0.1 Transpose, symmetry and skew-symmetry.

0. Assumed background.

e 1.1 Matrices, matrix addition, and scalar multiplication for matrices.

e 1.2 Matrix multiplication.
Abstract. We introduce:—
o the notion of transpose,

o the notions of symmetry and skew-symmetry.

In the appendix, we digress onto the notion of definition, theorem, proof, and the format which dictates how they
are to be read.

1. Definition. (Transpose of a matrix.)
Let A be an (m X n)-matrix, whose (i, j)-th entry is denoted by a;;.

The transpose of A is the (n X m)-matrix whose (k, {)-th entry is given by ag.

It is denoted by A'.

Remark. Insymbolic terms, what this definition says is:—
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2. Example (1). (Transpose of a matrix.)

1 0 1
ThenAf=|2 1 |,Bt=| 3
3 2 0
2 5 3 22
@) Notethat4+B=[ 3 3 3 | Then(a+By = 52|
2 2
We have A' + Bl = --- = [ g % ] So (A + B)! = A" + B! (in this example).
(®) Note that AC= - =| 5 7 | Then a0y =| 1% 7
We have C’At:---:[ 14::3 %] So (AC)! = C'A! (in this example).

3. Theorem (1). (Basic properties of transpose.)

Suppose A, B are (m X n)-matrices, C is an (n X p)-matrix, and A is a number. Then:—

(1) Suppose A is an (m x n)-matrix. Then (A")' = A.

(2) Suppose A, B are (m x n)-matrices. Then (A + B)! = A" + B'.

(3) Suppose A is an (m x n)-matrix, and A is a number. Then (AA)" = AA".

(4) Suppose A is an (m x n)-matrices, and C is an (n X p)-matrix. Then (AC)! = C'A’.
Proof of Statement (4) of Theorem (1).
Suppose A is a (m x n)-matrix, and C is an (1 X p)-matrix. (So AC is an (m X p)-matrix, and (AC)" is a (p X m)-matrix.)
(By definition, A is an (1 X m)-matrix, and C' is a (p X n)-matrix. So C'A’ is well-defined as a (p X m)-matrix.)
Denote the (i, j)-th entry of A by a;;. Denote the (k, £)-th entry of C by cy,.
Fixany¢=1,2,--- ,pandi=1,2,--- ,m.



o By the definition of matrix multiplication, the (i, {)-th entry of AC is given by Z ajicje.

j=1

Then, by the definition of transpose, the (¢, i)-th entry of (AC) is given by Z ajiCjc-

=1

e By the definition of transpose, for each j = 1,2,--- ,n, the (¢, j)-th entry of C' is cj, and the (j, i)-th entry of A’

is 11,-]-.

Then, by the definition of matrix multiplication, the (¢, 7)-th entry of C'A’ is given by Z aijcjc.

Hence (AC)! = CtA".

j=1

Proof of Statements (1), (2), (3) of Theorem (1). Exercise. (Imitate what is done above.)

4. Definition. (Symmetric matrix and skew-symmetric matrix.)

Suppose A is an (n X n)-square matrix. Then:—

(1) A is said to be symmetric if and only if A' = A.

(2) A is said to be skew-symmetric if and only if A" = —A.

5. Example (2). (Examples and non-examples on symmetric matrices and skew-symmetric matrices.)

(a) The (1 x n)-zero matrix is a symmetric matrix. It is also a skew-symmetric matrix.

(b) The identity matrix is a symmetric matrix. It is not skew-symmetric.

1 3 5
(c) LetA=| 3 2 4|
5 4 6
1 35
Note that A" = g i 461 = A. Then A is symmetric.
Note that A’ # —A. Then A is not skew-symmetric.
0o 1 2
(d) LetA=| -1 0 3|
-2 -3 0

2 3 0
Note that Af # A. Then A is not symmetric.

1 3

NotethatBt:[% i )

0o -1 -2
NotethatAt:[l 0 —3}

We have B' # B. Then B is not symmetric.

We have Bf £ —B. Then B is not skew-symmetric.

1 10
(f) LetB=| -1 0 0 |.
0 00

1 -1 0
NotethatB: =1 0 0 [.
0O 0 O

We have B' # B. Then B is not symmetric.

We have B! # —B. Then B is not skew-symmetric.

6. Lemma (2).
Suppose A is a square matrix. Then:—
(1) A+ A! is symmetric.
(2) A - A!is skew-symmetric.

Proof of Lemma (2).

Suppose A is a square matrix.

= —A. Then A is skew-symmetric.



(1) Wehave (A+ AN = Al+ (A =At+ A=A+ A
Then, by definition of symmetric matrix, A + A’ is symmetric.
(2) Wehave (A- AN =[A+ (AN = AT+ (AN = A" — (A} = A" - A = —(A - A)).
Then, by definition of skew-symmetric matrix, A — Atis skew-symmetric.
7. Theorem (3).

Suppose A is a square matrix. Then there are some unique square matrices B, C such that B is symmetric, C is
skew-symmetric, and A = B + C.

Proof of Theorem (3).

Suppose A is a square matrix.

[We have two tasks, which are (a), (8) below:—

(a) Conceive some appropriate symmetric matrix, and some appropriate skew-symmetric matrix, respectively
labelled B, C in the subsequent consideration, which we hope will satisfy A = B + C.

(B) Then we verify for such a pair of matrices B, C two things:—
(1) The equality ‘A = B + C’ holds indeed.

(2) If some symmetric matrix P and some skew-symmetric matrix Q also satisfy A = P + Q, then P = B and
Q=C
We proceed with (a), and follow up with ().
But how to proceed with («)?]
[Roughwork.

According to Lemma (2), we have a pair of symmetric matrix and skew-symmetric matrix determined by A alone:—

e A+ Alis a symmetric matrix.

o A — Alis a skew-symmetric matrix.

However, because (A + A") + (A — A') = 2A, they are not the respective B, C that we hope for. But we are getting
close.]

Define B = %(A +A",and C = %(A - Ah).
Note that B is symmetric, and C is skew-symmetric. (Why? Apply Lemma (2) and Theorem (1).)
1 ho L t
e WehaveB+C = §(A+A)+§(A—A)=A.

e Suppose P is a symmetric matrix, Q is a skew-symmetric matrix, and A = P + Q.
By assumption, P! = Pand Q' = —-Q. Then A' = (P+ Q) =P'+ Q' =P - Q.

Now wehave2P = (P+ Q)+ (P- Q)= A+ A". ThenP = %(A+At):B.

We also have2Q = (P+ Q) - (P- Q) = A — Al. Then Q = %(A—At)zc.



