MATH1010G University Mathematics Week 6：Differentiation（continued）

Lecturer：Bangti Jin（b．jin＠cuhk．edu．hk）

Chinese University of Hong Kong
February 2024
review
－definition of derivatives
■ differentiability \Rightarrow continuity，high－order derivative
－product rule／quotient rule
－derivative of trigonometric／exp functions
－chain rule

Find the derivatives of the following functions
－$f(x)=\frac{\sin (x)}{x}$
－$f(x)=\frac{e^{\sin x}}{\cos x}$
■ $f(x)=\sqrt{1-\sin \left(\cos x^{2}\right)}$
－$f(x)=\cos \frac{1}{x}$

1 Implicit differentiation
2 Linearization

3 Rolle theorem and mean value theorem
4 Application of mean value theorem
5 Monotonicity
6 First derivative check

7 Second and higher derivatives
$4 / 47$

implicit differentiation

Example

$$
x^{2}+y^{2}=2 \rightarrow \mathcal{C}
$$

Locus of \mathcal{C} is a circle centered at $(0,0)$ with radius $\sqrt{2}$ ． check：$(1,1)$ is a point lying on the circle．

$$
\begin{aligned}
& \text { We want to find the equation of } \\
& \text { the tangent line } l \\
& \text { (ie. need to know the slope of } l \text {) }
\end{aligned}
$$

$x^{2}+y^{2}=2$ is NOT a function！

Question：How to find $\frac{d y}{d x}$ ？（actually，is it well defined？）

The small segment of \mathcal{C} containing $(1,1)$ can be regarded as the graph of some function $y=g(x)$ ．（In fact，$g(x)=\sqrt{2-x^{2}}$ ．）

How to find it？Do it as usual！

$$
x^{2}+y^{2}=2
$$

differentiate both sides with respect to x ，and apply chain rule．

$$
\begin{aligned}
& 2 x+\frac{d}{d x} y^{2}=0, \quad 2 x+2 y \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=-\frac{x}{y}
\end{aligned}
$$

Therefore，$\frac{d y}{d x}=-1$ when $(x, y)=(1,1)$ ，i．e．，

$$
\left.\frac{d y}{d x}\right|_{(x, y)=(1,1)}=-1
$$

$\frac{d y}{d x}$ is defined at a point of a curve only if a small arc containing the point can be regarded as the graph of some function $y=g(x)$ ． Hence $\frac{d y}{d x}$ is NOT defined when $(x, y)=(\pm \sqrt{2}, 0)$ ．

implicit differentiation

Apply differentiation to $F(x, y)=0$
$x^{2}+y^{2}=2 \rightarrow F(x, y)=x^{2}+y^{2}-2=0$

Example

Let \mathcal{C} be the curve defined by the equation $x^{3}+2 y^{3}+2 x y=5$ ．
－Show that $P=(1,1)$ is a point lying on \mathcal{C} ．
－Find the equation of the tangent line of \mathcal{C} at P ．

Differentiation of logarithmic function．

Example

Let $y=\ln x, x>0$ ．

Exercise

show $\frac{d}{d x} \log _{a} x=\frac{1}{x \ln a}$ ．
Note： $\log _{a} x=\frac{\ln x}{\ln a}$

Example

Let $y=\ln |x|, x \neq 0$ ．Find $\frac{d y}{d x}$ ．

Example

If $y=\sqrt[3]{\frac{(x-1)(x-2)^{2}}{x-4}}$ ，then find $\frac{d y}{d x}$ ．

Difficult to differentiate by using the chain rule and quotient rule！

Example

Let $y=\frac{e^{5 x} \sqrt[3]{x^{2}+1}}{\left(3 x^{2}+1\right)^{4}}$ ．Find $\frac{d y}{d x}$ ．
differentiation of inverse trigonometric functions．

Example

Let $y=\sin ^{-1} x, \sin ^{-1}:[-1,1] \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ ．Show $y^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$

Example

Let $y=\cos ^{-1} x, \cos ^{-1}:[-1,1] \rightarrow[0, \pi]$ ．Show $y^{\prime}=-\frac{1}{\sqrt{1-x^{2}}}$

Exercise

Let $y=\tan ^{-1} x, \tan ^{-1}: \mathbb{R} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ ．Find $\frac{d y}{d x}$ ．
（hint：$\frac{d}{d x} \tan x=\frac{1}{\sec ^{2} x}$ ）

