MATH1010G University Mathematics Week 4：Limits of Functions

Lecturer：Bangti Jin（b．jin＠cuhk．edu．hk）

Chinese University of Hong Kong

February， 2024

review

－（one－sided）limits of functions（definition）
－algebraic properties of limits
■ relation between limits of sequences and functions
■（one－sided version）sandwich theorem for limits
1 Limits of functions at infinity
2 Sandwich theorem
3 Continuity
4 Relative and absolute extrema

Limits of functions at infinity

Definition（Informal）

As x tends to $+\infty(-\infty)$ ，if f gets closer and closer to a real number L ，then L is called the limit of $f(x)$ at $+\infty(-\infty)$ ，and we write

$$
\lim _{x \rightarrow+\infty} f(x)=L \quad\left(\lim _{x \rightarrow-\infty} f(x)=L\right) .
$$

（sometimes may simply write $\lim _{x \rightarrow \infty} f(x)$ instead of $\lim _{x \rightarrow+\infty} f(x)$ ）

From the graph，we have $\lim _{x \rightarrow+\infty} f(x)=L$ and $\lim _{x \rightarrow-\infty} f(x)=M$

Example

Let $f(x)=\frac{1}{x}, x \neq 0$ ．

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow-\infty} f(x)=0
$$

Hence，

$$
\lim _{x \rightarrow \pm \infty} f(x)=0
$$

Theorem

（i）If $k>0$ ，then $\lim _{x \rightarrow+\infty} \frac{1}{x^{k}}=0$ ．
（ii） $\lim _{x \rightarrow \pm \infty}\left(1+\frac{1}{x}\right)^{x}=e \approx 2.71828$ ．

Example

Find $\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{4 x^{3}+1}}$
compare exponential functions and polynomials．

Theorem

－ $\lim _{x \rightarrow+\infty} x^{k} e^{-x}=\lim _{x \rightarrow+\infty} \frac{x^{k}}{e^{x}}=0$ for any $k>0$ ．
■ $\lim _{x \rightarrow+\infty} p(x) e^{-x}=\lim _{x \rightarrow+\infty} \frac{p(x)}{e^{x}}=0$ for any polynomial $p(x)$ ．
message：as x goes to ∞, e^{x} grows faster than any polynomial． （proof using L＇Hospital＇s rule）

Theorem

■ If $a>1, \lim _{x \rightarrow-\infty} a^{x}=0$
■ If $1>a>0, \lim _{x \rightarrow+\infty} a^{x}=0$
－ $\lim _{x \rightarrow \pm \infty} 1^{x}=1$ ．

Theorem（algebraic properties of limits at infinity）

If both $\lim _{x \rightarrow+\infty} f(x)$ and $\lim _{x \rightarrow+\infty} g(x)$ exist，then
（i） $\lim _{x \rightarrow+\infty} f(x) \pm g(x)=\lim _{x \rightarrow+\infty} f(x) \pm \lim _{x \rightarrow+\infty} g(x)$
（ii） $\lim _{x \rightarrow+\infty} f(x) \cdot g(x)=\lim _{x \rightarrow+\infty} f(x) \cdot \lim _{x \rightarrow+\infty} g(x)$
（iii） $\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow+\infty} f(x)}{\lim _{x \rightarrow+\infty} g(x)}$ if $\lim _{x \rightarrow+\infty} g(x) \neq 0$ ．
Similar results hold for limits at $-\infty$ ．
the conditions are crucial

Example

Find $\lim _{x \rightarrow+\infty} \frac{3 x^{2}}{x^{2}+x+1}$

Exercise

Find $\lim _{x \rightarrow+\infty} \frac{2 x+1}{3 x^{2}-2 x+1}$ and $\lim _{x \rightarrow+\infty} \frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$ ．
limits involving e

Example

Find $\lim _{x \rightarrow+\infty}\left(1+\frac{1}{2 x-1}\right)^{x}$ ．

Example

Find $\lim _{x \rightarrow-\infty}\left(1+\frac{1}{x}\right)^{x}$ ．

Example

Find $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}$ ．
Let $y=\frac{1}{x}$ ，as $x \rightarrow 0, y \rightarrow \pm \infty$ ．（Not only $+\infty$ ，but also $-\infty$ ）

$$
\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=\lim _{x \rightarrow \pm \infty}\left(1+\frac{1}{y}\right)^{y}=e
$$

Next consider $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}$ ．
Idea：when x becomes small（but not zero），both $e^{x}-1$ and x are small，but the quotient of them is not small ！

