0.1 Transpose, symmetry and skew-symmetry.

0. Assumed background.

- 1.1 Matrices, matrix addition, and scalar multiplication for matrices.
- 1.2 Matrix multiplication.

Abstract. We introduce:-

- the notion of transpose,
- the notions of symmetry and skew-symmetry.

In the appendix, we digress onto the notion of definition, theorem, proof, and the format which dictates how they are to be read.

1. Definition. (Transpose of a matrix.)

Let A be an $(m \times n)$-matrix, whose (i, j)-th entry is denoted by $a_{i j}$.
The transpose of A is the $(n \times m)$-matrix whose (k, ℓ)-th entry is given by $a_{\ell k}$.
It is denoted by A^{t}.
Remark. In symbolic terms, what this definition says is:-
If $A=\left[\begin{array}{ccccc}a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n}\end{array}\right]$ then $A^{t}=\left[\begin{array}{ccccc}a_{11} & a_{21} & a_{31} & \cdots & a_{m 1} \\ a_{12} & a_{22} & a_{32} & \cdots & a_{m 2} \\ a_{13} & a_{23} & a_{33} & \cdots & a_{m 2} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{1 n} & a_{2 n} & a_{3 n} & \cdots & a_{m n}\end{array}\right]$.
2. Example (1). (Transpose of a matrix.)

Suppose $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2\end{array}\right], B=\left[\begin{array}{lll}1 & 3 & 0 \\ 2 & 1 & 1\end{array}\right]$ and $C=\left[\begin{array}{ll}1 & 2 \\ 0 & 1 \\ 1 & 3\end{array}\right]$.
Then $A^{t}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 3 & 2\end{array}\right], B^{t}=\left[\begin{array}{ll}1 & 2 \\ 3 & 1 \\ 0 & 1\end{array}\right]$ and $C^{t}=\left[\begin{array}{lll}1 & 0 & 1 \\ 2 & 1 & 3\end{array}\right]$.
(a) Note that $A+B=\left[\begin{array}{lll}2 & 5 & 3 \\ 2 & 2 & 3\end{array}\right]$. Then $(A+B)^{t}=\left[\begin{array}{ll}2 & 2 \\ 5 & 2 \\ 3 & 3\end{array}\right]$.

We have $A^{t}+B^{t}=\cdots=\left[\begin{array}{ll}2 & 2 \\ 5 & 2 \\ 3 & 3\end{array}\right]$. So $(A+B)^{t}=A^{t}+B^{t}$ (in this example).
(b) Note that $A C=\cdots=\left[\begin{array}{cc}4 & 13 \\ 2 & 7\end{array}\right]$. Then $(A C)^{t}=\left[\begin{array}{cc}4 & 2 \\ 13 & 7\end{array}\right]$

We have $C^{t} A^{t}=\cdots=\left[\begin{array}{cc}4 & 2 \\ 13 & 7\end{array}\right]$. So $(A C)^{t}=C^{t} A^{t}$ (in this example).
3. Theorem (1). (Basic properties of transpose.)

Suppose A, B are $(m \times n)$-matrices, C is an $(n \times p)$-matrix, and λ is a number. Then:-
(1) Suppose A is an $(m \times n)$-matrix. Then $\left(A^{t}\right)^{t}=A$.
(2) Suppose A, B are $(m \times n)$-matrices. Then $(A+B)^{t}=A^{t}+B^{t}$.
(3) Suppose A is an $(m \times n)$-matrix, and λ is a number. Then $(\lambda A)^{t}=\lambda A^{t}$.
(4) Suppose A is an $(m \times n)$-matrices, and C is an $(n \times p)$-matrix. Then $(A C)^{t}=C^{t} A^{t}$.

Proof of Statement (4) of Theorem (1).

Suppose A is a $(m \times n)$-matrix, and C is an $(n \times p)$-matrix. (So $A C$ is an $(m \times p)$-matrix, and $(A C)^{t}$ is a $(p \times m)$-matrix.) (By definition, A^{t} is an $(n \times m)$-matrix, and C^{t} is a $(p \times n)$-matrix. So $C^{t} A^{t}$ is well-defined as a $(p \times m)$-matrix.)
Denote the (i, j)-th entry of A by $a_{i j}$. Denote the (k, ℓ)-th entry of C by $c_{k \ell}$.
Fix any $\ell=1,2, \cdots, p$ and $i=1,2, \cdots, m$.

- By the definition of matrix multiplication, the (i, ℓ)-th entry of $A C$ is given by $\sum_{j=1}^{n} a_{i j} c_{j \ell}$.

Then, by the definition of transpose, the (ℓ, i)-th entry of $(A C)$ is given by $\sum_{j=1}^{n} a_{i j} c_{j \ell}$.

- By the definition of transpose, for each $j=1,2, \cdots, n$, the (ℓ, j)-th entry of C^{t} is $c_{j \ell}$, and the (j, i)-th entry of A^{t} is $a_{i j}$.

