# MATH1010G University Mathematics Week 5：Differentiation 

Lecturer：Bangti Jin（b．jin＠cuhk．edu．hk）

Chinese University of Hong Kong
February 2024

## review

－limits of functions at infinity
■ special limits，algebraic properties，sandwich theorem
－Continuity
■ relative／absolute extremum（maximum／minimum）

## Derivative

Idea of derivative：

$$
\text { (average) speed }=\frac{\text { distance }}{\text { time }}
$$



Using displacement and velocity if you know．

How about this case？


Speed is different at different moments．
Hold on！What is the meaning of speed at a particular moment （instantaneous speed）？
idea：let $\Delta t$ become smaller and smaller，and instantaneous speed at $t=t_{0}$ is defined to be

$$
\lim _{\Delta t \rightarrow 0} \frac{f\left(t_{0}+\Delta t\right)-f\left(t_{0}\right)}{\Delta t}
$$

（provided that it exists，if so，it is denoted by $f^{\prime}\left(t_{0}\right)$ ）．



When $\Delta t \rightarrow 0, \ell$ tends to the tangent line at $t=t_{0}$ ，so the slope of the tangent line at $t=t_{0}=f^{\prime}\left(t_{0}\right)$ ．

## Example

If $f(t)=t^{2}$ ，find $f^{\prime}(2)$（instantaneous speed at $t=2$ ）．

Let $y=f(x)$ ，fix $x_{0}$ ．Then $f^{\prime}\left(x_{0}\right)$ is the rate of change of $y$ with respect to $x$ at $x=x_{0}$ ．

## Definition

$f(x)$ is differentiable at $x=x_{0}$ if

$$
\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
$$

exists．It is called the derivative of $f$ at $x=x_{0}$ ，and denoted by $f^{\prime}\left(x_{0}\right)$ ．
Note：by definition，if $f\left(x_{0}\right)$ is NOT well－defined，then $f^{\prime}\left(x_{0}\right)$ is NOT well－defined．

Let $\Delta x=x-x_{0}$ ，i．e．$x=x_{0}+\Delta x$ ．When $\Delta x$ tends to $0, x$ tends to $x_{0}$ ．
$\Rightarrow f(x)$ differentiable at $x=x_{0}$ if

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \text { exists }
$$



A function，roughly speaking，given an input $x$ ，return a value．Now， we construct a new function，

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \quad \text { (if exists) }
$$

（Given an input $x$ ，return the slope of the tangent line at $(x, f(x))$ ）

Example 5．1．2
If $f(x)=x^{2}$, find $f^{\prime}(x)$ ．


Notations

$$
\begin{aligned}
y & =f(x)=x^{2} \\
\frac{d f}{d x} & =\frac{d y}{d x}=f^{\prime}(x)=2 x \\
\left.\frac{d f}{d x}\right|_{x=3} & =\left.\frac{d y}{d x}\right|_{x=3}=f^{\prime}(3)=2(3)=6 .
\end{aligned}
$$

## Definition

If $f: D \rightarrow \mathbb{R}$ is differentiable at every point in $D$ ，then $f$ is said to be a differentiable function．

## Exercise

Find $f^{\prime}(x)$ for $f(x)=x$ and $f(x)=x^{3}$ ．

Theorem
If $f(x)=k$ ，where $k$ is a constant，then $f^{\prime}(x)=0$ ．


Note：tangent line at $(x, f(x))$ is horizontal

$$
\therefore f^{\prime}(x)=0
$$

## Definition

Let $f:[a, b] \rightarrow \mathbb{R}$ ．
－$f$ is said to be differentiable at $x=a$ if $\lim _{\Delta x \rightarrow 0^{+}} \frac{f(a+\Delta x)-f(a)}{\Delta x}$ or $\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a}$ exists．
－$f$ is said to be differentiable at $x=b$ if $\lim _{\Delta x \rightarrow 0^{-}} \frac{f(b+\Delta x)-f(b)}{\Delta x}$ or $\lim _{x \rightarrow b^{-}} \frac{f(x)-f(b)}{x-b}$ exists．


## Example

Let $f:[0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=x^{\frac{3}{2}}$ ．

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{x^{\frac{3}{2}}}{x}=\lim _{x \rightarrow 0^{+}} x^{\frac{1}{2}}=0
$$

Hence $f$ is differentiable at $x=0$ ．


## Example

Let $f:[0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=\sqrt{x}$ ．
$f$ is not differentiable at $x=0$

Theorem
If $f(x)=x^{r}$ ，with $r \in \mathbb{R}$ ，then $f^{\prime}(x)=r x^{r-1}$ ，whenever it is defined． only prove the case $f(x)=x^{n}$ ，where $n$ is the positive integer

## Exercise

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{\frac{2}{3}}$ ．
－Show that $f$ is not differentiable at $x=0$ ．
－Show that $f^{\prime}(x)=\frac{2}{3} x^{-\frac{1}{3}}$ for all $x \neq 0$ ．


## Differentiability and continuity

## Theorem

If $f(x)$ is differentiable at $x=x_{0}$ ，then $f(x)$ is continuous at $x=x_{0}$ ．