Example

Let $y=x^{x}$ for $x>0$ ．Find $\frac{d y}{d x}$ ．
The power is NOT a constant，we cannot use the formula $\frac{d}{d x} x^{n}=n x^{n-1}$ ．

Let $f(x)$ be a function which is differentiable at $x=c$ ．The graph of $f(x)$ passes through the point $(c, f(c))$ and the slope of the tangent line of $f(x)$ at $x=c$ is $f^{\prime}(c)$ ．So the tangent line is given by

$$
y-f(c)=f^{\prime}(c)(x-c), \quad y=f(c)+f^{\prime}(c)(x-c)
$$

Idea：The graph of $L(x)$ is close to the graph of $f(x)$ around $x=c$ ，so $f(x)$ can be approximated by $L(x)$ around $x=c$ ．

$L(x)=f(c)+f^{\prime}(c)(x-c)$ is said to be the linearization of $f(x)$ at $x=c$.

Example

Find the linearization of $f(x)=\sqrt{x}$ at $x=100$（and hence approximate $\sqrt{101}$ ）．

More on differentiability

Example

Let

$$
f(x)= \begin{cases}x^{2} \cos \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Does $f^{\prime}(0)$ exist？

17／47

Exercise

Show $\lim _{x \rightarrow 0} f^{\prime}(x)$ does NOT exist．
Hence f is diff．（＂good＂in some sense）but $f^{\prime}(x)$ can be＂bad＂．

Example

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a non－constant function such that
（i）f is differentiable at some $x_{0} \in \mathbb{R}$
（ii）$f(x+y)=f(x) f(y)$ for all $x, y \in \mathbb{R}$ ．
Show that：
－$f(x) \neq 0$ for all $x \in \mathbb{R}$ and $f(0)=1$.
■ f is differentiable at every $x \in \mathbb{R}$ and $f^{\prime}(x)=\frac{f^{\prime}\left(x_{0}\right)}{f\left(x_{0}\right)} f(x)$ ．

Exercise

Let f be a differentiable function such that

$$
f(x+y)=f(x)+f(y)+3 x y(x+y) \quad \forall x, y \in \mathbb{R}
$$

（a）Show that $f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(\Delta x)}{\Delta x}$ ．
（b）Show that $f^{\prime}(x)=f^{\prime}(0)+3 x^{2}$ ．
（In fact，$f(x)=c+f^{\prime}(0) x+x^{3}$ if you know integration．）

Exercise 5．10．2

Let

$$
f(x)= \begin{cases}x^{2}+1 & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -1 & \text { if } x<0\end{cases}
$$

（a）Write down $f^{\prime}(x)$ explicitly．
（b）Show that f is not differentiable at $x=0$ ．
（c）Show that $\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=0$ and $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=0$ ．so $\lim _{x \rightarrow 0} f^{\prime}(x)=0$ ．
Therefore， $\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=\lim _{x \rightarrow 0^{+}} f^{\prime}(x)$ is insufficient to show f is differentiable at $x=0$ ．

Exercise

Let

$$
f(x)= \begin{cases}x^{2} & \text { if } x \in \mathbb{Q} \\ -x^{2} & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} .\end{cases}
$$

Show that $f(x)$ is differentiable only at $x=0$ and $f^{\prime}(0)=0$ ．

Therefore，$f^{\prime}(0)$ exists while $\lim _{x \rightarrow 0^{-}} f^{\prime}(x), \lim _{x \rightarrow 0^{+}} f^{\prime}(x)$ are not．

Summary

f is differentiable at $x=x_{0}$ ，does NOT imply
a）f^{\prime} is differentiable at $x=x_{0}$ ．
b）f^{\prime} is continuous at $x=x_{0}$ ．
c） $\lim _{x \rightarrow x_{0}} f^{\prime}(x)$ exists．

Summary

f is differentiable at $x=x_{0}$ ，implies：
a）f is continuous at $x=x_{0}$ ．
b） $\lim _{x \rightarrow x_{0}} f(x)$ exists．
But the converse may be false！

Summary

f is differentiable at $x=x_{0}$ does NOT imply $\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=\lim _{x \rightarrow 0^{+}} f^{\prime}(x)$ ．
（Also，the converse is not true．）

