0.1 Matrix multiplication.

0. Assumed background.
e 1.1 Matrices, matrix addition, and scalar multiplication for matrices.

Abstract.  We introduce:—

e matrix multiplication (first for row vectors to column vectors from the left, then in the general situation through
presentation in blocks),

e properties of matrix multiplication,
e notions of square matrix and identity matrix,
e notion of positive powers of square matrices,

e presentation of matrix multiplication in terms of blocks.

1. Definition. (Multiplication of row vector to column vector from the left.)

Let A be a row vector with n entries, and B be a column vector with n entries.
by
by

SupposeA=[a a2 -+ ay ]andB=| .
by

Then we define the product AB to be the (1 X 1)-matrix

[ a1b1 +612b2 + ---+anbn ]

For future convenience we abuse notations to confuse as the number a;b; + axb, + - -+ + a,b,,.

2. Definition. (Multiplication of matrix to column vector from the left.)

Let A be an (m X n)-matrix, and B be a column vector with n entries.
A
Ay
Suppose A = |~ .|, in which Ay stands for the k-th row of A for each k.
; [‘m
We define the product AB to be the column vector with m entries, given by

AB
A>B

AB = :

A,B

(For each k, the k-th entry of AB is the number A;B.)

Remark. Denote the (i, j)-th entry of A by a;;.

Denote the j-th entry of B by b;.

Then the k-th entry of AB is given by the number a1 b1 + axbs + - - + g, by.

Writing out the entries in the matrices explicitly, we have

a1 A4z v M by anby  + apby + -+ apb,
ay axp - dy || b anbr  + apby + -+ agby
Am1 w2 - Omn b.n amibl + am'ZbZ + e+ am;:lbn
3. Definition. (Matrix multiplication.)
Let A be an (m X n)-matrix, and B be an (n X p)-matrix.
Suppose B=[ B1 | B2 | - | By ], in which By is the ¢-th column of B for each (.

We define the product AB to be the (m X p)-matrix given by

AB=[ ABy | ABy | --- | AB, .



(For each ¢, the £-th column of AB is the column vector AB, with m entries.)

Remark. Denote the (i, j)-th entry of A by a;;, Denote the (k, £)-th entry of B by by,.
Denote the i-th row of A by A;.

Then the (i, {)-th entry of AB is given by the number A;B; = aibi¢ + apbyr + - - - + ainbye, and

ron n n -
Yomby Ymbp - Y aby
=1 j=1 j=1
AiBy | A1By | --- | A1B, 1 1 " AiB
AzBl Asz e AzBp Z a2jbj1 Z aZjij cee Z a2]'b]‘p A2B
AB = : : : = j=1 j=1 j=1 = . .
AmBl AmBZ T Ame H,nB
n n n
Z mjbjp Z amjbj Z mjbjp
j=1 j=1 j=1

4. Example (1). (Matrix multiplication.)

12345 Y g
(a) LetA = % i g 2 g ,B = % g
456 7 8 R
Write A;=[1 2 3 4 5], A)=[2 3 4 5 6,As=[3 4 5 6 7], A,=[4 5 6 7 8]
0 5
1 6
Write B =| 2 |,B,=| 7
3 8
4 9
Ay
We have A = ‘Ag—,B:[ Bi | By 1.
;[4
Then
A ABy AiB, 40 115
_ | A2 _| A2B1 ABy [ _| 50 150
AB= ||l Bi[ B2 1=\ Ag ‘asB, |=| 60 185
;X4 A4Bl A4Bz 70 220
1 -11 6 1 70 7?
b Leta=|S 3 3 4 FlB=|1 1 2
1 2 3 2 0 4 2 -3
6 3 4
We have
1116 193 %7 28 20 -18
ap_|6 4 1 4 213 | |17 13 s
123 2 3|} 0 S77|20 83 o
123 2 ol ¢ 3 7 10 -1 -3

5. Theorem (1). (Distributive Laws for addition and multiplication of matrices.)

(1) Suppose A is an (m X n)-matrix and B, C are (n X p)-matrices. Then A(B + C) = (AB) + (AC).
(2) Suppose A, B are (m X n)-matrices and C is an (n X p)-matrix. Then (A + B)C = (AC) + (BC).

Remark on notations.  We will dispense with the brackets in ‘(AB) + (AC)’, “(AC) + (BC)’, and simply write
‘AB + AC’,’AC + BC’ respectively.

Proof of Statement (1) of Theorem (1).
Suppose A is an (m X n)-matrix and B, C are (n X p)-matrices.

(a) Suppose m =1 and p = 1 for the moment. (So A is a row vector and B, C are column vectors.)
For each j, denote the (1, j)-th entry of A by 4;;.
For each k, denote the (k, 1)-th entries of B, C respectively by by, cx1.



The (k, 1)-th entry of B, C is given by by + cx1.

