
0.1 Transpose, symmetry and skew-symmetry.

0. Assumed background.

• 1.1 Matrices, matrix addition, and scalar multiplication for matrices.

• 1.2 Matrix multiplication.

Abstract. We introduce:—

• the notion of transpose,

• the notions of symmetry and skew-symmetry.

In the appendix, we digress onto the notion of definition, theorem, proof, and the format which dictates how they
are to be read.

1. Definition. (Transpose of a matrix.)

Let A be an (m × n)-matrix, whose (i, j)-th entry is denoted by ai j.

The transpose of A is the (n ×m)-matrix whose (k, ℓ)-th entry is given by aℓk.

It is denoted by At.

Remark. In symbolic terms, what this definition says is:—

If A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

...
am1 am2 am3 · · · amn

 then At =


a11 a21 a31 · · · am1
a12 a22 a32 · · · am2
a13 a23 a33 · · · am2
...

...
...

...
a1n a2n a3n · · · amn

.
2. Example (1). (Transpose of a matrix.)

Suppose A =
[

1 2 3
0 1 2

]
, B =

[
1 3 0
2 1 1

]
and C =

 1 2
0 1
1 3

.
Then At =

 1 0
2 1
3 2

 , Bt =

 1 2
3 1
0 1

 and Ct =
[

1 0 1
2 1 3

]
.

(a) Note that A + B =
[

2 5 3
2 2 3

]
. Then (A + B)t =

[ 2 2
5 2
3 3

]
.

We have At + Bt = · · · =

[ 2 2
5 2
3 3

]
. So (A + B)t = At + Bt (in this example).

(b) Note that AC = · · · =
[

4 13
2 7

]
. Then (AC)t =

[
4 2

13 7

]
We have CtAt = · · · =

[
4 2

13 7

]
. So (AC)t = CtAt (in this example).

3. Theorem (1). (Basic properties of transpose.)

Suppose A,B are (m × n)-matrices, C is an (n × p)-matrix, and λ is a number. Then:—

(1) Suppose A is an (m × n)-matrix. Then (At)t = A.

(2) Suppose A,B are (m × n)-matrices. Then (A + B)t = At + Bt.

(3) Suppose A is an (m × n)-matrix, and λ is a number. Then (λA)t = λAt.

(4) Suppose A is an (m × n)-matrices, and C is an (n × p)-matrix. Then (AC)t = CtAt.

Proof of Statement (4) of Theorem (1).

Suppose A is a (m× n)-matrix, and C is an (n× p)-matrix. (So AC is an (m× p)-matrix, and (AC)t is a (p×m)-matrix.)

(By definition, At is an (n ×m)-matrix, and Ct is a (p × n)-matrix. So CtAt is well-defined as a (p ×m)-matrix.)

Denote the (i, j)-th entry of A by ai j. Denote the (k, ℓ)-th entry of C by ckℓ.

Fix any ℓ = 1, 2, · · · , p and i = 1, 2, · · · ,m.
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• By the definition of matrix multiplication, the (i, ℓ)-th entry of AC is given by
n∑

j=1

ai jc jℓ.

Then, by the definition of transpose, the (ℓ, i)-th entry of (AC) is given by
n∑

j=1

ai jc jℓ.

• By the definition of transpose, for each j = 1, 2, · · · ,n, the (ℓ, j)-th entry of Ct is c jℓ, and the ( j, i)-th entry of At

is ai j.

Then, by the definition of matrix multiplication, the (ℓ, i)-th entry of CtAt is given by
n∑

j=1

ai jc jℓ.

Hence (AC)t = CtAt.

Proof of Statements (1), (2), (3) of Theorem (1). Exercise. (Imitate what is done above.)

4. Definition. (Symmetric matrix and skew-symmetric matrix.)

Suppose A is an (n × n)-square matrix. Then:—

(1) A is said to be symmetric if and only if At = A.

(2) A is said to be skew-symmetric if and only if At = −A.

5. Example (2). (Examples and non-examples on symmetric matrices and skew-symmetric matrices.)

(a) The (n × n)-zero matrix is a symmetric matrix. It is also a skew-symmetric matrix.

(b) The identity matrix is a symmetric matrix. It is not skew-symmetric.

(c) Let A =

 1 3 5
3 2 4
5 4 6

.
Note that At =

 1 3 5
3 2 4
5 4 6

 = A. Then A is symmetric.

Note that At , −A. Then A is not skew-symmetric.

(d) Let A =

 0 1 2
−1 0 3
−2 −3 0

.
Note that At =

 0 −1 −2
1 0 −3
2 3 0

 = −A. Then A is skew-symmetric.

Note that At , A. Then A is not symmetric.

(e) Let B =
[

1 3
2 4

]
.

Note that Bt =
[

1 2
3 4

]
.

We have Bt , B. Then B is not symmetric.

We have Bt , −B. Then B is not skew-symmetric.

(f) Let B =

 1 1 0
−1 0 0
0 0 0

.
Note that Bt =

 1 −1 0
1 0 0
0 0 0

.
We have Bt , B. Then B is not symmetric.

We have Bt , −B. Then B is not skew-symmetric.

6. Lemma (2).
Suppose A is a square matrix. Then:—

(1) A + At is symmetric.

(2) A − At is skew-symmetric.

Proof of Lemma (2).
Suppose A is a square matrix.
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(1) We have (A + At)t = At + (At)t = At + A = A + At.

Then, by definition of symmetric matrix, A + At is symmetric.

(2) We have (A − At)t = [A + (−At)]t = At + (−At)t = At
− (At)t = At

− A = −(A − At).

Then, by definition of skew-symmetric matrix, A − At is skew-symmetric.

7. Theorem (3).
Suppose A is a square matrix. Then there are some unique square matrices B,C such that B is symmetric, C is
skew-symmetric, and A = B + C.

Proof of Theorem (3).
Suppose A is a square matrix.

[We have two tasks, which are (α), (β) below:—

(α) Conceive some appropriate symmetric matrix, and some appropriate skew-symmetric matrix, respectively
labelled B,C in the subsequent consideration, which we hope will satisfy A = B + C.

(β) Then we verify for such a pair of matrices B,C two things:—

(1) The equality ‘A = B + C’ holds indeed.
(2) If some symmetric matrix P and some skew-symmetric matrix Q also satisfy A = P + Q, then P = B and

Q = C.

We proceed with (α), and follow up with (β).

But how to proceed with (α)?]

[Roughwork.

According to Lemma (2), we have a pair of symmetric matrix and skew-symmetric matrix determined by A alone:—

• A + At is a symmetric matrix.

• A − At is a skew-symmetric matrix.

However, because (A + At) + (A − At) = 2A, they are not the respective B,C that we hope for. But we are getting
close.]

Define B =
1
2

(A + At), and C =
1
2

(A − At).

Note that B is symmetric, and C is skew-symmetric. (Why? Apply Lemma (2) and Theorem (1).)

• We have B + C =
1
2

(A + At) +
1
2

(A − At) = A.

• Suppose P is a symmetric matrix, Q is a skew-symmetric matrix, and A = P +Q.

By assumption, Pt = P and Qt = −Q. Then At = (P +Q)t = Pt +Qt = P −Q.

Now we have 2P = (P +Q) + (P −Q) = A + At. Then P =
1
2

(A + At) = B.

We also have 2Q = (P +Q) − (P −Q) = A − At. Then Q =
1
2

(A − At) = C.
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