Theorem

$\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$ ．
Cheating：$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=\lim _{x \rightarrow 0} \frac{x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots}{x}=\lim _{x \rightarrow 0} 1+\frac{x}{2!}+\frac{x^{2}}{3!}+\cdots=1
$$

The above is cheating since we are summing up infinitely many small terms，so algebraic properties of limit can not be applied．

Exercise

Find $\lim _{x \rightarrow 0} \frac{e^{3 x}-1}{2 x}$ ．

Theorem（Sandwich Theorem at Infinity）

Let $f, g, h: \mathbb{R} \rightarrow \mathbb{R}$ be functions．If $f(x) \leq g(x) \leq h(x)$ for all $x \in \mathbb{R}$ and $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} h(x)=L$ ，then $\lim _{x \rightarrow+\infty} g(x)=L$ ．

Geometrical meaning：

In fact，the result is still true if $f(x) \leq g(x) \leq h(x)$ for all $x \in[a,+\infty)$

Similar result holds for limits at $-\infty$ ．

Example

Find $\lim _{x \rightarrow+\infty} e^{-x} \sin x$ ．

Exercise

Show that $\lim _{x \rightarrow+\infty} \frac{\sin x}{x}=0$ ．

（Don＇t mix up with $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ ）

Continuity

Definition

A function f is said to be continuous at $x=c$ if $\lim _{x \rightarrow c} f(x)$ exists and is equal to $f(c)$ ，i．e．，

$$
\left.\lim _{x \rightarrow c} f(x)=f(c)\right) .
$$

Further，if f is continuous at every point whenever it is defined，then f is continuous．

Geometrical meaning：

Let $h=x-c$ ，i．e．，$x=c+h$（Remark：when $x<c$ ，we have $h<0$ ．） When x tends to c, h tends to 0 ．Thus we may define：A function $f(x)$ is said to be continuous at $x=c$ if

$$
\lim _{h \rightarrow 0} f(c+h)=f(c)
$$

Example

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x+1$ ．

■ $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} x+1=2$
－$f(1)=2$
■ Hence f is continuous at $x=1$ ．

Example

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}\frac{\sin x}{x} & \text { if } x \neq 0 \\ a & \text { if } x=0 .\end{cases}
$$

Recall

$$
\lim _{x \rightarrow c} f(x)=L \text { if and only if } \lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)=L
$$

So a function $f(x)$ is said to be continuous at $x=c$ if

$$
\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)=f(c) .
$$

Example

$$
\text { If } f(x)= \begin{cases}x^{2}-1 & \text { if } \quad x \geq 1 \\ 1-x & \text { if } \quad x<1\end{cases}
$$

Is f continuous at $x=1$ ？

Exercise

Show that $f(x)=|x|$ is a continuous function．

Example

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that
（i）f is continuous at 0 ．
（ii）$f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$ ．
Show that：
（a）$f(0)=0$
（b）f is continuous everywhere．

Theorem

（i）If $f(x)$ and $g(x)$ are continuous at $x=c$ ，then $f(x) \pm g(x)$ ， $f(x) g(x), \frac{f(x)}{g(x)}(g(x) \neq 0)$ are continuous at $x=c$ as well．
（ii）Polynomial and exponential functions are continuous everywhere．
（iii）Trigonometric and logarithmic functions are continuous at every point where they are defined．
（iv）If $g(x)$ is continuous at $x=c$ and $f(x)$ is continuous at $x=g(c)$ ， then $f(g(x))$ is continuous at $x=c$ ．
（That is why we usually have $\lim _{x \rightarrow c} f(x)=f(c)$ as we usually looking at continuous functions！）

Example

$$
\text { Let } f(x)=\frac{2 x^{2}+3}{x^{2}-3 x+2}
$$

quotient of two polynomials（continuous functions）

$$
f(x)=\frac{2 x^{2}+3}{(x-2)(x-1)}
$$

（the denominator is nonzero when $x \neq 1$ or 2 ）
Therefore f is continuous in $\mathbb{R} \backslash\{1,2\}$ ．

