

Let Ay, As, -+, An_1, AN be finitely many (p X q)-matrices.

Suppose that for each k, Ay is the resultant of the application of one row operation, say, px, on Ay. Then we say
that Ay, As, -+, An_1, AN is joint by the sequence of row operations pi,p2, -, PN—_1-

When we want to emphasize that for each k, the row operation py, is applied to Ay to obtain Ay,1, we may present
this sequence as

PN—2 PN
AP Ay 2 Ay Ay.
We may also refer to such a sequence as the sequence of row operations p1, p2,--- , pN—1 when we want to emphasize

the role of the row operations.

Remark. When N =1, we have the ‘trivial sequence’ of row operations ‘A;’.

. Example (4). (Sequences of row operations.)

101 1 101 1 3455
(a) A=|0 2 1 1 | Bty pr 1 g 9 2 9 |2th, gn_ 11 9 2 2|

100 2 100 2 100 2

(12 2 1], 12 2 17 . —2 —4 -4 2
b)B=|2 —2 1 0 |25p=|8 84 0 |2Ep—| 8 —8 4 0

1 0 0 2 1 0 0 2 1 0 0 2

(122 0] .., 303 17 . . 303 1
()C=3 03 1| 2=Z=2¢ =12 20| =223¢"'=|2 10 1|

2 10 1 2 1 0 1 1 220

101 1 101 1 101 1 2 0 0 4
(d) Ay=|0 2 1 1 | MtFy p 11 2 2 2|2 g1 2 2 2| B2Fs g1 1 2 2 2|,

100 2 100 2 2 0 0 4 10 1 1

We can ‘undo’ the effect of any row operation on any given matrix and thus ‘restore’ that given matrix by applying
onto the resultant an appropriate row operation onto the resultant.

Although this looks innocent enough (when presented explicitly in the form of Theorem (1) and its remarks), this
is the origin of many deep results in this course.

Theorem (1). (Existence and uniqueness of ‘reverse row operations’)
Suppose p is a row operation on (p X q)-matrices.

Then there is some unique row operation p on (p X q)-matrices such that the application of the sequence of row
operations p, p onto any (p X ¢)-matrix A results in A.

Proof of Theorem (1).

We will give an outline of the argument later. (A full proof is a tedious but straightforward word game about the
definitions.)

Remark on the content of Theorem (1).
What we are saying in the conclusion of Theorem (1) is that given any (p x ¢)-matrices A, A’, if
AN

is valid then:—



(1) there is a corresponding row operation p for which the sequence

ALy a2y
is valid,
(2) such a p is determined by p alone (but not by A),

(3) such a p is uniquely determined.

Further remark on terminology.

Theorem (1) justifies the naming of p as the ‘reverse row operation’ for p.

Dependent on the ‘type’ to which p belongs, p will be given correspondingly, as described by the table below:—
Corresponding ‘reverse

row operation’ p on A’
resultant in A.

Row operation p on A
resultant in A’.

A oBitBe qr il Ny
PRINyY JURSLLINgy
R;<> Ry / / Ri+ Ry
A—" A A /= A,

The entries in this table are justified by the argument for Theorem (1).
From this table, it is apparent that Theorem (2) holds.

12. Theorem (2). (‘Reverse’ of ‘reverse row operation’.)
Suppose p is a row operation on matrices with p rows, and p is the ‘reverse row operation’ for p.
Then the ‘reverse row operation’ for p is given by p itself.
Remark. In symbols, what we are saying is:—
If

is valid for each matrix A with p rows, then

is valid for each matrix B with p rows.
13. Example (5). (‘Reverse row operations’.)

(a) The ‘reverse’ row operation for

1 01 1 1 0 1 1
A=|0 2 1 1 |t 11 2 2 2
1 0 0 2 1 0 0 2
is given by
1 0 1 1 1 0 1 1
A=|1 2 2 2|t 419 2 1 1],
1 0 0 2 1 0 0 2
(b) The ‘reverse’ row operation for
1 2 2 1 iR 1 2 2 -1
B=|2 -2 1 0 5B =18 -8 4 0
1 0 0 2 1 0 0 2
is given by
1 2 2 -1 1R, 1 2 2 -1
B=|8 -84 0 |—2=>B=|2 -21 0
1 0 0 2 1 0 0 2




(c) The ‘reverse’ row operation for

1 2 2 0 RiGR 3 0 3 1
c=130 3 1 1ot v 11 2 2 0
2 1 0 1 2 1 0 1
is given by
3 0 3 1 R GR 1 2 2 0
C'=112 2 0| 2220c={3 0 3 0|.
21 0 1 2 1 0 1

14. We can recover a matrix from the resultant of a sequence of row operations on the matrix by ‘reversing’ the sequence
and ‘replacing’ the respective row operations with their ‘reverse’ row operations.

Theorem (3). (‘Reversing’ a sequence of row operations.)

Suppose Ay, As,- -+, AN is a sequence of (p X q)-matrices joint by row operations p1, pa,--- , pN—1 respectively:

P Pr—
Ay 25 A B T Ay TS A

Then Ay, - - , A, Ay is a sequence of (p X q)-matrices joint by row operations px_1,- -+ , P2, p1 respectively, in which
pr Is the ‘reverse row operation’ of py for each k:

PNt Pn—2 Pz

AN—>AN,1—>~-~—>A2E>A1.

Proof of Theorem (3). The argument is a repeated application of Theorem (1).
15. Example (6). (‘Reversing’ a sequence of row operations.)

