

MATH1010G University Mathematics Week 5: Differentiation

Lecturer: Bangti Jin (b.jin@cuhk.edu.hk)

Chinese University of Hong Kong

February 2024

1/34

review

- limits of functions at infinity
- special limits, algebraic properties, sandwich theorem
- continuity
- relative / absolute extremum (maximum / minimum)

Derivative

Idea of derivative:

Using displacement and velocity if you know.

3/34

How about this case?

Speed is different at different moments. Hold on! What is the meaning of speed at a particular moment (instantaneous speed)?

idea: let Δt become smaller and smaller, and instantaneous speed at $t = t_0$ is defined to be

$$\lim_{\Delta t \to 0} \frac{f(t_0 + \Delta t) - f(t_0)}{\Delta t}$$

(provided that it exists, if so, it is denoted by $f'(t_0)$).

When $\Delta t \rightarrow 0$, ℓ tends to the tangent line at $t = t_0$, so the slope of the tangent line at $t = t_0 = f'(t_0)$.

5/34

<⊡ > < ⊡)

If $f(t) = t^2$, find f'(2) (instantaneous speed at t = 2).

6/34

Let y = f(x), fix x_0 . Then $f'(x_0)$ is the rate of change of y with respect to x at $x = x_0$.

Definition

f(x) is differentiable at $x = x_0$ if

Λ

$$\lim_{x\to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}$$

exists. It is called the derivative of *f* at $x = x_0$, and denoted by $f'(x_0)$.

Note: by definition, if $f(x_0)$ is NOT well-defined, then $f'(x_0)$ is NOT well-defined.

7/34

Let
$$\Delta x = x - x_0$$
, i.e. $x = x_0 + \Delta x$. When Δx tends to 0, *x* tends to x_0 .
 $\Rightarrow f(x)$ differentiable at $x = x_0$ if

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \quad \text{exists}$$

A function, roughly speaking, given an input x, return a value. Now, we construct a new function,

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
 (if exists)

(Given an input x, return the slope of the tangent line at (x, f(x)))

Example 5.1.2

If $f(x) = x^2$, find f'(x).

Notations

$$y = f(x) = x^{2}$$
$$\frac{df}{dx} = \frac{dy}{dx} = f'(x) = 2x$$
$$\frac{df}{dx}\Big|_{x=3} = \frac{dy}{dx}\Big|_{x=3} = f'(3) = 2(3) = 6.$$

Definition

If $f : D \to \mathbb{R}$ is differentiable at every point in *D*, then *f* is said to be a differentiable function.

Exercise

Find
$$f'(x)$$
 for $f(x) = x$ and $f(x) = x^3$.

10/34

Theorem

```
If f(x) = k, where k is a constant, then f'(x) = 0.
```


11/34

Definition

Let $f : [a, b] \rightarrow \mathbb{R}$.

■ *f* is said to be differentiable at x = a if $\lim_{\Delta x \to 0^+} \frac{f(a + \Delta x) - f(a)}{\Delta x}$ or $\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a}$ exists.

■ *f* is said to be differentiable at x = b if $\lim_{\Delta x \to 0^-} \frac{f(b + \Delta x) - f(b)}{\Delta x}$ or $\lim_{x \to b^-} \frac{f(x) - f(b)}{x - b}$ exists.

Let
$$f : [0, \infty) \to \mathbb{R}$$
 defined by $f(x) = x^{\frac{3}{2}}$.

$$\lim_{x\to 0^+}\frac{f(x)-f(0)}{x-0}=\lim_{x\to 0^+}\frac{x^{\frac{3}{2}}}{x}=\lim_{x\to 0^+}x^{\frac{1}{2}}=0.$$

Hence *f* is differentiable at x = 0.

Let $f : [0, \infty) \to \mathbb{R}$ defined by $f(x) = \sqrt{x}$.

f is not differentiable at x = 0

14/34

Theorem

If $f(x) = x^r$, with $r \in \mathbb{R}$, then $f'(x) = rx^{r-1}$, whenever it is defined.

only prove the case $f(x) = x^n$, where *n* is the positive integer

15/34

Exercise

Let $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^{\frac{2}{3}}$.

Show that *f* is not differentiable at x = 0.

Show that
$$f'(x) = \frac{2}{3}x^{-\frac{1}{3}}$$
 for all $x \neq 0$.

Differentiability and continuity

Theorem

If f(x) is differentiable at $x = x_0$, then f(x) is continuous at $x = x_0$.

17/34

Let

$$f(x) = \begin{cases} x^2 - 1 & \text{if } x \ge 1 \\ 1 - x & \text{if } x \le 1, \end{cases}$$

is *f* differentiable at x = 1?