Rolle＇s Theorem and Mean Value Theorem

Theorem

Let $f:(a, b) \rightarrow \mathbb{R}$ be a function and $c \in(a, b)$ such that（i）$f^{\prime}(c)$ exists． （ii）f attains maximum（or minimum）at $x=c$ ．Then，$f^{\prime}(c)=0$ ．

24／47

Role＇s theorem
Let $F:[a, b] \rightarrow \mathbb{R}$ be a function such that（i）F is continuous on $[a, b]$ ．
（ii）F is differentiable on (a, b) ．（iii）$F(a)=F(b)$ ．Then there exists $c \in(a, b)$ such that $F^{\prime}(c)=0$ ．

Idea of proof：By the Maximum－Minimum Theorem，there exists $x_{m}, x_{M} \in[a, b]$ such that $F\left(x_{m}\right) \leq F(x) \leq F\left(x_{M}\right)$ for all $x \in[a, b]$ ．

■ Either x_{m} or x_{M} lies on (a, b) then $F^{\prime}\left(x_{m}\right)=0$ or $F^{\prime}\left(x_{M}\right)=0$
－Both x_{m} and x_{M} lies on boundary points $[a, b]$ ．By assumption， $F(a)=F(b)$ which forces that $F(x)$ is constant on $[a, b]$ so $f^{\prime}(x)=0$ for all $x \in(a, b)$ ．

Mean Value Theorem

Let $f:[a, b] \rightarrow \mathbb{R}$ be a function such that f is continuous on $[a, b]$ and differentiable on (a, b) ．Then there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b) ．MVT implies there exists $c \in(a, b)$ such that $f^{\prime}(c)=$ $\frac{f(b)-f(a)}{b-a}$ ．In particular，if $f(a)=f(b)$ ，then $f^{\prime}(c)=0$（i．e．，Rolle＇s theorem）．Hence， Rolle＇s theorem is a special case of MVT．

Question

A vehicle is speeding on a highway if its speed $\geq 120 \mathrm{~km} / \mathrm{hr}$（at some moment）．If the length of the highway is 30 km and if a driver only spent 15 minutes on the highway．Should he be arrested？

$$
\text { By the MVT, there exists } t_{0} \in(0,0.25)
$$

$$
\text { such that slope of the tangent at } t=t_{0}=\frac{30}{0.25}=120
$$

ie．instantaneous speed at $t=t_{0}=120 \mathrm{~km} / \mathrm{hr}$

Example

Note $\ln 1=0$ ，but how about $\ln 1.1$ ？

Theorem

If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable and $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$ ，then $f(x)$ is a constant function．

Example

Let $f(x)=\cos ^{2} x+\sin ^{2} x$ ．

Theorem

If $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are differentiable functions such that $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in \mathbb{R}$ ，then $f(x)=g(x)+c$ ，where c is a constant．

Let $h(x)=f(x)-g(x)$ ．Then

$$
h^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)=0
$$

Therefore，$h^{\prime}(x)=c$ ，where c is a constant，i．e．，$f(x)=g(x)+c$ ．
how differentiation helps to find maximum／minimum ？

Definition

Let I be an interval and let $f: I \rightarrow \mathbb{R}$ be a function such that

$$
f\left(x_{1}\right) \leq f\left(x_{2}\right) \quad\left(f\left(x_{1}\right) \geq f\left(x_{2}\right)\right), \quad \forall x_{1}<x_{2}
$$

Then $f(x)$ is called an increasing（a decreasing）function．If we have a strictly inequality，it is called a strictly increasing（decreasing）function．

Theorem

Let $f:[a, b] \rightarrow \mathbb{R}$ be a function such that
（i）f is continuous on $[a, b]$
（ii）f is differentiable on (a, b) and $f^{\prime}(x) \geq 0\left(f^{\prime}(x) \leq 0\right)$ for all $x \in(a, b)$ ．
Then f is increasing（decreasing）on $[a, b]$ ．If we have strict inequality， then $f(x)$ is strictly increasing（decreasing）on $[a, b]$ ．

Theorem（first derivative check）

Let I be an open interval，$a \in I$ ，and $f: I \rightarrow \mathbb{R}$ be a function such that
－f is continuous
－$f^{\prime}(x) \geq 0 \quad\left(f^{\prime}(x) \leq 0\right)$ for all $x \in I$ with $x<a$ ．
－$f^{\prime}(x) \leq 0 \quad\left(f^{\prime}(x) \geq 0\right)$ for all $x \in I$ with $x>a$ ．
Then $(a, f(a))$ is a relative maximum（minimum）．
We do NOT require the differentiability of of f at $x=a$ ，but only the continuity of f at $x=a$ ．

