
1.7 Row operations on matrices.

0. Assumed background.

• 1.1 Matrices, matrix addition, and scalar multiplication for matrices.

Abstract. We introduce:—

• the notion of row operations on matrices,
• the notions of ‘reverse’ row operations, and sequences of row operations,
• the notion of row equivalence.

1. Definition. (Row operation ‘adding a scalar multiple of one row to another’.)
Let A be a (p× q)-matrix whose (i, j)-th entry is denoted by aij , and whose k-th row is denoted by Rk.
Suppose α is a number.
When we replace the k-th row [ ak1 ak2 · · · akq ] of A by

[ αai1 + ak1 αai2 + ak2 · · · αaiq + akq ] ,

in which i ̸= k, to obtain some resultant matrix A′, we say we are applying the row operation ‘α · Ri + Rk’ to A,
and write A

αRi+Rk−−−−−→ A′.
Such a row operation is called adding a scalar multiple of one row of A to another row of A.

2. Example (1). (Adding a scalar multiple of one row to another.)

(a) A =

[
1 0 1 1
0 2 1 1
1 0 0 2

]
1R1+R2−−−−−→ A′ =

[
1 0 1 1
1 2 2 2
1 0 0 2

]
.

(b) A′ =

[
1 0 1 1
1 2 2 2
1 0 0 2

]
2R2+R1−−−−−→ A′′ =

[
3 4 5 5
1 2 2 2
1 0 0 2

]
.

3. Definition. (Row operation ‘multiplying a non-zero scalar to a row’.)
Let A be a (p× q)-matrix whose (i, j)-th entry is denoted by aij , and whose k-th row is denoted by Rk.
Suppose β is a non-zero number.
When replace the k-th row [ ak1 ak2 · · · akq ] of A by

[ βak1 βak2 · · · βakq ]

to obtain some resultant matrix A′, we say we are applying the row operation ‘β ·Rk’ to A, and write A
βRk−−−→ A′.

Such a row operation is called multiplying a non-zero scalar to a row of A.

4. Example (2). (Multiplying a non-zero scalar to a row.)

(a) B =

[
1 2 2 −1
2 −2 1 0
1 0 0 2

]
4R2−−→ B′ =

[
1 2 2 −1
8 −8 4 0
1 0 0 2

]
.

(b) B′ =

[
1 2 2 −1
8 −8 4 0
1 0 0 2

]
−2R1−−−→ B′′ =

[
−2 −4 −4 2
8 −8 4 0
1 0 0 2

]
.

5. Definition. (Row operation ‘interchanging two rows’.)
Let A be a (p× q)-matrix whose (i, j)-th entry is denoted by aij , and whose k-th row is denoted by Rk.
When we interchange the i-th row [ ai1 ai2 · · · aiq ] and the k-th row [ ak1 ak2 · · · akq ] of A, in which
i ̸= k, to obtain some resultant matrix A′, we say we are applying the row operation ‘Ri ←→ Rk’ to A, and write
A

Ri↔Rk−−−−−→ A′.
Such a row operation is called interchanging two rows of A.

6. Example (3). (Interchanging two rows.)

(a) C =

[
1 2 2 0
3 0 3 1
2 1 0 1

]
R1↔R2−−−−−→ C ′ =

[
3 0 3 1
1 2 2 0
2 1 0 1

]
.
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(b) C ′ =

[
3 0 3 1
1 2 2 0
2 1 0 1

]
R2↔R3−−−−−→ C ′′ =

[
3 0 3 1
2 1 0 1
1 2 2 0

]
.

7. Definition. (Row operations.)
Let A,A′ be (p× q)-matrices.
We say we are applying a row operation on A to obtain A′ if and only if A′ is the resultant of the application of

• one row operation adding a scalar multiple of one row of A to another row of A, or
• one row operation multiplying a non-zero scalar to a row of A, or
• one row operation interchanging two rows of A.

8. Definition. (Sequences of row operations.)
Let A1, A2, · · · , AN−1, AN be finitely many (p× q)-matrices.
Suppose that for each k, Ak+1 is the resultant of the application of one row operation, say, ρk, on Ak. Then we say
that A1, A2, · · · , AN−1, AN is joint by the sequence of row operations ρ1, ρ2, · · · , ρN−1.
When we want to emphasize that for each k, the row operation ρk is applied to Ak to obtain Ak+1, we may present
this sequence as

A1
ρ1−→ A2

ρ2−→ · · ·
ρ
N−2−−−→ AN−1

ρ
N−1−−−→ AN .

We may also refer to such a sequence as the sequence of row operations ρ1, ρ2, · · · , ρN−1 when we want to emphasize
the role of the row operations.
Remark. When N = 1, we have the ‘trivial sequence’ of row operations ‘A1’.

