
0.1 Matrix multiplication.

0. Assumed background.

• 1.1 Matrices, matrix addition, and scalar multiplication for matrices.

Abstract. We introduce:—

• matrix multiplication (first for row vectors to column vectors from the left, then in the general situation through
presentation in blocks),

• properties of matrix multiplication,

• notions of square matrix and identity matrix,

• notion of positive powers of square matrices,

• presentation of matrix multiplication in terms of blocks.

1. Definition. (Multiplication of row vector to column vector from the left.)

Let A be a row vector with n entries, and B be a column vector with n entries.

Suppose A = [ a1 a2 · · · an ], and B =


b1
b2
...

bn

.
Then we define the product AB to be the (1 × 1)-matrix[

a1b1 + a2b2 + · · · + anbn
]
.

For future convenience we abuse notations to confuse as the number a1b1 + a2b2 + · · · + anbn.

2. Definition. (Multiplication of matrix to column vector from the left.)

Let A be an (m × n)-matrix, and B be a column vector with n entries.

Suppose A =


A1
A2
...

Am

, in which Ak stands for the k-th row of A for each k.

We define the product AB to be the column vector with m entries, given by

AB =


A1B
A2B
...

AmB

.
(For each k, the k-th entry of AB is the number AkB.)

Remark. Denote the (i, j)-th entry of A by ai j.

Denote the j-th entry of B by b j.

Then the k-th entry of AB is given by the number ak1b1 + ak2b2 + · · · + aknbn.

Writing out the entries in the matrices explicitly, we have
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn




b1
b2
...

bn

 =


a11b1 + a12b2 + · · · + a1nbn
a21b1 + a22b2 + · · · + a2nbn
...

...
...

am1b1 + am2b2 + · · · + amnbn

.
3. Definition. (Matrix multiplication.)

Let A be an (m × n)-matrix, and B be an (n × p)-matrix.

Suppose B =
[ B1 B2 · · · Bp

]
, in which Bℓ is the ℓ-th column of B for each ℓ.

We define the product AB to be the (m × p)-matrix given by

AB =
[

AB1 AB2 · · · ABp
]
.
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(For each ℓ, the ℓ-th column of AB is the column vector ABℓ with m entries.)

Remark. Denote the (i, j)-th entry of A by ai j, Denote the (k, ℓ)-th entry of B by bkℓ.

Denote the i-th row of A by Ai.

Then the (i, ℓ)-th entry of AB is given by the number AiBℓ = ai1b1ℓ + ai2b2ℓ + · · · + ainbnℓ, and

AB =


A1B1 A1B2 · · · A1Bp
A2B1 A2B2 · · · A2Bp
...

...
...

AmB1 AmB2 · · · AmBp

 =



n∑
j=1

a1 jb j1

n∑
j=1

a1 jb j2 · · ·

n∑
j=1

a1 jb jp

n∑
j=1

a2 jb j1

n∑
j=1

a2 jb j2 · · ·

n∑
j=1

a2 jb jp

...
...

...
n∑

j=1

amjb jp

n∑
j=1

amjb j2 · · ·

n∑
j=1

amjb jp


=


A1B
A2B
...

AmB

.

4. Example (1). (Matrix multiplication.)

(a) Let A =


1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8

, B =


0 5
1 6
2 7
3 8
4 9

.
Write A1 = [ 1 2 3 4 5 ], A2 = [ 2 3 4 5 6 ], A3 = [ 3 4 5 6 7 ], A4 = [ 4 5 6 7 8 ].

Write B1 =


0
1
2
3
4

, B2 =


5
6
7
8
9

.

We have A =


A1
A2
A3
A4

, B = [ B1 B2 ].

Then

AB =


A1
A2
A3
A4

[ B1 B2 ] =


A1B1 A1B2
A2B1 A2B2
A3B1 A3B2
A4B1 A4B2

 =


40 115
50 150
60 185
70 220

.