## Example

Let

$$
f(x)= \begin{cases}x^{2}-1 & \text { if } x \geq 1 \\ 1-x & \text { if } x \leq 1\end{cases}
$$

is $f$ differentiable at $x=1$ ？


Notation：
$L f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}^{-}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$（left derivative of $f$ at $x=x_{0}$ ）
$R f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}^{+}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$（right derivative of $f$ at $x=x_{0}$ ）
Then，$f$ is differentiable at $x=x_{0}$ if and only if $L f^{\prime}\left(x_{0}\right)=R f^{\prime}\left(x_{0}\right)$ ．

## Exercise

■ Show that $f(x)$ is continuous at $x=1$ ，i．e．， $\lim _{x \rightarrow 1} f(x)=f(1)$ ． （Therefore，the converse statement of the theorem is NOT true．）
－Write down $f^{\prime}(x)$ for $x \neq 1$ ．

## Differentiation rules

## Theorem

If $f(x)$ and $g(x)$ are differentiable functions，then
－$(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$
－$(f-g)^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)$
－$(f \cdot g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$［product rule］
－$\left(\frac{f}{g}\right)^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$ if $g(x) \neq 0$ ．［quotient rule］

## Corollary

If $k$ is a constant and $f(x)$ is diff．，then $(k \cdot f)^{\prime}(x)=k f^{\prime}(x)$ ．
Using the product rule：

## Example

Find $\frac{d}{d x}\left(3 x^{2}+7 x-2\right)$ ．

## Example

Find $\frac{d}{d x}\left[\left(3 x^{2}-5 x+1\right)(2 x+7)\right]$ ．

## Example

Find $\frac{d}{d x} \frac{2 x}{x^{2}+1}, \frac{d}{d x}\left(\frac{1}{\sqrt{x}}+\sqrt{x}\right)$ ．

## Higher derivatives

■ $s(t)$ ：distance functions（depends on time $t$ ）
－（instantaneous）speed＝rate of change of distance traveled with respect to $t$ ．
$v(t)=\frac{d s}{d t}$（still a function of $t$ ．）
■ Question：What is $\frac{d v}{d t}$ ？ acceleration $=$ rate of change of speed with respect to $t$ $a(t)=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}$.


In general，let $y=f(x)$ ．

$$
\begin{aligned}
& \text { (1st derivative) } \frac{d y}{d x}=\frac{d f}{d x}=f^{\prime}(x) \\
& \text { (2nd derivative) } \frac{d^{2} y}{d x^{2}}=\frac{d^{2} f}{d x^{2}}=f^{\prime \prime}(x) \\
& \text { (nth derivative) } \frac{d^{n} y}{d x^{n}}=\frac{d^{n} f}{d x^{n}}=f^{(n)}(x) .
\end{aligned}
$$

$$
\frac{d}{d x} \cos x=-\sin x
$$

## Exercise

Prove $\frac{d}{d x} \sin x=\cos x$ ，and $\frac{d}{d x} \tan x=\sec ^{2} x$ ．

## Exercise

Prove $\frac{d}{d x} \sec x=\sec x \tan x, \frac{d}{d x} \csc x=-\csc x \cot x$, $\frac{d}{d x} \cot x=-\csc ^{2} x$

## Derivative of $e^{x}$

Cheating ：$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$

$$
\begin{aligned}
\frac{d}{d x} e^{x} & =\frac{d}{d x}\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right) \\
& =0+1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
& =e^{x}
\end{aligned}
$$



The derivative of $e^{x}$ is itself．

## Example

Find $\frac{d}{d x}\left[e^{x}\left(3 x^{2}+7 x-2\right)\right]$ ．

## Chain rule

Question：How do we differentiate composite functions？

## Theorem

If $f: B \rightarrow \mathbb{R}$ and $g: A \rightarrow \mathbb{R}$ are differentiable such that $g(A) \subset B$ ，then the composition $(f \circ g): A \rightarrow \mathbb{R}$ is differentiable and

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

Interpretation：Let $u=g(x), y=f(u)=f(g(x))$ ，then the chain rule

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

Think ：$\frac{\Delta y}{\Delta x}=\frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x}$

## Example

Find the derivative of $\sqrt{x^{2}+3 x}$ ．

## Example

Find the derivative of $\left(3 x^{2}-2 x\right)^{10}$ ．

## Exercise

Show that $\frac{d}{d x} e^{a x}=a e^{a x}$ ，and $\frac{d}{d x} a^{x}=(\ln a) a^{x}$ ，for $a>0$ ．
（Hint：$\left.a^{x}=e^{\left(\ln a^{x}\right)}=e^{(\ln a) x}\right)$

## Exercise

Find the derivative of $\left(\frac{x}{x+1}\right)^{2}$ ．
－by using the chain rule
■ by writing $\left(\frac{x}{x+1}\right)^{2}=\frac{x^{2}}{(x+1)^{2}}$ and using the quotient rule．

## Example

Find the derivative of $e^{\sqrt{x^{2}+1}}$ ．

## Example

## Revisit of quotient rule

## summary

■ definition of derivatives
■ differentiability $\Rightarrow$ continuity，high－order derivative
－product rule／quotient rule
－derivative of trigonometric／exp functions
■ chain rule