(a) We obtain A” from A by applying this sequence of row operations:—

1 0 1 1 1 011 3 4 5 5
A=|0 2 1 1 | Mty 1 9 9 o [ ZRER 4| 9 2 o |
1 0 0 2 1 0 0 2 1 0 0 2
We ‘recover’ A from A” by ‘reversing’ the above sequence:—
3 4 5 5 1 0 1 1 1 0 1 1
A= 1 2 2 2 | 2BtRy g 9 9 9 | R 4 g 2 1 1 |,
1 0 0 2 1 0 0 2 1 0 0 2

(b) We obtain A” from A by applying this sequence of row operations:—

12 2 -1] . L2 2 -1 ,, -2 -4 -4 2
B=|2 -2 1 0 =B =8 -8 4 0 — B" = 8§ -8 4 0 [.
1 0 0 2 1 0 0 2 1 0 0 2

We ‘recover’ B from B” by ‘reversing’ the above sequence:—

-2 —4 -4 2 1 1 2 2 -1 it 1 2 2 -1
B'=| 8 —8 4 0| 2 p_|s 81 0 |2 p_|2 221 o0
1 0 0 2 1 0 0 2 1 0 0 2
(c) We obtain C” from C by applying this sequence of row operations:—
12207 .., 303 17 ... 303 1
C=|3 03 1| 22=¢c=|1220|=2233¢c"'=|210 1|.
2 1 0 1 2 1 0 1 1 2 2 0
We ‘recover’ C from C” by ‘reversing’ the above sequence:—
3 0 3 1 3 0 3 1 1 2 2 0
=121 0 1|22 o1 22 082801303 0],
1 2 2 0 2 1 0 1 2 1 0 1




16.

17.

18.

19.

(d) We obtain A4 from A; by applying this sequence of row operations:—

101 1 101 1 101 1 2.0 0 4
A= 0 2 1 1 |Maffe gy 122 2 |24, 1 2 2 2 [ B2 0112 2 2/

1 00 2 100 2 2.0 0 4 101 1
We ‘recover’ A from A4 by ‘reversing’ the above sequence:—

2 0 0 4 1011 101 1 101 1
Ag=|1 2 2 o |BaoBs yo 11 9 o o | W2 p |1 2 2 2 | ZMutle 41 2 1 1

1011 2.0 0 4 100 2 1 00 2

Definition. (Row-equivalent matrices.)

Let C, D be (p X q)-matrices.

Suppose there is a finite sequence of row operations starting from C' and ending at D.
Then we say that C' is row-equivalent to D.

When we also want to emphasize that C' is joint to D by, say, some sequence of row operations

C P1 P2 L Pk D
we say that C is row-equivalent to D under the sequence of row operations py,po, -, pg.

Question.  How to show that a given (p X ¢)-matrix C' is row-equivalent to a (p x q)-matrix D?

Answer. Write down a finite sequence of (p X ¢)-matrices, say,

C=Cy 0,2 2oy Y o =D

joint by row operations, one at each step.

Illustration.

LetC:[(l) 0 HandD:{g 5 2]

We verify that C' is row-equivalent to D:

o e[ 4] e (18 4] (38 2] Eeman ()4 )
Z1Rit R, C’5:[% _22 %}&C@,Z[é —28 i}&CH:D:[g _68 Z}

Theorem (4). (Row-equivalence as an ‘equivalence relation’.)

The statements below hold:—

(a) Suppose C is a (p x q)-matrix. Then C is row-equivalent to C'.
(b) Let C, D be (p x q)-matrices. Suppose C' is row-equivalent to D. Then D is row-equivalent to C.
(¢) Let C,D, E be (p x q)-matrices. Suppose C' is row-equivalent to D and D is row-equivalent to E. Then C is
row-equivalent to E.
Proof of Theorem (4). Exercise.

Remark on the significance of Theorem (4). By virtue of Theorem (4), it will make sense for us to write
something like

‘the matrices A, B are row-equivalent to each other’, ‘the matrices C, D, E are row-equivalent to each other’,

using the phrase ‘row-equivalent’ in similar way that we use the word ‘equal’ (in various areas of mathematics) or
the phrase ‘congruent’ (in plane geometry).

Further remark. According to Theorem (4), the collection of all (p X ¢)-matrices are split into various ‘cliques’
according to the question whether one (p x ¢)-matrix is row-equivalent to another (p x ¢)-matrix. If yes, then the
two matrices concerned are in the same ‘clique’; if no, they are not.

Outline of argument for Theorem (1).

Suppose p is a row operation on (p X ¢)-matrices.



(a)

We first argue for the existence of an appropriate row operation, labeled p, on (p X q)-matrices for which the
sequence of row operations

is valid.

Note that p is given by one of

for some appropriate «, 3,1, k.

Respectively introduce the row operation p to be one of
—aR; + Ry, B71Ry, R; <+ Ry,

for the same «, 3,1, k.

Then in each case, for any (p X g)-matrix A, in the sequence of row operations
P p
AL A DAY

we will obtain A” = A.
[To see this we have to check according to definition that the sequences of row operations below are indeed
valid:—

. A aR;+ Ry A/ —aR;+Ry A

—1
. A BRy A B Ry A
e A Ri+ Ry A/ R; <Ry A

This is left as an exercise.]
This completes the argument for the ‘existence part’.
Now we turn to the argument for ‘uniqueness part’.

Suppose p is a row operation on (px ¢)-matrices for which the successive application of p, p on each (px ¢)-matrix
A results in A.
It suffices for us to justify these claims:—

e If p is given by aR; + Ry for some number «, then p is given by —aR; + Ry.
o If p is given by BRy, for some nonzero number 3, then p is given by S~ Ry.
e If pis given by R; <+ Ry then p is given by R; <> Ry.

(For each claim, we can give an easy argument by choosing A judiciously in the argument. An obvious choice
is‘A=1,")