(b) Let A =


1 −1 1 6 1
6 4 1 4 −2
2 3 2 −1 3
1 2 3 2 0

, B =


1 0 −5
2 −4 1
−1 1 2
4 2 −3
6 3 4

 .

We have

AB =


1 −1 1 6 1
6 4 1 4 −2
2 3 2 −1 3
1 2 3 2 0




1 0 −5
2 −4 1
−1 1 2
4 2 −3
6 3 4

 = · · · =


28 20 −18
17 −13 −44
20 −3 12
10 −1 −3

.
5. Theorem (1). (Distributive Laws for addition and multiplication of matrices.)

(1) Suppose A is an (m × n)-matrix and B,C are (n × p)-matrices. Then A(B + C) = (AB) + (AC).

(2) Suppose A,B are (m × n)-matrices and C is an (n × p)-matrix. Then (A + B)C = (AC) + (BC).

Remark on notations. We will dispense with the brackets in ‘(AB) + (AC)’, ‘(AC) + (BC)’, and simply write
‘AB + AC’, ‘AC + BC’ respectively.

Proof of Statement (1) of Theorem (1).

Suppose A is an (m × n)-matrix and B,C are (n × p)-matrices.

(a) Suppose m = 1 and p = 1 for the moment. (So A is a row vector and B,C are column vectors.)

For each j, denote the (1, j)-th entry of A by a1 j.

For each k, denote the (k, 1)-th entries of B,C respectively by bk1, ck1.
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The (k, 1)-th entry of B,C is given by bk1 + ck1.
By definition,

AB =
[

a11b11 + a12b21 + · · · + a1nbn1
]

AC = [ a11c11 + a12c21 + · · · + a1ncn1 ]

A(B + C) =
[

a11(b11 + c11) + a12(b21 + c21) + · · · + a1n(bn1 + cn1)
]

Then

A(B + C) =
[

a11(b11 + c11) + a12(b21 + c21) + · · · + a1n(bn1 + cn1)
]

=
[

(a11b11 + a12b21 + · · · + a1nbn1) + (a11c11 + a12c21 + · · · + a1ncn1)
]

=
[

a11b11 + a12b21 + · · · + a1nbn1
]
+ [ a11c11 + a12c21 + · · · + a1ncn1 ]

= AB + AC

(b) We now still suppose p = 1, but leave the value of m un-restricted.
For each i, denote the i-th row of A by Ai.
By the calculation above, we have Ai(B + C) = AiB + AiC.
Then

A(B + C) =


A1
A2
...

Am

(B + C) =


A1(B + C)
A2(B + C)
...

Am(B + C)

 =


A1B + A1C
A2B + A2C

...
AmB + AmC

 =


A1B
A2B
...

AmB

 +


A1C
A2C
...

AmC

 = AB + AC.

(c) We now leave the values of m, p un-restricted.
For each j, denote the j-th columns of B,C by B j,C j respectively.

By the calculation above, we have A(B j + C j) = AB j + AC j.

Then

A(B + C) = A
[

B1 + C1 B2 + C2 · · · Bp + Cp
]

=
[

A(B1 + C1) A(B2 + C2) · · · A(Bp + Cp)
]

=
[

AB1 AB2 · · · ABp
]
+
[

AC1 AC2 · · · ACp
]
= AB + AC

Proof of Statement (2) of Theorem (1). This is left as an exercise. (Imitate what is done above.)

6. Theorem (2).
Suppose A is an (m × n)-matrix and B is an (n × p)-matrix. Suppose λ is a real number.

Then λ(AB) = (λA)B = A(λB).

Remark on notations. We will dispense with the brackets in ‘λ(AB)’, ‘(λA)B’, and simply write ‘λAB’.

Proof of Theorem (2). Exercise.

7. Definition. (Square matrix.)

A matrix with the same number of rows and columns is called a square matrix.

8. Theorem (3). (‘Existence and uniqueness’ of ‘multiplicative identity’ for matrix multiplication.)

There is a unique (n × n)-square matrix M such that for any (n × n)-square matrix A, the equalities ‘MA = A’,
‘AM = A’ hold.
Proof of Theorem (3).

