

MATH1010G University Mathematics Week 4: Limits of Functions

Lecturer: Bangti Jin (b.jin@cuhk.edu.hk)

Chinese University of Hong Kong

February, 2024

1/38

review

- (one-sided) limits of functions (definition)
- algebraic properties of limits
- relation between limits of sequences and functions
- (one-sided version) sandwich theorem for limits
- 1 Limits of functions at infinity
- 2 Sandwich theorem
- 3 Continuity
- 4 Relative and absolute extrema

Limits of functions at infinity

Definition (Informal)

As *x* tends to $+\infty$ $(-\infty)$, if *f* gets closer and closer to a real number *L*, then *L* is called the limit of f(x) at $+\infty$ $(-\infty)$, and we write

$$\lim_{x\to+\infty}f(x)=L\quad (\lim_{x\to-\infty}f(x)=L).$$

(sometimes may simply write $\lim_{x\to\infty} f(x)$ instead of $\lim_{x\to+\infty} f(x)$)

Let
$$f(x) = \frac{1}{x}, x \neq 0$$
.

$$\lim_{x\to+\infty}f(x)=\lim_{x\to-\infty}f(x)=0.$$

Hence,

$$\lim_{x\to\pm\infty}f(x)=0.$$

4/38

Theorem

(i) If
$$k > 0$$
, then $\lim_{x \to +\infty} \frac{1}{x^k} = 0$.

(ii)
$$\lim_{x\to\pm\infty} (1+\frac{1}{x})^x = e \approx 2.71828.$$

5/38

Find
$$\lim_{x\to -\infty} \frac{x}{\sqrt{4x^3+1}}$$

6/38

compare exponential functions and polynomials.

Theorem

$$Iim_{x\to+\infty} x^k e^{-x} = Iim_{x\to+\infty} \frac{x^k}{e^x} = 0 \text{ for any } k > 0.$$

■
$$\lim_{x\to+\infty} p(x)e^{-x} = \lim_{x\to+\infty} \frac{p(x)}{e^x} = 0$$
 for any polynomial $p(x)$.

message: as x goes to ∞ , e^x grows faster than any polynomial. (proof using L'Hospital's rule)

Theorem

If
$$a > 1$$
, $\lim_{x \to -\infty} a^x = 0$

If
$$1 > a > 0$$
, $\lim_{x \to +\infty} a^x = 0$

$$Iim_{x\to\pm\infty} 1^x = 1.$$

Theorem (algebraic properties of limits at infinity)

If both $\lim_{x\to+\infty} f(x)$ and $\lim_{x\to+\infty} g(x)$ exist, then

(i)
$$\lim_{x\to+\infty} f(x) \pm g(x) = \lim_{x\to+\infty} f(x) \pm \lim_{x\to+\infty} g(x)$$

(ii)
$$\lim_{x\to+\infty} f(x) \cdot g(x) = \lim_{x\to+\infty} f(x) \cdot \lim_{x\to+\infty} g(x)$$

(iii)
$$\lim_{x\to+\infty} \frac{f(x)}{g(x)} = \frac{\lim_{x\to+\infty} f(x)}{\lim_{x\to+\infty} g(x)}$$
 if $\lim_{x\to+\infty} g(x) \neq 0$.

Similar results hold for limits at $-\infty$.

the conditions are crucial

9/38

Find $\lim_{x\to+\infty} \frac{3x^2}{x^2+x+1}$

Exercise

Find
$$\lim_{x\to+\infty} \frac{2x+1}{3x^2-2x+1}$$
 and $\lim_{x\to+\infty} \frac{e^x+e^{-x}}{e^x-e^{-x}}$.

10/38

limits involving e

Example

Find
$$\lim_{x\to+\infty} \left(1+\frac{1}{2x-1}\right)^x$$
.

11/38

Find $\lim_{x\to -\infty} \left(1+\frac{1}{x}\right)^x$.

12/38

Find
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}}$$
.

Let
$$y = \frac{1}{x}$$
, as $x \to 0$, $y \to \pm \infty$. (Not only $+\infty$, but also $-\infty$)

$$\lim_{x\to 0} \left(1+x\right)^{\frac{1}{x}} = \lim_{x\to \pm\infty} \left(1+\frac{1}{y}\right)^{y} = e.$$

Next consider $\lim_{x\to 0} \frac{e^x - 1}{x}$.