By definition,
AB = [ anbn +anba + - +a1,bn |
AC = [ ancmn +anca + -+ a1,Cn |
AB+C) = [ an(n +cn)+aw(bn +ca) + -+ ap(bm +cn) |
Then
AB+C) = [ an(bn +cnn) +aw(bn +ca1) + -+ a1u(bm +cn1) |

[ (a11b11 +arbo + -+ + a1uby1) + (a11011 + d12co1 + <+ - + a1,C01) |

[ @b +anbo + -+ a1uby |+ [ anci +ancn + - + 41,6 |
AB+ AC

(b) We now still suppose p = 1, but leave the value of m un-restricted.
For each i, denote the i-th row of A by A;.
By the calculation above, we have A;(B + C) = A;B + A;C.

Then
Aq Al(B + C) A1B+ A,C A1B A.C
7{2 AQ(B + C) ArB+ A,C A>B A,C
AB+C) = : (B+C)= : = : = : + : =AB + AC.
A Aw(B +C) AnB + AnC AnB AnC

(c) We now leave the values of m, p un-restricted.
For each j, denote the j-th columns of B, C by Bj, C; respectively.
By the calculation above, we have A(B; + C;) = AB; + AC;.

Then
A(B+C) = A[Bl+C1‘Bz+C2""‘Bp+Cp]
= [ABi+C1) [AB+C) | -+ | ABy+Cp) |
— [ ABy|ABy |- | AB, |+[ AC | AC, | --- | AC, | = AB + AC

Proof of Statement (2) of Theorem (1). This is left as an exercise. (Imitate what is done above.)

. Theorem (2).

Suppose A is an (m X n)-matrix and B is an (n X p)-matrix. Suppose A is a real number.

Then A(AB) = (AA)B = A(AB).

Remark on notations. We will dispense with the brackets in “A(AB)’, “(AA)B’, and simply write ‘AAB’.
Proof of Theorem (2).  Exercise.

. Definition. (Square matrix.)

A matrix with the same number of rows and columns is called a square matrix.

. Theorem (3). (“Existence and uniqueness’ of “‘multiplicative identity’ for matrix multiplication.)

There is a unique (n X n)-square matrix M such that for any (n X n)-square matrix A, the equalities ‘MA = A’,
"AM = A’ hold.
Proof of Theorem (3).

1 00 00
010 00
0 01 00

DefineM =| . . .
00 0 10
000 --- 01

) 1 if i=j i g
Define 6;; = 0 if i%xj (‘6;j is called the Kronecker symbol.)

Then the (i, j)-th entry of M is 6;; for each i, j.
[We intend to verify two things:



9.

10.

11.

12.

13.

(1) The equalities 'MA = A’, ’AM = A’ hold for any (n X n)-matrix A.

(2) Ifsome (nxn)-matrix P possesses the property that both equalities 'PA = A’, ’AP = A’ hold for any (nXn)-matrix
A’, then P = M.

We proceed with (1), (2) separately.]

(1) Let A be an (n X n)-matrix with its (i, j)-th entry given by a;;.
+ By the definition of matrix multiplication, the (7, j)-th entry of MA is given by

Oinanj + Oipfizj + Oiafizj + - -+ + Oinflnj = Ojidlij = aj.

Hence MA = A.
+ By the definition of matrix multiplication, the (7, j)-th entry of MA is given by

aﬂélj + ﬂizéz]' + Ll,'3(53]' + -+ aménj = Lli]'(sj']' = ajj.

Hence AM = A.
(2) Let P be an (n X n)-matrix. Suppose AP = A = PA for any (n X n)-matrix A.
Then in particular, (because M is an (1 X n)-matrix), we have MP = M = PM.

Since P is an (1 X n)-matrix, we have PM = P from the calculations above.
Hence M = PM = P.

Definition. (Identity matrix.)

For each positive integer n, the (n X n)-square matrix whose (k, k)-th entry is 1 for each k and whose every other
entry is 0, given explicitly by

100 0 0
01 0 00
00 1 00
000 10
000 - 01

is called the (n X n)-identity matrix.

It is denoted by I,.

Theorem (4).
Suppose A is an (m X n)-matrix. Then the equalities ,,A = A’, ‘AL, = A” hold.

Proof of Theorem (4). Exercise. (Imitate (the relevant portion of) the argument for Theorem (4).)

Theorem (5). (Associativity of matrix multiplication.)
Suppose A is an (m X n)-matrix, B is an (n X p)-matrix, and C is a (p X g)-matrix. Then A(BC) = (AB)C.

Remark. We will give a proof for Theorem (5) later. (The argument is not hard. It is in the same spirit as the
argument for Theorem (1), but the work in keeping track of symbols is more ‘involved’.)