Define M =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 0 0
...
...

. . .
...

0 0 0 1 0
0 0 0 · · · 0 1


.

Define δi j =

{
1 if i = j
0 if i , j . (‘δi j’ is called the Kronecker symbol.)

Then the (i, j)-th entry of M is δi j for each i, j.

[We intend to verify two things:
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(1) The equalities ‘MA = A’, ‘AM = A’ hold for any (n × n)-matrix A.

(2) If some (n×n)-matrix P possesses the property that both equalities ‘PA = A’, ‘AP = A’ hold for any (n×n)-matrix
A’, then P =M.

We proceed with (1), (2) separately.]

(1) Let A be an (n × n)-matrix with its (i, j)-th entry given by ai j.

∗ By the definition of matrix multiplication, the (i, j)-th entry of MA is given by

δi1a1 j + δi2a2 j + δi3a3 j + · · · + δinanj = δiiai j = ai j.

Hence MA = A.
∗ By the definition of matrix multiplication, the (i, j)-th entry of MA is given by

ai1δ1 j + ai2δ2 j + ai3δ3 j + · · · + ainδnj = ai jδ j j = ai j.

Hence AM = A.
(2) Let P be an (n × n)-matrix. Suppose AP = A = PA for any (n × n)-matrix A.

Then in particular, (because M is an (n × n)-matrix), we have MP =M = PM.

Since P is an (n × n)-matrix, we have PM = P from the calculations above.
Hence M = PM = P.

9. Definition. (Identity matrix.)

For each positive integer n, the (n × n)-square matrix whose (k, k)-th entry is 1 for each k and whose every other
entry is 0, given explicitly by 

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 0 0
...
...

. . .
...

0 0 0 1 0
0 0 0 · · · 0 1


is called the (n × n)-identity matrix.

It is denoted by In.

10. Theorem (4).

Suppose A is an (m × n)-matrix. Then the equalities ‘ImA = A’, ‘AIn = A’ hold.

Proof of Theorem (4). Exercise. (Imitate (the relevant portion of) the argument for Theorem (4).)

11. Theorem (5). (Associativity of matrix multiplication.)

Suppose A is an (m × n)-matrix, B is an (n × p)-matrix, and C is a (p × q)-matrix. Then A(BC) = (AB)C.

Remark. We will give a proof for Theorem (5) later. (The argument is not hard. It is in the same spirit as the
argument for Theorem (1), but the work in keeping track of symbols is more ‘involved’.)

Because of this result, we may write ‘(AB)C’, ‘A(BC)’ simply as ABC, unless we want to emphasize that associativity
of matrix multiplication is used.

In the light of this result, the definition below, for the notion of positive integral powers of square matrices, makes
perfect sense.

12. Definition. (Positive integral powers of square matrices.)

Let n be a positive integer. Suppose A is a square matrix.

The n-th power of A is defined to be the square matrix AAA · · ·AAA︸          ︷︷          ︸
n copies of A

.

It is denoted by An.

13. Example (2). (Positive integral powers of square matrices.)
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(a) Let A =


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

. (Note that A itself is neither I4 nor −I4.)

We have A2 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

, A3 =


0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

, A4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I4.

(b) Let B =


0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4
0 0 0 0 0

. (Note that B itself is not the zero matrix.)

We have B2 =


0 0 2 0 0
0 0 0 6 0
0 0 0 0 12
0 0 0 0 0
0 0 0 0 0

, B3 =


0 0 0 6 0
0 0 0 0 24
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, B4 =


0 0 0 0 24
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, B5 = O5×5.

Remark. The various parts of Example (2) have told us that the statements (†), (‡) are false:—

(†) Suppose that A is a (n × n)-square matrix with real entries. Further that suppose there is some positive p such
that Ap = In. Then A = In or A = −In.