18/34

Notation: $Lf'(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$ (left derivative of *f* at $x = x_0$) $Rf'(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$ (right derivative of *f* at $x = x_0$) Then, *f* is differentiable at $x = x_0$ if and only if $Lf'(x_0) = Rf'(x_0)$.

19/34

Exercise

- Show that f(x) is continuous at x = 1, i.e., $\lim_{x \to 1} f(x) = f(1)$. (Therefore, the converse statement of the theorem is NOT true.)
- Write down f'(x) for $x \neq 1$.

Differentiation rules

Theorem

If f(x) and g(x) are differentiable functions, then

■
$$(f + g)'(x) = f'(x) + g'(x)$$

■ $(f - g)'(x) = f'(x) - g'(x)$
■ $(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$ [product rule]
■ $(\frac{f}{g})'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$ if $g(x) \neq 0$. [quotient rule]

Corollary

If k is a constant and f(x) is diff., then $(k \cdot f)'(x) = kf'(x)$.

Using the product rule:

PARTMENT OF THEMATICS 21/34

Find
$$\frac{d}{dx}(3x^2 + 7x - 2)$$
.

Example

Find
$$\frac{d}{dx}[(3x^2-5x+1)(2x+7)]$$
.

Example

Find
$$\frac{d}{dx}\frac{2x}{x^2+1}$$
, $\frac{d}{dx}(\frac{1}{\sqrt{x}}+\sqrt{x})$.

22/34

Higher derivatives

- **s**(t) : distance functions (depends on time t)
- (instantaneous) speed = rate of change of distance traveled with respect to t.

 $v(t) = \frac{ds}{dt}$ (still a function of t.)

Question: What is $\frac{dv}{dt}$? acceleration = rate of change of speed with respect to t $a(t) = \frac{dv}{dt} = \frac{d^2s}{dt^2}$.

In general, let y = f(x).

(1st derivative)
$$\frac{dy}{dx} = \frac{df}{dx} = f'(x)$$

(2nd derivative) $\frac{d^2y}{dx^2} = \frac{d^2f}{dx^2} = f''(x)$
(nth derivative) $\frac{d^ny}{dx^n} = \frac{d^nf}{dx^n} = f^{(n)}(x).$

24/34

$$\frac{d}{dx}\cos x = -\sin x.$$

25/34

Exercise

Prove
$$\frac{d}{dx} \sin x = \cos x$$
, and $\frac{d}{dx} \tan x = \sec^2 x$.

Exercise

Prove
$$\frac{d}{dx} \sec x = \sec x \tan x$$
, $\frac{d}{dx} \csc x = -\csc x \cot x$,
 $\frac{d}{dx} \cot x = -\csc^2 x$

Derivative of *e*^{*x*}

Cheating :
$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$\frac{d}{dx}e^{x} = \frac{d}{dx}(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots)$$

$$= 0 + 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$= e^{x}.$$

The derivative of e^x is itself.

27/34

< **□** > < Ξ >

Example Find $\frac{d}{dx} \left[e^x (3x^2 + 7x - 2) \right]$.

28/34

Chain rule

Question: How do we differentiate composite functions ?

Theorem

If $f : B \to \mathbb{R}$ and $g : A \to \mathbb{R}$ are differentiable such that $g(A) \subset B$, then the composition $(f \circ g) : A \to \mathbb{R}$ is differentiable and

 $(f \circ g)'(x) = f'(g(x))g'(x).$

Interpretation: Let u = g(x), y = f(u) = f(g(x)), then the chain rule

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Think : $\frac{\Delta y}{\Delta x} = \frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x}$

29/34

Find the derivative of $\sqrt{x^2 + 3x}$.

30/34

Find the derivative of $(3x^2 - 2x)^{10}$.

31/34

Exercise

Show that
$$\frac{d}{dx}e^{ax} = ae^{ax}$$
, and $\frac{d}{dx}a^x = (\ln a)a^x$, for $a > 0$.

(Hint: $a^x = e^{(\ln a^x)} = e^{(\ln a)x}$)

Exercise

Find the derivative of $\left(\frac{x}{x+1}\right)^2$.

by using the chain rule

• by writing
$$\left(\frac{x}{x+1}\right)^2 = \frac{x^2}{(x+1)^2}$$
 and using the quotient rule.

Example

Find the derivative of $e^{\sqrt{x^2+1}}$.

32/34

Revisit of quotient rule

33/34

summary

- definition of derivatives
- $\blacksquare differentiability \Rightarrow continuity, high-order derivative$
- product rule / quotient rule
- derivative of trigonometric / exp functions
- chain rule

