0.1 Transpose, symmetry and skew-symmetry.

0. Assumed background.

- 1.1 Matrices, matrix addition, and scalar multiplication for matrices.
- 1.2 Matrix multiplication.

Abstract. We introduce:----

- the notion of transpose,
- the notions of symmetry and skew-symmetry.

In the *appendix*, we digress onto the notion of definition, theorem, proof, and the format which dictates how they are to be read.

1. Definition. (Transpose of a matrix.)

Let *A* be an $(m \times n)$ -matrix, whose (i, j)-th entry is denoted by a_{ij} .

The **transpose of** *A* is the $(n \times m)$ -matrix whose (k, ℓ) -th entry is given by $a_{\ell k}$.

It is denoted by A^t .

Remark. In symbolic terms, what this definition says is:-

If $A =$	$\begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix}$	$a_{12} \\ a_{22} \\ a_{32}$	a ₁₃ a ₂₃ a ₃₃	 a_{1n} - a_{2n} a_{3n}	then $A^t =$	$\begin{bmatrix} a_{11} \\ a_{12} \\ a_{13} \end{bmatrix}$	a ₂₁ a ₂₂ a ₂₃	a ₃₁ a ₃₂ a ₃₃	•••• •••	$\begin{bmatrix} a_{m1} \\ a_{m2} \\ a_{m2} \end{bmatrix}$].
	$\begin{bmatrix} \vdots \\ a_{m1} \end{bmatrix}$: a _{m2}	: a _{m3}	 : a _{mn}		$\begin{bmatrix} \vdots \\ a_{1n} \end{bmatrix}$: a _{2n}	: a _{3n}		$\begin{bmatrix} \vdots \\ a_{mn} \end{bmatrix}$	

2. Example (1). (Transpose of a matrix.)

Suppose
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 1 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 3 \end{bmatrix}$.
Then $A^t = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}$, $B^t = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 1 \end{bmatrix}$ and $C^t = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \end{bmatrix}$.

(a) Note that $A + B = \begin{bmatrix} 2 & 5 & 3 \\ 2 & 2 & 3 \end{bmatrix}$. Then $(A + B)^t = \begin{bmatrix} 2 & 2 \\ 5 & 2 \\ 3 & 3 \end{bmatrix}$.

We have
$$A^t + B^t = \dots = \begin{bmatrix} 2 & 2 \\ 5 & 2 \\ 3 & 3 \end{bmatrix}$$
. So $(A + B)^t = A^t + B^t$ (in this example)

(b) Note that $AC = \dots = \begin{bmatrix} 4 & 13 \\ 2 & 7 \end{bmatrix}$. Then $(AC)^t = \begin{bmatrix} 4 & 2 \\ 13 & 7 \end{bmatrix}$ We have $C^tA^t = \dots = \begin{bmatrix} 4 & 2 \\ 13 & 7 \end{bmatrix}$. So $(AC)^t = C^tA^t$ (in this example).

3. Theorem (1). (Basic properties of transpose.)

Suppose *A*, *B* are $(m \times n)$ -matrices, *C* is an $(n \times p)$ -matrix, and λ is a number. Then:—

- (1) Suppose A is an $(m \times n)$ -matrix. Then $(A^t)^t = A$.
- (2) Suppose A, B are $(m \times n)$ -matrices. Then $(A + B)^t = A^t + B^t$.
- (3) Suppose *A* is an $(m \times n)$ -matrix, and λ is a number. Then $(\lambda A)^t = \lambda A^t$.
- (4) Suppose *A* is an $(m \times n)$ -matrices, and *C* is an $(n \times p)$ -matrix. Then $(AC)^t = C^t A^t$.

Proof of Statement (4) of Theorem (1).

Suppose *A* is a $(m \times n)$ -matrix, and *C* is an $(n \times p)$ -matrix. (So *AC* is an $(m \times p)$ -matrix, and $(AC)^t$ is a $(p \times m)$ -matrix.) (By definition, A^t is an $(n \times m)$ -matrix, and C^t is a $(p \times n)$ -matrix. So $C^t A^t$ is well-defined as a $(p \times m)$ -matrix.) Denote the (i, j)-th entry of *A* by a_{ij} . Denote the (k, ℓ) -th entry of *C* by $c_{k\ell}$. Fix any $\ell = 1, 2, \dots, p$ and $i = 1, 2, \dots, m$. • By the definition of matrix multiplication, the (*i*, ℓ)-th entry of *AC* is given by $\sum a_{ij}c_{j\ell}$.

Then, by the definition of transpose, the (ℓ, i) -th entry of (AC) is given by $\sum_{ij}^{n} a_{ij}c_{j\ell}$.

• By the definition of transpose, for each $j = 1, 2, \dots, n$, the (ℓ, j) -th entry of C^t is $c_{j\ell}$, and the (j, i)-th entry of A^t is a_{ij} .