(‡) Suppose that B is a square matrix. Further suppose that B is not the zero matrix. Then, for each positive
integer p, Bp is not the zero matrix.

The content of part (a) of Example (2) is referred to as a counter-example against the statement (†).

The content of part (b) of Example (2) is referred to as a counter-example against the statement (‡).

14. Proof of Theorem (5).

Suppose A is an (m × n)-matrix, B is an (n × p)-matrix, and C is a (p × q)-matrix.

(a) Suppose m = 1 and p = 1 for the moment. (So A is a row vector and C is a column vector.)

Suppose A = [ a1 a2 · · · an ], and C =


c1
c2
...

cp

.
Denote the ( j, k)-th entry by b jk. Denote the j-th row of B by Brow- j. Denote the k-th column of B by Bcol-k.

(So B =
[

Bcol-1 Bcol-2 · · · Bcol-p
]
=


b11 b12 · · · b1p
b21 b22 · · · b2p
...

...
...

bn1 bn2 · · · bnp

 =


Brow-1
Brow-2
...

Brow-n

.)
We claim that each of (AB)C, A(BC) is the sum of all the a jb jkck’s, each copy exactly once.

• We have

AB = A
[

Bcol-1 Bcol-2 · · · Bcol-p
]
=
[

ABcol-1 ABcol-2 · · · ABcol-p
]

=

 n∑
j=1

a jb j1

n∑
j=1

a jb j2 · · ·

n∑
j=1

a jb jp


Then

(AB)C =

 n∑
j=1

a jb j1

 c1 +

 n∑
j=1

a jb j2

 c2 + · · · +

 n∑
j=1

a jb jp

 cp =

p∑
k=1

ck

 n∑
j=1

a jb jk

 = p∑
k=1

n∑
j=1

a jb jkck.

So (AB)C is the sum of all the a jb jkck’s, each copy exactly once.
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• We have

BC =


Brow-1
Brow-2
...

Brow-n

C =


Brow-1C
Brow-2C
...

Brow-nC

 =



p∑
k=1

b1kck

p∑
k=1

b2kck

...
p∑

k=1

bnkck


Then

A(BC) = a1

 p∑
k=1

b1kck

 + a2

 p∑
k=1

b2kck

 + · · · + an

 p∑
k=1

bnkck

 = n∑
j=1

a j

 p∑
k=1

b jk

 = n∑
j=1

p∑
k=1

a jb jkck.

So A(BC) is also the sum of all the a jb jkck’s, each copy exactly once.

(b) We now leave the values of m, p un-restricted.

For each i, denote the i-th row of A by Ai. (So A =


A1
A2
...

Am

.)
For each ℓ, denote the ℓ-th column of C by Cℓ. (So C =

[
C1 C2 · · · Cq

]
.)

• We have AB =


A1
A2
...

Am

B =


A1B
A2B
...

AmB

.

Then (AB)C =


A1B
A2B
...

AmB

[ C1 C2 · · · Cq
]
=


(A1B)C1 (A1B)C2 · · · (A1B)Cq
(A2B)C1 (A2B)C2 · · · (A2B)Cq
...

...
...

(AmB)C1 (AmB)C2 · · · (AmB)Cq

.
The (i, ℓ)-th entry of (AB)C is (AiB)Cℓ for each i, ℓ.

• We have BC = B
[

C1 C2 · · · Cq
]
=
[

BC1 BC2 · · · BCq
]
.

Then A(BC) =


A1
A2
...

Am

[ BC1 BC2 · · · BCq
]
=


A1(BC1) A1(BC2) · · · A1(BCq)
A2(BC1) A2(BC2) · · · A2(BCq)
...

...
...

Am(BC1) Am(BC2) · · · Am(BCq)

.
The (i, ℓ)-th entry of A(BC) is Ai(BCℓ) for each i, ℓ.

By the calculations above, the equality (AiB)Cℓ = Ai(BCℓ) holds for each i and for each ℓ.

Then (AB)C = A(BC) by the definition of matrix equality.
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