Then, by the definition of matrix multiplication, the (ℓ, i)-th entry of $C^{t} A^{t}$ is given by $\sum_{j=1}^{n} a_{i j} c_{j \ell}$.
Hence $(A C)^{t}=C^{t} A^{t}$.
Proof of Statements (1), (2), (3) of Theorem (1). Exercise. (Imitate what is done above.)
4. Definition. (Symmetric matrix and skew-symmetric matrix.)

Suppose A is an $(n \times n)$-square matrix. Then:-
(1) A is said to be symmetric if and only if $A^{t}=A$.
(2) A is said to be skew-symmetric if and only if $A^{t}=-A$.
5. Example (2). (Examples and non-examples on symmetric matrices and skew-symmetric matrices.)
(a) The $(n \times n)$-zero matrix is a symmetric matrix. It is also a skew-symmetric matrix.
(b) The identity matrix is a symmetric matrix. It is not skew-symmetric.
(c) $\operatorname{Let} A=\left[\begin{array}{lll}1 & 3 & 5 \\ 3 & 2 & 4 \\ 5 & 4 & 6\end{array}\right]$.

Note that $A^{t}=\left[\begin{array}{lll}1 & 3 & 5 \\ 3 & 2 & 4 \\ 5 & 4 & 6\end{array}\right]=A$. Then A is symmetric.
Note that $A^{t} \neq-A$. Then A is not skew-symmetric.
(d) Let $A=\left[\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0\end{array}\right]$.

Note that $A^{t}=\left[\begin{array}{ccc}0 & -1 & -2 \\ 1 & 0 & -3 \\ 2 & 3 & 0\end{array}\right]=-A$. Then A is skew-symmetric.
Note that $A^{t} \neq A$. Then A is not symmetric.
(e) Let $B=\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]$.

Note that $B^{t}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
We have $B^{t} \neq B$. Then B is not symmetric.
We have $B^{t} \neq-B$. Then B is not skew-symmetric.
(f) Let $B=\left[\begin{array}{ccc}1 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.

Note that $B^{t}=\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
We have $B^{t} \neq B$. Then B is not symmetric.
We have $B^{t} \neq-B$. Then B is not skew-symmetric.
6. Lemma (2).

Suppose A is a square matrix. Then:-
(1) $A+A^{t}$ is symmetric.
(2) $A-A^{t}$ is skew-symmetric.

Proof of Lemma (2).

Suppose A is a square matrix.
(1) We have $\left(A+A^{t}\right)^{t}=A^{t}+\left(A^{t}\right)^{t}=A^{t}+A=A+A^{t}$.

Then, by definition of symmetric matrix, $A+A^{t}$ is symmetric.
(2) We have $\left(A-A^{t}\right)^{t}=\left[A+\left(-A^{t}\right)\right]^{t}=A^{t}+\left(-A^{t}\right)^{t}=A^{t}-\left(A^{t}\right)^{t}=A^{t}-A=-\left(A-A^{t}\right)$.

Then, by definition of skew-symmetric matrix, $A-A^{t}$ is skew-symmetric.

7. Theorem (3).

Suppose A is a square matrix. Then there are some unique square matrices B, C such that B is symmetric, C is skew-symmetric, and $A=B+C$.

Proof of Theorem (3).

Suppose A is a square matrix.
[We have two tasks, which are $(\alpha),(\beta)$ below:-
(α) Conceive some appropriate symmetric matrix, and some appropriate skew-symmetric matrix, respectively labelled B, C in the subsequent consideration, which we hope will satisfy $A=B+C$.
(β) Then we verify for such a pair of matrices B, C two things:-
(1) The equality ' $A=B+C^{\prime}$ holds indeed.
(2) If some symmetric matrix P and some skew-symmetric matrix Q also satisfy $A=P+Q$, then $P=B$ and $Q=C$.

We proceed with (α), and follow up with (β).
But how to proceed with (α) ?]
[Roughwork.
According to Lemma (2), we have a pair of symmetric matrix and skew-symmetric matrix determined by A alone:-

- $A+A^{t}$ is a symmetric matrix.
- $A-A^{t}$ is a skew-symmetric matrix.

However, because $\left(A+A^{t}\right)+\left(A-A^{t}\right)=2 A$, they are not the respective B, C that we hope for. But we are getting close.]

Define $B=\frac{1}{2}\left(A+A^{t}\right)$, and $C=\frac{1}{2}\left(A-A^{t}\right)$.
Note that B is symmetric, and C is skew-symmetric. (Why? Apply Lemma (2) and Theorem (1).)

- We have $B+C=\frac{1}{2}\left(A+A^{t}\right)+\frac{1}{2}\left(A-A^{t}\right)=A$.
- Suppose P is a symmetric matrix, Q is a skew-symmetric matrix, and $A=P+Q$.

By assumption, $P^{t}=P$ and $Q^{t}=-Q$. Then $A^{t}=(P+Q)^{t}=P^{t}+Q^{t}=P-Q$.
Now we have $2 P=(P+Q)+(P-Q)=A+A^{t}$. Then $P=\frac{1}{2}\left(A+A^{t}\right)=B$.
We also have $2 Q=(P+Q)-(P-Q)=A-A^{t}$. Then $Q=\frac{1}{2}\left(A-A^{t}\right)=C$.

