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Final exam
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Date: December 22 (Friday)

Time: 09:30 - 11:30

Venue: University Gymnasium

Closed book, closed notes

Bring student ID card, black/blue pen

List of approved calculators:
http://www.res.cuhk.edu.hk/images/content/examinations/
use-of-calculators-during-course-examination/
Use-of-Calculators-during-Course-Examinations.pdf
Scope: EV ING!

» Limits and continuity
» Differentiation
> Integration
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Basic notations
Set: a collection of elements
» {a, b,c} = a set containing three elements a, b, ¢
> x € A means “x is an element of the set A”
» A C B (also written as A C B) means “A is a subset of B"
(i.e. for any element x € A, we have x € B)
{x:--}={x|---} ={x such that --- }
R = the set of all real numbers
Z={..,-3,-2,—-1,0,1,2,3,...} = the set of all integers
N=Zt={x€Z:x>0}={1,2,3,...}
= the set of all positive integers
> Q:{XER:ngforsomep,qEZWith q # 0}
= the set of all rational numbers
> () ={ } = empty set
Examples:
» 2 € Z (since 2 is an integer)
» 7 ¢ Q (since 7 is an irrational number)
> {0,2,4,6,...} CZ

\ A A A
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Basic notations

» Union: AUB={x:x€ Aorx € B}

» Intersection: ANB={x:x € Aand x € B}

» Union of multiple sets A1, As, ..., Ay
UA,':AlUAQU"'UAn
i=1

P Intersection of multiple sets Ay, Ap, ..., An:
mA;:AlﬂAzﬂ"'ﬂAn
i=1

» Set difference: A\ B={x:x€ Aand x ¢ B}

Examples:

> {1,2,3}U{1,3,4,7} ={1,2,3,4,7}

> {1,2,3}n{1,3,4,7} = {1,3}

> {1,2,3}\{1,3,4,7} = {2}
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Basic notations

Intervals:
> (a,b) ={x € R:a< x < b} (open interval)
» [a,b] = {x € R:a< x < b} (closed interval)
» (a,b] ={xeR:a< x<b}
» [a,b) ={xeR:a<x<b}
» (a,00) ={x€eR:x> a}
> [a,00) ={x e R: x> a}
» (—oo,b) ={xeR:x < b}
» (—oo,bl ={xeR:x < b}

Examples:
> (—1,3)U(0,4] = (—1,4]
» [0,5] N (1,00) = (1,5]
» (0,5)\(1,2) =(0,1]U[2,5)
> U [2n7,(2n+1)7) = ---U[-2m, —7)U[0, m) U [27,3m) U - -

nez
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(Lecture 1-2) Sequences
Examples:

-1)"=-1,1,-1,1,
> Arithmetic sequences: a,1 — a, = d for some constant d
» Geometric sequences: a1 = ra, for some constant r
Definitions:
» Monotonic increasing (or “increasing”): ap, < ap41 for all n
» Monotonic decreasing (or “decreasing”): a, > an41 for all n
Monotonic: Either monotonic increasing or decreasing
Strictly increasing: a, < ap41 for all n
Strictly decreasing: a, > a1 for all n
Bounded below: there exists M € R s.t. a, > M for all n
Bounded above: there exists M € R s.t. a, < M for all n
Bounded: there exists M € R s.t. |a,| < M for all n
(i.e. both bounded below and bounded above)

VVYVYyVYVYY
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(Lecture 1-2) Limits of sequences
Definitions:
» (Convergent sequence) If {a,} approaches a number L as n
approaches infinity, we say lim a, = L.
n—o0
» (Divergent sequence) If no such L exists, we say that {a,} is
divergent.

Note: If lim a, = co or —0, it is also divergent.
n—oo

Uniqueness of limit: If a, is convergent, then the limit is unique.