Idea: when x becomes small (but not zero), both $e^x - 1$ and x are small, but the quotient of them is not small !

Theorem

 $\lim_{x\to 0} \frac{e^x - 1}{x} = 1.$

Cheating: $e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots}{x} = \lim_{x \to 0} 1 + \frac{x}{2!} + \frac{x^2}{3!} + \dots = 1$$

The above is cheating since we are summing up infinitely many small terms, so algebraic properties of limit can not be applied.

Theorem (Sandwich Theorem at Infinity)

Let $f, g, h : \mathbb{R} \to \mathbb{R}$ be functions. If $f(x) \le g(x) \le h(x)$ for all $x \in \mathbb{R}$ and $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} h(x) = L$, then $\lim_{x \to +\infty} g(x) = L$.

Geometrical meaning:

Similar result holds for limits at $-\infty$.

Find $\lim_{x\to+\infty} e^{-x} \sin x$.

16/38

Exercise

Show that $\lim_{x\to+\infty} \frac{\sin x}{x} = 0$.

(Don't mix up with $\lim_{x\to 0} \frac{\sin x}{x} = 1$)

17/38

Continuity

Definition

A function *f* is said to be continuous at x = c if $\lim_{x \to c} f(x)$ exists and is equal to f(c), i.e.,

$$\lim_{\alpha\to c}f(x)=f(c)).$$

Further, if *f* is continuous at every point whenever it is defined, then *f* is continuous.

Let h = x - c, i.e., x = c + h (Remark: when x < c, we have h < 0.) When x tends to c, h tends to 0. Thus we may define: A function f(x) is said to be continuous at x = c if

$$\lim_{h\to 0}f(c+h)=f(c).$$

Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = x + 1.

Iim_{$$x \to 1$$} $f(x) = \lim_{x \to 1} x + 1 = 2$

• Hence *f* is continuous at x = 1.

Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0\\ a & \text{if } x = 0. \end{cases}$$

21/38

Recall

$$\lim_{x \to c} f(x) = L \text{ if and only if } \lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x) = L$$

So a function f(x) is said to be continuous at x = c if

$$\lim_{x\to c^-} f(x) = \lim_{x\to c^+} f(x) = f(c).$$

22/38

If
$$f(x) = \begin{cases} x^2 - 1 & \text{if } x \ge 1 \\ 1 - x & \text{if } x < 1. \end{cases}$$

Is *f* continuous at x = 1?

Exercise

Show that f(x) = |x| is a continuous function.

23/38

- Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that
 - (i) f is continuous at 0.

(ii)
$$f(x + y) = f(x) + f(y)$$
 for all $x, y \in \mathbb{R}$.

Show that:

(a)
$$f(0) = 0$$

(b) f is continuous everywhere.

Theorem

- (i) If f(x) and g(x) are continuous at x = c, then $f(x) \pm g(x)$, $f(x)g(x), \frac{f(x)}{g(x)}$ ($g(x) \neq 0$) are continuous at x = c as well.
- (ii) Polynomial and exponential functions are continuous everywhere.
- (iii) Trigonometric and logarithmic functions are continuous at every point where they are defined.
- (iv) If g(x) is continuous at x = c and f(x) is continuous at x = g(c), then f(g(x)) is continuous at x = c.

(That is why we usually have $\lim_{x\to c} f(x) = f(c)$ as we usually looking at continuous functions!)

Let $f(x) = \frac{2x^2+3}{x^2-3x+2}$

quotient of two polynomials (continuous functions)

$$f(x) = \frac{2x^2 + 3}{(x-2)(x-1)}$$

(the denominator is nonzero when $x \neq 1$ or 2) Therefore *f* is continuous in $\mathbb{R} \setminus \{1, 2\}$.

