
1.4 Commuting matrices versus non-commuting matrices.

0. Assumed background.

• 1.1 Matrices, matrix addition, and scalar multiplication for matrices.
• 1.2 Matrix multiplication.

Abstract. We introduce:—

• the notion of commuting matrices,
• the non-commutativity of matrix multiplication in general.

We also note the ideas in:—

• the method of proof by mathematical induction,
• the notion of counter-examples for refuting a statement.

More on the ideas will be covered in the appendices.

1. Definition. (Commuting matrices.)
Suppose A,B are matrices.
Then A,B are said to commute with each other if and only if the equality AB = BA holds.
We can also say that A,B are a pair of commuting matrices.
Remark. Commutativity is guaranteed for matrix addition. There is a ‘Law of Commutativity for matrix
addition’, which reads: ‘Suppose A,B are matrices of the same size. Then A+B = B +A’.
But it is the question of commutativity is highly nontrivial for matrix multiplication.
Given an arbitrary pair of matrices, there is no guarantee that they commute with each other, as the examples
below illustrate. This is exactly why such a definition is useful.

2. Example (1). (Examples and non-examples of commuting matrices.)

(a) The (n× n)-zero matrix commute with every (n× n)-square matrix.
(b) The (n× n)-identity matrix commute with every (n× n)-square matrix.

(c) Let A =
[
2 0
0 3

]
, B =

[
6 0
0 5

]
.

We have
AB = · · · =

[
12 0
0 15

]
, BA = · · · =

[
12 0
0 15

]
.

Then AB = BA. Therefore A,B commute with each other.

(d) Let A =

[
0 0 1
1 0 0
0 1 0

]
, B =

[
0 1 0
0 0 1
1 0 0

]
.

We have

AB = · · · =

[
1 0 0
0 1 0
0 0 1

]
, BA = · · ·

[
1 0 0
0 1 0
0 0 1

]
.

Then AB = BA. Therefore A,B commute with each other.

(e) Let A =
[
0 1 0
2 3 1

]
, B =

[
2 0
1 2
1 1

]
.

AB =
[
0 1 0
2 3 1

][ 2 0
1 2
1 1

]
= · · · =

[
1 2
8 7

]
.

BA =

[
2 0
1 2
1 1

][
0 1 0
2 3 1

]
= · · · =

[
0 2 0
4 7 2
2 4 1

]
.

So it follows that AB ̸= BA.
(AB, BA are not even comparable, as they are not of the same size.)
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(f) Let A =
[
0 1
0 0

]
, B =

[
1 0
0 0

]
.

AB =
[
0 1
0 0

][
1 0
0 0

]
= · · · =

[
0 0
0 0

]
= O2×2.

BA =
[
1 0
0 0

][
0 1
0 0

]
= · · · =

[
0 1
0 0

]
= A.

So it follows that AB ̸= BA. Therefore A,B do not commute with each other.

(g) Let A =
[

0 1
−1 0

]
, B =

[
1 1
0 1

]
.

We have
AB = · · · =

[
0 1
−1 1

]
, BA = · · · =

[ −1 1
−1 0

]
.

Then AB ̸= BA. Therefore A,B do not commute with each other.

(h) Let A =
[
1 1
0 0

]
, B =

[
0 0
1 1

]
.

We have
AB = · · · =

[
1 1
0 0

]
, BA = · · · =

[
0 0
1 1

]
.

Then AB ̸= BA. Therefore A,B do not commute with each other.

Remark. What some parts of Example (1) has told us is that the statements (⋆), (⋆⋆) are false:—

(⋆) Suppose A is an (m× n)-matrix and B is an (n×m)-matrix. Then AB = BA.
(⋆⋆) Suppose A,B are (n× n)-matrices. Then AB = BA.

The content of part (e) of Example (1) is referred to as a counter-example against the statement (⋆).
The content of part (f) of Example (1) is referred to as a counter-example against the statement (⋆⋆).
Further remark. Were either of (⋆), (⋆⋆) true, we would have something that would be called ‘Law of Com-
mutativity for matrix multiplication’. The falsity of both (⋆), (⋆⋆) says that there is no such thing as ‘Law of
Commutativity for matrix multiplication’.

3. Lemma (1).
Let A,B be (p × p)-square matrix. Suppose A,B commute with each other. Then, for any positive integer n, the
matrices A,Bn commute with each other.
Proof of Lemma (1).
Let A,B be (p× p)-square matrix. Suppose A,B commute with each other.
[We want to deduce

‘for any positive integer n, the matrices A,Bn commute with each other︸ ︷︷ ︸
P (n)

’

with an application of mathematical induction:—

• We deduce the matrices A,B1 commute with each other︸ ︷︷ ︸
P (1)

.

• We deduce that

for each positive integer k, if the matrices A,Bk commute with each other︸ ︷︷ ︸
P (k)

then the matrices A,Bk+1 commute with each other︸ ︷︷ ︸
P (k + 1)

.

We complete the procedure by citing the ‘Principle of Mathematical Induction’.]
We denote by P (n) the proposition ‘A,Bn commute with each other’.

• Note that B1 = B.
By assumption, A,B commute with each other.
Hence P (1) is true.
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• Let k be a positive integer. Suppose P (k) is true. (Then ABk = BkA.)
[We want to verify the equality ABk+1 = Bk+1A.]
We have

ABk+1 = (AB)Bk (by associativity of matrix multiplication)

= (BA)Bk (by P (1))

= B(ABk) (by associativity of matrix multiplication)

= B(BkA) (by P (k))

= Bk+1A (by associativity of matrix multiplication)

Hence P (k + 1) is true.

By the Principle of Mathematical Induction, P (n) is true for any positive integer n.

4. Lemma (2).
Let A,B be (p × p)-square matrix. Suppose A,B commute with each other. Then, for any positive integers m,n,
the matrices Am, Bn commute with each other.
Proof of Lemma (2). Exercise. (Apply Lemma (1).)

5. Theorem (3). (Binomial Theorem for commuting matrices.)
Let A,B be (p × p)-square matrix. Suppose A,B commute with each other. Then, for any positive integer n, the
equality

(A+B)n = An +
(

n
1

)
An−1B +

(
n
2

)
An−2B2 + · · ·+

(
n
k

)
An−kBk + · · ·+

(
n

n− 1

)
ABn−1 +Bn

holds .
Proof of Theorem (3). Exercise. (Apply mathematical induction.)

6. Comment on Theorem (3). When we delete the words

‘Suppose A,B commute with each other.’

from the statement of Theorem (3), we will end up with the false statement (⋆⋆⋆):—

(⋆⋆⋆) Suppose A,B are (p× p)-square matrix. Then, for any positive integer n, the equality

(A+B)n = An +
(

n
1

)
An−1B +

(
n
2

)
An−2B2 + · · ·+

(
n
k

)
An−kBk + · · ·+

(
n

n− 1

)
ABn−1 +Bn

holds .

To convince ourselves that (⋆⋆⋆) is indeed false, we present a counter-example against it (obtained by re-using the
work in part (f) of Example (1)):

• Take A =
[
0 1
0 0

]
, B =

[
1 0
0 0

]
. (Take n = 2).

We have (A+B)2 =
[
1 1
0 0

]2
=

[
1 1
0 0

]
.

We also have A2 = AB = O2×2, and B2 = B.

Then A2 +
(

2
1

)
AB +B2 = A2 + 2AB +B2 = B =

[
1 0
0 0

]
.

Therefore (A+B)2 ̸= A2 +
(

2
1

)
AB +B2.
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