Because of this result, we may write ‘(AB)C’, “A(BC)’ simply as ABC, unless we want to emphasize that associativity
of matrix multiplication is used.

In the light of this result, the definition below, for the notion of positive integral powers of square matrices, makes
perfect sense.

Definition. (Positive integral powers of square matrices.)

Let n be a positive integer. Suppose A is a square matrix.

The n-th power of A is defined to be the square matrix AAA --- AAA.
———

n copies of A

It is denoted by A".

Example (2). (Positive integral powers of square matrices.)



(a) LetA = . (Note that A itself is neither I nor —I4.)

—OOO
o OO
oo~ O

We have A2 = LAY =

o= OO
—OOO
OO
oo~ O
o OO

1
0
0
0

oo~ O

(b) LetB = . (Note that B itself is not the zero matrix.)

cooNO COFO Scoom
cowoo oo
oo HPOOO

SO OO
OO OOR

We have B? = , B3

Bt =

cocococo
cocococo
coocoN
coocao
—_
cogoo
cocococo
coococo
coococo
cococoo
coolRo
cocococo

Remark.

Iy

—OOO

N

4

OO OO
OO OO
SOOOoCO

0
0 |, B = Osys.
0
0

The various parts of Example (2) have told us that the statements (1), (f) are false:—

(t) Suppose that A is a (n X n)-square matrix with real entries. Further that suppose there is some positive p such

that AY =1,,. Then A =1, or A = —I,.

() Suppose that B is a square matrix. Further suppose that B is not the zero matrix. Then, for each positive

integer p, BY is not the zero matrix.

The content of part (a) of Example (2) is referred to as a counter-example against the statement ().

The content of part (b) of Example (2) is referred to as a counter-example against the statement (1).

14. Proof of Theorem (5).

Suppose A is an (m X n)-matrix, B is an (1 X p)-matrix, and C is a (p X g)-matrix.

(a) Suppose m =1 and p = 1 for the moment. (So A is a row vector and C is a column vector.)

1
2
a3

Suppose A =[ @ a4y ],and C =

Cp

Denote the (j, k)-th entry by bj. Denote the j-th row of B by By j. Denote the k-th column of B by Boj.-

le le glp Brow-l
21 22 2p row-2
(So B =[ Beol1 ‘ Beol2 ‘ ‘ Bcol-p ] = : : : = :
bnl bnz bnp Brow—n
We claim that each of (AB)C, A(BC) is the sum of all the a;bjxci’s, each copy exactly once.
e We have
AB = A[ Beol-1 ‘ Beol2 ‘ ‘ Bcol—p ]Z[ ABol ‘ ABol2 ‘ ‘ ABcol-p ]
= | Yy Y abe Y b
=1 j=1 j=1
Then

(AB)C = {2 a]-bﬂ]cl + {Z Ll]'b]'z] Crp+ -+ [Z ajb]-p] Cp =

j=1 j=1 j=1

So (AB)C is the sum of all the a;bjc;’s, each copy exactly once.



e We have

r p
Z bikck
k=1
B row-1 B row-1 C P
Brow-2 Brow-2C Z borck
BC = . |c= : =| &
Brow-n Brow-nC
p
Z buxck
L k=1

Then
P p P n p p
A(BC) =m {Z b1kaJ +ap (Z bZka) + ot ay [Z bnkck] = Z aj (Z b]‘k] = Z a]-bjkck.
k=1 k=1 k=1 j=1 -

So A(BC) is also the sum of all the a;bjcx’s, each copy exactly once.

(b) We now leave the values of m, p un-restricted.

Aq
A
For each i, denote the i-th row of A by A;. (So A = : J)
For each ¢, denote the ¢-th column of Cby Cr. (SoC=[ C1 | Co |-+ | C4 ])
Aq A1B
Ay A»B
e We have AB = : B= |
g B . 5
A1B (A1B)C1  (A1B)Cy --- (A1B)Cy
A,B (A2B)C1  (A2B)Cy --- (A2B)Cy
Then(AB)C=|". |[C |G|~ |G ]= : : :
AuB (AuB)Ci (AuB)C2 -+ (AnB)C,
The (i, {)-th entry of (AB)C is (A;B)C¢ for each i, {.
e Wehave BC=B[ C1 | Co |-+ |Cy ]=[ BCy | BCo | -+ | By ]
Ay A1(BCy)  A1(BCy) -+ A1(BCy)
Ay A(BC1) Ax(BCy) -+ Ax(BCy)
Then A(BC)= | . |[ BC1 [ BC2 | -+ [ BCy | = : : :
A An(BC1) Aw(BC2) - Aw(BC))

The (i, {)-th entry of A(BC) is A;(BCy) for each i, .

By the calculations above, the equality (A;B)C; = A;(BC¢) holds for each i and for each ¢.
Then (AB)C = A(BC) by the definition of matrix equality.