Basic arithmetic rules: If |im a, = aand lim b, = b, then
n—oo n—o0

» lim(a, £ by)=axb
n—oo

» lim (cap) = ca (where c is a constant)
n.—>oo

» |im a,b, = ab

n—oo

a, a .
> lim =2
M, ~p U070
. 1 3\" 1
Example: lim (cos——-2(-) +—5])=1-2-040=1
———— n—oo n 4 n2
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(Lecture 1-2) Limits of sequences
Limits involving +o0:

| 2

>
>
>
>

A\

ocod L =00
-0l =—-00

o0 4+ 00 = 00

—00 — 00 = —00

L. B 00 ifL>0
7 —x ifL<0
L

=0

(Indeterminate forms) oo — oo, % %, 0 - oco: try further

simplifying

Convergence = Boundedness:

‘If {ap} is convergent, then {a,} is bounded. ‘

Remark: The converse is NOT true, i.e. bounded # convergent!
Example: {(—1)"} = —1,1,—1,1,... is bounded but divergent.
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(Lecture 2) Monotone convergence theorem

‘If {an} is monotonic and bounded, then {a,} is convergent.

Other versions:

» If {a,} is monotonic increasing and bounded above,
then {a,} is convergent.

» If {a,} is monotonic decreasing and bounded below,
then {a,} is convergent.
ant+1 = Van+ 1
al = 1
convergent, we prove that (i) {a,} is bounded by 2 (by MI) and
(ii) {an} is monotonic increasing.

Example: To prove that {a,} with

Remark:

The converse is NOT true: convergent % monotonic & bounded!
Example:

{%} =-1, %, —%, %, ... converges to 0, but the sequence is

not monotonic.
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(Lecture 3) Squeeze theorem (sandwich theorem)

If b, < a,<c,forall nand lim b, = lim ¢, =L,
n—o00 n—oo

then lim a, = L.
n—00

. sin(cosn
Example: lim g =7
——— n—oo n

Solution: Since —1 < sin(cos n) < 1 for all n, we have

—1 sin(cosn) 1

n n n’
-1 1

Now, since lim — =0= I|m —, by squeeze theorem, we have
n—oo N n
sin(cos n

fim S(C0sM) _

n—o0 n
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Some possible ways to show that a sequence converges
(I) Find the limit directly using some basic limit results

> lim r"=0if |[r] <1, lim 1:O,

n—00 n—oo n
. 1 3\" 1
Example: lim {cos—+ | ) +—5)=1+0+0=1
——— n—x n 4 n

(II) Use the monotone convergence theorem
» Show that the sequence is bounded and monotonic (may need
to use mathematical induction)
» Conclude that the sequence converges (i.e. can write

lim a, = L, then solve some equations to find L if needed).
n—oo

=/ 1
Example: Show that { an 1 an + converges.
L 1 pr—
(I11) Use the squeeze theorem
» Find b,, ¢, s.t. b, <a, <c,and Ii)m b, = Ii)m ¢ (=1).
» Conclude that lim a, = L.

n— o0

Example: Show that {a,} = {(_l)nw} converges.

n
If a way does not work, it does NOT imply that the sequence is

divergent! Try another way. 11/83



Some possible ways to show that a sequence diverges

(I) Show that {a,} is unbounded (i.e. ILm lan| = o0)

» Reason: If a sequence converges, it must be bounded
Example: a, = (—1)"n? diverges as lim |a,| = lim n® = oo
- n—o0 n—-o00

(I1) Show that {a,} contains two subsequences which
converge to two different values

» Reason: If a sequence converges, then the limit must be

unique

Example: a, = (—1)" diverges since {a1, a3, as, . .. } converges
to —1 and {ap, as, as, . . . } converges to 1.

If a way does not work, it does NOT imply that the sequence is
convergent! Try another way.
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(Lecture 3) Infinite series

n
Series: Zak:al+32+"'+an

k=1
Examples:
° n(n+1)
> k=1 _
> +2+4-+n 5
k=1
. 2 —1)d
> (Arithmetic sum) Z(a +(k—1)d) = M
2
k=1
n n_1
> (Geometric sum) Zark*1 _alr ) (ifr#1)

- - (r-1)
k=1
Convergence of infinite series: We say that an infinite series

o0
Z ax = a1+ ap + az + --- is convergent if the sequence of partial
k=1

n
sums {sp} (where s, =a; +ar+---+ap, = Z ay) converges.
k=1

Example: (Euler's number) e =14 & + J; + % +---~2718
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(Lecture 3) Functions