Since f is continuous on $[x, a]$ and differentiable on（ x, a ），applying MVT to f on $[x, a], \exists c \in(x, a)$ such that

$$
f(a)-f(x)=f^{\prime}(c)(a-x) \geq 0
$$

Similarly，$f(x) \leq f(a)$ for all $x \in I$ with $x>a$ ．

Definition

If $f^{\prime}(a)=0$ ，then $(a, f(a))$ is said to be a stationary point．
Let $f:[a, b] \rightarrow \mathbb{R}$ be a function and $c \in(a, b)$ such that
－$f^{\prime}(c)$ exists．
■ f attains maximum（or minimum）at $x=c$ ．
Then，we have $f^{\prime}(c)=0$ ．
Implication：If $f(x)$ is differentiable everywhere，then all maximum／ minimum points are stationary．However，a stationary point is NOT necessary to be a maximum and minimum point！

Example

If $f(x)=x^{3}$ then $f^{\prime}(x)=3 x^{2}$ ．

Example

Let $f(x)=\sqrt{|x|}$

Note that：f is continuous at $x=0$ ，by the first derivative check，$f(x)$ attains minimum at $x=0$ ．

Definition

If $f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist，then $(a, f(a))$ is a critical point． a stationary points is a critical point．

Example

Prove that $e^{x} \geq 1+x$（i．e．，$e^{x}-x-1 \geq 0$ ）for all $x \in \mathbb{R}$ ．

Exercise

Prove that $1-\frac{1}{x} \leq \ln x \leq x-1, \quad \forall x>0$

Exercise

Fix $\alpha \in(0,1)$ ．Prove that

$$
1+\alpha x-\frac{\alpha(1-\alpha)}{2} x^{2}<(1+x)^{\alpha}<1+\alpha x, \quad \forall x>0
$$

Exercise

（a）Show $f(x)=x^{\frac{1}{3}}-\frac{1}{3} x-\frac{2}{3} \leq 0$ for all $x>0$ ．
（b）Show $u^{\frac{1}{3}} v^{\frac{2}{3}} \leq \frac{1}{3} u+\frac{2}{3} v$ for all $u, v>0$（Hint：set $x=\frac{u}{v}$ ）．

Example

Find the max $/ \min$ of $f(x)=x^{3}-3 x^{2}-9 x+5$

Second and higher derivatives

Definition

Given $y=f(x)$ ，the second derivative of $f(x)$ is the function

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)
$$

The second derivative of $y=f(x)$ is also denoted as $f^{\prime \prime}(x)$ or $y^{\prime \prime}$ ．Let n be a nonnegative integer．Then the nth derivative of $y=f(x)$ is defined inductively by

$$
\begin{aligned}
& \frac{d^{n} y}{d x^{n}}=\frac{d}{d x}\left(\frac{d^{n-1} y}{d x^{n-1}}\right), \quad n \geq 1 \\
& \frac{d^{0} y}{d x^{0}}=y
\end{aligned}
$$

The nth derivative is also denoted as $f^{(n)}$ or $y^{(n)}$ ．

Example

Find $\frac{d^{2} y}{d x^{2}}$ for
■ $y=\ln (\sec x+\tan x)$
－$x^{2}-y^{2}=1$

Theorem（Leibniz＇s rule）

Let u and v be differentiable functions of x ．Then with $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ ，

$$
(u v)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} u^{(n-k)} v^{(k)}
$$

Example

－$(u v)^{(0)}=u v$
■ $(u v)^{(1)}=u^{\prime} v+u v^{\prime}$
■ $(u v)^{\prime \prime}=u^{\prime \prime} v+2 u^{\prime} v^{\prime}+u v^{\prime \prime}$
■ $(u v)^{\prime \prime \prime}=u^{\prime \prime \prime} v+3 u^{\prime \prime} v^{\prime}+3 u^{\prime} v^{\prime \prime}+u v^{\prime \prime \prime}$
■ ．．．

ATHEMATICS

Example

Let $y=x^{2} e^{3 x}$ ．Find $y^{(n)}$ ．

summary

－implicit differentiation
－linearization
－more on differentiability \＆continuity
■ Rolle＇s theorem and mean value theorem
■ monotonicity and first derivative check（relative max／min）
■ Leibniz＇s rule