Then, by the definition of matrix multiplication, the (ℓ, i) -th entry of $C^t A^t$ is given by $\sum_{i=1}^{n} a_{ij} c_{j\ell}$.

Hence $(AC)^t = C^t A^t$.

Proof of Statements (1), (2), (3) of Theorem (1). Exercise. (Imitate what is done above.)

4. Definition. (Symmetric matrix and skew-symmetric matrix.)

Suppose A is an $(n \times n)$ -square matrix. Then:—

- (1) A is said to be symmetric if and only if $A^t = A$.
- (2) *A* is said to be **skew-symmetric** if and only if $A^t = -A$.

5. Example (2). (Examples and non-examples on symmetric matrices and skew-symmetric matrices.)

- (a) The $(n \times n)$ -zero matrix is a symmetric matrix. It is also a skew-symmetric matrix.
- (b) The identity matrix is a symmetric matrix. It is not skew-symmetric.
- (c) Let $A = \begin{bmatrix} 1 & 3 & 5 \\ 3 & 2 & 4 \\ 5 & 4 & 6 \end{bmatrix}$. Note that $A^t = \begin{bmatrix} 1 & 3 & 5 \\ 3 & 2 & 4 \\ 5 & 4 & 6 \end{bmatrix} = A$. Then A is symmetric.

Note that $A^t \neq -A$. Then *A* is not skew-symmetric.

(d) Let $A = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix}$. Note that $A^t = \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -3 \\ 2 & 3 & 0 \end{bmatrix} = -A$. Then A is skew-symmetric.

Note that $A^t \neq A$. Then A is not symmetric.

(e) Let $B = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$. Note that $B^t = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

We have $B^t \neq B$. Then *B* is not symmetric.

We have $B^t \neq -B$. Then *B* is not skew-symmetric.

(f) Let
$$B = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
.
Note that $B^t = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

We have $B^t \neq B$. Then *B* is not symmetric.

We have $B^t \neq -B$. Then *B* is not skew-symmetric.

6. Lemma (2).

Suppose A is a square matrix. Then:—

- (1) $A + A^t$ is symmetric.
- (2) $A A^t$ is skew-symmetric.

Proof of Lemma (2).

Suppose *A* is a square matrix.

- (1) We have $(A + A^t)^t = A^t + (A^t)^t = A^t + A = A + A^t$. Then, by definition of symmetric matrix, $A + A^t$ is symmetric.
- (2) We have $(A A^t)^t = [A + (-A^t)]^t = A^t + (-A^t)^t = A^t (A^t)^t = A^t A = -(A A^t)$. Then, by definition of skew-symmetric matrix, $A - A^t$ is skew-symmetric.

7. Theorem (3).

Suppose *A* is a square matrix. Then there are some unique square matrices *B*, *C* such that *B* is symmetric, *C* is skew-symmetric, and A = B + C.

Proof of Theorem (3).

Suppose *A* is a square matrix.

[We have two tasks, which are (α), (β) below:—

- (α) Conceive some appropriate symmetric matrix, and some appropriate skew-symmetric matrix, respectively labelled *B*, *C* in the subsequent consideration, which we hope will satisfy *A* = *B* + *C*.
- (β) Then we verify for such a pair of matrices *B*, *C* two things:—
 - (1) The equality A = B + C' holds indeed.
 - (2) If some symmetric matrix *P* and some skew-symmetric matrix *Q* also satisfy A = P + Q, then P = B and Q = C.

We proceed with (α), and follow up with (β).

But how to proceed with (α) ?]

[Roughwork.

According to Lemma (2), we have a pair of symmetric matrix and skew-symmetric matrix determined by A alone:-

- $A + A^t$ is a symmetric matrix.
- $A A^t$ is a skew-symmetric matrix.

However, because $(A + A^t) + (A - A^t) = 2A$, they are not the respective *B*, *C* that we hope for. But we are getting close.]

Define $B = \frac{1}{2}(A + A^{t})$, and $C = \frac{1}{2}(A - A^{t})$.

Note that *B* is symmetric, and *C* is skew-symmetric. (Why? Apply Lemma (2) and Theorem (1).)

- We have $B + C = \frac{1}{2}(A + A^t) + \frac{1}{2}(A A^t) = A$.
- Suppose *P* is a symmetric matrix, *Q* is a skew-symmetric matrix, and *A* = *P* + *Q*.
 By assumption, *P^t* = *P* and *Q^t* = -*Q*. Then *A^t* = (*P* + *Q*)^t = *P^t* + *Q^t* = *P Q*.

Now we have $2P = (P + Q) + (P - Q) = A + A^t$. Then $P = \frac{1}{2}(A + A^t) = B$.

We also have $2Q = (P + Q) - (P - Q) = A - A^t$. Then $Q = \frac{1}{2}(A - A^t) = C$.