Exercise

f(x) = ||x| - 1|

26/38

Exercise

Find the values of a and b s.t.

$$f(x) = \begin{cases} 2x - 1, & x < 2, \\ a, & x = 2, \\ x^2 + b, & x > 2 \end{cases}$$

is continuous at x = 2

Exercise

The function

$$f = \left\{egin{array}{cc} \sinrac{1}{x}, & x
eq 0, \ 0, & x=0 \end{array}
ight.$$

is not continuous at x = 0

27/38

Sequential criterion for continuity

Recall: $\lim_{x\to c} f(x) = L \Leftrightarrow$

 $\forall \text{ sequence } \{a_n\} \text{ with } a_n \neq c \quad \forall n \in \mathbb{Z}^+ \text{ and } \lim_{n \to \infty} a_n = c, \lim_{x \to \infty} f(a_n) = L.$

Theorem

A function *f* is continuous at x = c if and only if for every sequence $\{a_n\}$ with $a_n \neq c$, $\forall n \in \mathbb{Z}^+$ and $\lim_{n\to\infty} a_n = c$, we have

$$\lim_{x\to\infty}f(a_n)=f(\lim_{x\to\infty}a_n)=f(c).$$

28/38

Example Find $\lim_{n \to \infty} \sqrt{\frac{n^2 + 1}{4n^2 + 3}}$.

29/38

Consider

$$\mathsf{f}(x) = egin{cases} 1 & ext{if} \quad x = 0 \ 0 & ext{if} \quad x
eq 0. \end{cases}$$

f is not continuous at x = 0.

30/38

Continuity on [a, b]

Definition

let $f : [a, b] \rightarrow \mathbb{R}$.

■ *f* is said to be continuous at x = a if $\lim_{x \to a^+} f(x) = f(a)$.

■ *f* is said to be continuous at x = b if $\lim_{x\to b^-} f(x) = f(b)$.

Further if $f : [a, b] \rightarrow \mathbb{R}$ is continuous at every point $x \in [a, b]$, then f is said to be continuous on [a, b].

intermediate value theorem

Suppose that $f : [a, b] \to \mathbb{R}$ is a continuous function such that f(a) < f(b). Furthermore, if $L \in \mathbb{R}$ such that f(a) < L < f(b), then there exist (at least one) $c \in (a, b)$ such that f(c) = L

The similar result holds for f(a) > L > f(b).

Let $f(x) = x^2$

$$f(1) = 1 < 2 < 4 = f(2)$$

f is continuous on [1, 2] (in fact on \mathbb{R}) intermediate value theorem \Rightarrow there exists $c \in (1, 2)$ such that

$$f(c)=c^2=2.$$

($\textit{c}=\sqrt{2}$ by definition), and hence 1 $<\sqrt{2}<$ 2 (a rough approx of $\sqrt{2})$

Corollary

Suppose that $f : [a, b] \to \mathbb{R}$ is a continuous function. If f(a)f(b) < 0 (i.e., f(a) and f(b) have opposite sign) then there exists (at least one) $c \in (a, b)$ such that f(c) = 0.

Show that $2^x = \frac{1}{x^2}$ has at least one solution. (i.e., $f(x) = 2^x - \frac{1}{x^2}$, the equation f(x) = 0 has at least one solution.)

35/38

Let $f : [1,2] \to \mathbb{R}$ is a function defined by $f(x) = x^2 - 2$.

■ *f* is continuous on [1,2]

•
$$f(1) = -1 < 0$$
 and $f(2) = 2 > 0$.

intermediate value theorem: there exists $c \in (1, 2)$ s.t. f(c) = 0.

Since $\sqrt{2}$ is the only root of f(x) = 0 on [1,2], *c* must be $\sqrt{2}$. Thus, $1 < \sqrt{2} < 2$.

Relative and absolute extrema

Let $f : D \to \mathbb{R}$ be a function.

■ *f* has an absolute maxima (minima) at x_0 if $f(x) \le f(x_0)$ $(f(x) \ge f(x_0))$ for all $x \in D$.

■ *f* has a relative maxima (minima) at x_0 if $f(x) \le f(x_0)$ ($f(x) \ge f(x_0)$) for all *x* in a neighbourhood of x_0 in *D*.

We simply use maxima/minima to refer to relative maxima/minima,

kima/minima. _{37/38}

Extreme-value theorem (maximum-minimum theorem)

Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Then f has an absolute maxima and an absolute minima on [a, b].

Question: Given *f*, how to find all absolute / relative extrema? Differentiation provides a powerful tool for that.