Exercise

$f(x)=||x|-1|$

Exercise

Find the values of a and b s．t．

$$
f(x)=\left\{\begin{aligned}
2 x-1, & x<2 \\
a, & x=2 \\
x^{2}+b, & x>2
\end{aligned}\right.
$$

is continuous at $x=2$

Exercise

The function

$$
f=\left\{\begin{array}{rr}
\sin \frac{1}{x}, & x \neq 0 \\
0, & x=0
\end{array}\right.
$$

is not continuous at $x=0$

Sequential criterion for continuity

Recall： $\lim _{x \rightarrow c} f(x)=L \Leftrightarrow$
\forall sequence $\left\{a_{n}\right\}$ with $a_{n} \neq c \quad \forall n \in \mathbb{Z}^{+}$and $\lim _{n \rightarrow \infty} a_{n}=c, \lim _{x \rightarrow \infty} f\left(a_{n}\right)=L$ ．

Theorem

A function f is continuous at $x=c$ if and only if for every sequence $\left\{a_{n}\right\}$ with $a_{n} \neq c, \forall n \in \mathbb{Z}^{+}$and $\lim _{n \rightarrow \infty} a_{n}=c$ ，we have

$$
\lim _{x \rightarrow \infty} f\left(a_{n}\right)=f\left(\lim _{x \rightarrow \infty} a_{n}\right)=f(c) .
$$

Example

Find $\lim _{n \rightarrow \infty} \sqrt{\frac{n^{2}+1}{4 n^{2}+3}}$ ．

Example

Consider

$$
f(x)=\left\{\begin{array}{lll}
1 & \text { if } & x=0 \\
0 & \text { if } & x \neq 0
\end{array}\right.
$$

f is not continuous at $x=0$ ．

Continuity on $[a, b]$

Definition

let $f:[a, b] \rightarrow \mathbb{R}$ ．
－f is said to be continuous at $x=a$ if $\lim _{x \rightarrow a^{+}} f(x)=f(a)$ ．
■ f is said to be continuous at $x=b$ if $\lim _{x \rightarrow b^{-}} f(x)=f(b)$ ．
Further if $f:[a, b] \rightarrow \mathbb{R}$ is continuous at every point $x \in[a, b]$ ，then f is said to be continuous on $[a, b]$ ．
we cannot talk about $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow b^{+}} f(x)$

intermediate value theorem

Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function such that $f(a)<f(b)$ ．Furthermore，if $L \in \mathbb{R}$ such that $f(a)<L<f(b)$ ，then there exist（at least one）$c \in(a, b)$ such that $f(c)=L$

The similar result holds for $f(a)>L>f(b)$ ．

Example

Let $f(x)=x^{2}$

$$
f(1)=1<2<4=f(2)
$$

f is continuous on［1，2］（in fact on \mathbb{R} ） intermediate value theorem \Rightarrow there exists $c \in(1,2)$ such that

$$
f(c)=c^{2}=2
$$

（ $c=\sqrt{2}$ by definition），and hence $1<\sqrt{2}<2$
 （a rough approx of $\sqrt{2}$ ）

Corollary

Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function．If $f(a) f(b)<0$（i．e．， $f(a)$ and $f(b)$ have opposite sign）then there exists（at least one）$c \in(a, b)$ such that $f(c)=0$ ．

Example

Show that $2^{x}=\frac{1}{x^{2}}$ has at least one solution．
（i．e．，$f(x)=2^{x}-\frac{1}{x^{2}}$ ，the equation $f(x)=0$ has at least one solution．）

Example

Let $f:[1,2] \rightarrow \mathbb{R}$ is a function defined by $f(x)=x^{2}-2$ ．
－f is continuous on $[1,2]$
－$f(1)=-1<0$ and $f(2)=2>0$ ．
■ intermediate value theorem：there exists $c \in(1,2)$ s．t．$f(c)=0$ ．
－Since $\sqrt{2}$ is the only root of $f(x)=0$ on［1，2］，c must be $\sqrt{2}$ ． Thus， $1<\sqrt{2}<2$ ．

Relative and absolute extrema

Let $f: D \rightarrow \mathbb{R}$ be a function．
■ f has an absolute maxima（minima）at x_{0} if $f(x) \leq f\left(x_{0}\right)$ $\left(f(x) \geq f\left(x_{0}\right)\right)$ for all $x \in D$ ．

■ f has a relative maxima（minima）at x_{0} if $f(x) \leq f\left(x_{0}\right)$ $\left(f(x) \geq f\left(x_{0}\right)\right)$ for all x in a neighbourhood of x_{0} in D ．

We simply use maxima／minima to refer to relative maxima／minima， xima／minima．

Extreme－value theorem（maximum－minimum theorem）

Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function．Then f has an absolute maxima and an absolute minima on $[a, b]$ ．

Question：Given f ，how to find all absolute／relative extrema？ Differentiation provides a powerful tool for that．