9. Example (4). (Sequences of row operations.)

(a) A =

[
1 0 1 1
0 2 1 1
1 0 0 2

]
1R1+R2−−−−−→ A′ =

[
1 0 1 1
1 2 2 2
1 0 0 2

]
2R2+R1−−−−−→ A′′ =

[
3 4 5 5
1 2 2 2
1 0 0 2

]
.

(b) B =

[
1 2 2 −1
2 −2 1 0
1 0 0 2

]
4R2−−→ B′ =

[
1 2 2 −1
8 −8 4 0
1 0 0 2

]
−2R1−−−→ B′′ =

[
−2 −4 −4 2
8 −8 4 0
1 0 0 2

]
.

(c) C =

[
1 2 2 0
3 0 3 1
2 1 0 1

]
R1↔R2−−−−−→ C ′ =

[
3 0 3 1
1 2 2 0
2 1 0 1

]
R2↔R3−−−−−→ C ′′ =

[
3 0 3 1
2 1 0 1
1 2 2 0

]
.

(d) A1=

[
1 0 1 1
0 2 1 1
1 0 0 2

]
1R1+R2−−−−−→ A2=

[
1 0 1 1
1 2 2 2
1 0 0 2

]
2R3−−→ A3=

[
1 0 1 1
1 2 2 2
2 0 0 4

]
R1↔R3−−−−−→ A4=

[
2 0 0 4
1 2 2 2
1 0 1 1

]
.

10. We can ‘undo’ the effect of any row operation on any given matrix and thus ‘restore’ that given matrix by applying
onto the resultant an appropriate row operation onto the resultant.
Although this looks innocent enough (when presented explicitly in the form of Theorem (1) and its remarks), this
is the origin of many deep results in this course.
Theorem (1). (Existence and uniqueness of ‘reverse row operations’.)
Suppose ρ is a row operation on (p× q)-matrices.
Then there is some unique row operation ρ̃ on (p × q)-matrices such that the application of the sequence of row
operations ρ, ρ̃ onto any (p× q)-matrix A results in A.
Proof of Theorem (1).
We will give an outline of the argument later. (A full proof is a tedious but straightforward word game about the
definitions.)

11. Remark on the content of Theorem (1).
What we are saying in the conclusion of Theorem (1) is that given any (p× q)-matrices A,A′, if

A
ρ−→ A′

is valid then:—
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(1) there is a corresponding row operation ρ̃ for which the sequence

A
ρ−→ A′ ρ̃−→ A

is valid,
(2) such a ρ̃ is determined by ρ alone (but not by A),
(3) such a ρ̃ is uniquely determined.

Further remark on terminology.
Theorem (1) justifies the naming of ρ̃ as the ‘reverse row operation’ for ρ.
Dependent on the ‘type’ to which ρ belongs, ρ̃ will be given correspondingly, as described by the table below:—

Row operation ρ on A
resultant in A′.

Corresponding ‘reverse
row operation’ ρ̃ on A′

resultant in A.
A

αRi+Rk−−−−−→ A′. A′ −αRi+Rk−−−−−−−→ A.
A

βRk−−−→ A′. A′ (1/β)Rk−−−−−→ A.
A

Ri↔Rk−−−−−→ A′. A′ Ri↔Rk−−−−−→ A.

The entries in this table are justified by the argument for Theorem (1).
From this table, it is apparent that Theorem (2) holds.

12. Theorem (2). (‘Reverse’ of ‘reverse row operation’.)
Suppose ρ is a row operation on matrices with p rows, and ρ̃ is the ‘reverse row operation’ for ρ.
Then the ‘reverse row operation’ for ρ̃ is given by ρ itself.
Remark. In symbols, what we are saying is:—
If

A
ρ−−−−→ ρ̃−−−−→ A

is valid for each matrix A with p rows, then

B
ρ̃−−−−→ ρ−−−−→ B

is valid for each matrix B with p rows.

13. Example (5). (‘Reverse row operations’.)

(a) The ‘reverse’ row operation for

A =

[
1 0 1 1
0 2 1 1
1 0 0 2

]
1R1+R2−−−−−→ A′ =

[
1 0 1 1
1 2 2 2
1 0 0 2

]

is given by

A′ =

[
1 0 1 1
1 2 2 2
1 0 0 2

]
−1R1+R2−−−−−−→ A =

[
1 0 1 1
0 2 1 1
1 0 0 2

]
.

(b) The ‘reverse’ row operation for

B =

[
1 2 2 −1
2 −2 1 0
1 0 0 2

]
4R2−−→ B′ =

[
1 2 2 −1
8 −8 4 0
1 0 0 2

]

is given by

B′ =

[
1 2 2 −1
8 −8 4 0
1 0 0 2

]
− 1

4R2−−−−→ B =

[
1 2 2 −1
2 −2 1 0
1 0 0 2

]
.
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(c) The ‘reverse’ row operation for

C =

[
1 2 2 0
3 0 3 1
2 1 0 1

]
R1↔R2−−−−−→ C ′ =

[
3 0 3 1
1 2 2 0
2 1 0 1

]

is given by

C ′ =

[
3 0 3 1
1 2 2 0
2 1 0 1

]
R1↔R2−−−−−→ C =

[
1 2 2 0
3 0 3 0
2 1 0 1

]
.

14. We can recover a matrix from the resultant of a sequence of row operations on the matrix by ‘reversing’ the sequence
and ‘replacing’ the respective row operations with their ‘reverse’ row operations.
Theorem (3). (‘Reversing’ a sequence of row operations.)
Suppose A1, A2, · · · , AN is a sequence of (p× q)-matrices joint by row operations ρ1, ρ2, · · · , ρN−1 respectively:

A1
ρ1−→ A2

ρ2−→ · · ·
ρ
N−2−−−→ AN−1

ρ
N−1−−−→ AN .

Then AN , · · · , A2, A1 is a sequence of (p×q)-matrices joint by row operations ρ̃N−1, · · · , ρ̃2, ρ̃1 respectively, in which
ρ̃k is the ‘reverse row operation’ of ρk for each k:

AN

ρ̃
N−1−−−→ AN−1

ρ̃
N−2−−−→ · · · ρ̃2−→ A2

ρ̃1−→ A1.

Proof of Theorem (3). The argument is a repeated application of Theorem (1).

15. Example (6). (‘Reversing’ a sequence of row operations.)

(a) We obtain A′′ from A by applying this sequence of row operations:—

A=

[
1 0 1 1
0 2 1 1
1 0 0 2

]
1R1+R2−−−−−→ A′=

[
1 0 1 1
1 2 2 2
1 0 0 2

]
2R2+R1−−−−−→ A′′=

[
3 4 5 5
1 2 2 2
1 0 0 2

]
.

We ‘recover’ A from A′′ by ‘reversing’ the above sequence:—

A′′=

[
3 4 5 5
1 2 2 2
1 0 0 2

]
−2R2+R1−−−−−−→ A′=

[
1 0 1 1
1 2 2 2
1 0 0 2

]
−1R1+R2−−−−−−→ A=

[
1 0 1 1
0 2 1 1
1 0 0 2

]
.

(b) We obtain A′′ from A by applying this sequence of row operations:—

B =

[
1 2 2 −1
2 −2 1 0
1 0 0 2

]
4R2−−→ B′ =

[
1 2 2 −1
8 −8 4 0
1 0 0 2

]
−2R1−−−→ B′′ =

[
−2 −4 −4 2
8 −8 4 0
1 0 0 2

]
.

We ‘recover’ B from B′′ by ‘reversing’ the above sequence:—

B′′ =

[
−2 −4 −4 2
8 −8 4 0
1 0 0 2

]
− 1

2R1−−−−→ B′ =

[
1 2 2 −1
8 −8 4 0
1 0 0 2

]
− 1

4R2−−−−→ B =

[
1 2 2 −1
2 −2 1 0
1 0 0 2

]
.

(c) We obtain C ′′ from C by applying this sequence of row operations:—

C =

[
1 2 2 0
3 0 3 1
2 1 0 1

]
R1↔R2−−−−−→ C ′ =

[
3 0 3 1
1 2 2 0
2 1 0 1

]
R2↔R3−−−−−→ C ′′ =

[
3 0 3 1
2 1 0 1
1 2 2 0

]
.

We ‘recover’ C from C ′′ by ‘reversing’ the above sequence:—

C ′′ =

[
3 0 3 1
2 1 0 1
1 2 2 0

]
R2↔R3−−−−−→ C ′ =

[
3 0 3 1
1 2 2 0
2 1 0 1

]
R1↔R2−−−−−→ C =

[
1 2 2 0
3 0 3 0
2 1 0 1

]
.
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(d) We obtain A4 from A1 by applying this sequence of row operations:—

A1=

[
1 0 1 1
0 2 1 1
1 0 0 2

]
1R1+R2−−−−−→A2=

[
1 0 1 1
1 2 2 2
1 0 0 2

]
2R3−−→A3=

[
1 0 1 1
1 2 2 2
2 0 0 4

]
R1↔R3−−−−−→A4=

[
2 0 0 4
1 2 2 2
1 0 1 1

]
.

We ‘recover’ A1 from A4 by ‘reversing’ the above sequence:—

A4=

[
2 0 0 4
1 2 2 2
1 0 1 1

]
R1↔R3−−−−−→A3=

[
1 0 1 1
1 2 2 2
2 0 0 4

]
(1/2)R3−−−−−→A2=

[
1 0 1 1
1 2 2 2
1 0 0 2

]
−1R1+R2−−−−−−→A1=

[
1 0 1 1
0 2 1 1
1 0 0 2

]
.

16. Definition. (Row-equivalent matrices.)
Let C,D be (p× q)-matrices.
Suppose there is a finite sequence of row operations starting from C and ending at D.
Then we say that C is row-equivalent to D.
When we also want to emphasize that C is joint to D by, say, some sequence of row operations

C
ρ1−−−−−→ ρ2−−−−−→ · · · ρk−−−−−→ D,

we say that C is row-equivalent to D under the sequence of row operations ρ1, ρ2, · · · , ρk.

17. Question. How to show that a given (p× q)-matrix C is row-equivalent to a (p× q)-matrix D?
Answer. Write down a finite sequence of (p× q)-matrices, say,

C = C1
ρ1−→ C2

ρ2−→ · · ·
ρ
N−2−−−→ CN−1

ρ
N−1−−−→ CN = D

joint by row operations, one at each step.
Illustration.

Let C =
[
1 0 1
0 2 1

]
and D =

[
3 6 6
8 −8 4

]
.

We verify that C is row-equivalent to D:

C = C1 =
[
1 0 1
0 2 1

]
1R1+R2−−−−−→ C2 =

[
1 0 1
1 2 2

]
3R1−−→ C3 =

[
3 0 3
1 2 2

]
R1↔R2−−−−−→ C4 =

[
1 2 2
3 0 3

]
−1R1+R2−−−−−−→ C5 =

[
1 2 2
2 −2 1

]
4R2−−→ C6 =

[
1 2 2
8 −8 4

]
3R1−−→ C7 = D =

[
3 6 6
8 −8 4

]
18. Theorem (4). (Row-equivalence as an ‘equivalence relation’.)

The statements below hold:—

(a) Suppose C is a (p× q)-matrix. Then C is row-equivalent to C.
(b) Let C,D be (p× q)-matrices. Suppose C is row-equivalent to D. Then D is row-equivalent to C.
(c) Let C,D,E be (p × q)-matrices. Suppose C is row-equivalent to D and D is row-equivalent to E. Then C is

row-equivalent to E.

Proof of Theorem (4). Exercise.
Remark on the significance of Theorem (4). By virtue of Theorem (4), it will make sense for us to write
something like

‘the matrices A,B are row-equivalent to each other’, ‘the matrices C,D,E are row-equivalent to each other’,

using the phrase ‘row-equivalent’ in similar way that we use the word ‘equal’ (in various areas of mathematics) or
the phrase ‘congruent’ (in plane geometry).
Further remark. According to Theorem (4), the collection of all (p× q)-matrices are split into various ‘cliques’
according to the question whether one (p × q)-matrix is row-equivalent to another (p × q)-matrix. If yes, then the
two matrices concerned are in the same ‘clique’; if no, they are not.

19. Outline of argument for Theorem (1).
Suppose ρ is a row operation on (p× q)-matrices.
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(a) We first argue for the existence of an appropriate row operation, labeled ρ̃, on (p × q)-matrices for which the
sequence of row operations

A
ρ−−−−→ ρ̃−−−−→ A

is valid.
Note that ρ is given by one of

αRi +Rk, βRk Ri ↔ Rk

for some appropriate α, β, i, k.
Respectively introduce the row operation ρ̃ to be one of

−αRi +Rk, β−1Rk Ri ↔ Rk

for the same α, β, i, k.
Then in each case, for any (p× q)-matrix A, in the sequence of row operations

A
ρ−→ A′ ρ̃−→ A′′,

we will obtain A′′ = A.
[To see this we have to check according to definition that the sequences of row operations below are indeed
valid:—

• A
αRi+Rk−−−−−→ A′ −αRi+Rk−−−−−−−→ A.

• A
βRk−−−→ A′ β−1Rk−−−−→ A.

• A
Ri↔Rk−−−−−→ A′ Ri↔Rk−−−−−→ A.

This is left as an exercise.]
This completes the argument for the ‘existence part’.

(b) Now we turn to the argument for ‘uniqueness part’.
Suppose ρ̂ is a row operation on (p×q)-matrices for which the successive application of ρ, ρ̂ on each (p×q)-matrix
A results in A.
It suffices for us to justify these claims:—

• If ρ is given by αRi +Rk for some number α, then ρ̂ is given by −αRi +Rk.
• If ρ is given by βRk for some nonzero number β, then ρ̂ is given by β−1Rk.
• If ρ is given by Ri ↔ Rk then ρ̂ is given by Ri ↔ Rk.

(For each claim, we can give an easy argument by choosing A judiciously in the argument. An obvious choice
is ‘A = Ip’.)
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