Definitions:
» f:A— B

» A: Domain
» B: Codomain
» f: Some rule of assigning elements in A to elements in B

» Range of f = {f(x) : x € A} (also known as image of f)

» Natural domain = largest domain on which f can be defined

Examples:
» For f : R — R with f(x) = x?, the range of f is [0, 00)
» The natural domain of f(x) = -2 is (—1,00)

Vx+1
» The natural domain of tan(x) is

R\ {ig,i?’g,i%,...} oy ((n— %)W,(n—k ;)77>
neZ
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(Lecture 3—4) Injective, subjective, bijective functions, and
inverse functions
» f:A— Bissaid to be injective (or “1-1", “one-to-one") if
for any x1,x2 € A with x; # x2, we have f(x1) # f(x2)
(Or equivalently, if f(x1) = f(x2) then we have x; = x2)
» f:A— Bissaid to be surjective (or “onto”) if
for any y € B, there exists x € A such that y = f(x)
> f is bijective if it is both injective and surjective
> If f : A— B is a bijective function, the inverse function
f~1: B — A satisfies f "1(f(x)) = x for all x € A and
f(fFl(y)=yforally e B
Examples:
> f:R — R with f(x) = x3 is bijective
> f:R — R with f(x) = x? is not injective as f(—1) = f(1) =1
> f:[0,00) — R with f(x) = x? is injective but not surjective
> f:[0,00) — [0,00) with f(x) = x? is bijective, and the inverse
function is f~1 : [0,00) — [0, 00) with F~1(y) = /y
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(Lecture 3—4) Even, odd, periodic functions

» f is an even function if f(—x) = f(x) for all x
» fis an odd function if f(—x) = —f(x) for all x

» f is a periodic function if there exists a constant k such that
f(x) = f(x + k) for all x

Examples:
> f(x) = x? is even because f(—x) = (—x)? = x? = f(x) for all x
> f(x) = x3 +sinx is odd because
f(=x) = (=x)® +sin(—x) = —x> — sinx = —(f(x)) for all x

» f(x) = x+ 1 is neither odd nor even because f(—1) =0 # +£(1)
» f(x) = 3sinx 4 cos 3 is periodic because

f(x + 4m) = 3sin(x + 47) + cos XL =

3sin(x + 4m) + cos (5 + 2m) = 3sinx + cos § = f(x) for all x
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(Lecture 4-5) Some common functions
Exponential function X : R — R"
> =l xS
» bijective function
Logarithmic function In: R™ — R
» Inverse function of ¥ (y = ¥ < x =Iny)
» bijective function
Sine function sin : R — [—1, 1]
> sinx:x—é—f%—g—?—%jt---
» odd function (because sin(—x) = — sin x)
» periodic function (because sin(x + 27) = sin x)
Cosine function cos: R — [—1,1]
> cosx:l—g—f—i-%—%?-l-g—
» even function (because cos(—x) = cos x)

» periodic function (because cos(x + 27) = cos x)
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(Lecture 4-5) Limit of functions
Definitions:
» Left-hand limit: We say that lim f(x) = L if f(x) is close
X—ra
enough to L whenever x is close enough to a and x < a.
> Right-hand limit: We say that lim_ f(x) = Lif f(x) is close
X—a
enough to L whenever x is close enough to a and x > a.
» Two-sided limit: We say that lim f(x) = L if both the
X—a

left-hand limit and the right-hand limit exist and are equal, i.e.

lim f(x) = L <= lim f(x)= lim f(x)=L
xX—a x—a— x—at

Remark: Whether f is defined at a or the value of f at ais NOT
important for finding lim f(x), lim f(x), lim f(x)
x—a~ x—at Xx—a
—-x ifx<0
Example: If f(x)=¢ 1 if x=0 , we have
X2 if x>0
lim f(x) = lim (—x) =0and lim f(x) = lim x> =0,
x—0— x—0— x—0*t x—0t

so the two-sided limit exists and we have lim f(x) =0 (# 1)
x—0 18/83



(Lecture 4-5) Properties of limits of functions
If lim f(x) and lim g(x) exist, then
X—a X—a
> lim £(x) + g(x) = lim £(x) = lim g(x)
> IiLn cf(x)=c Iim f(x) (where c is a constant)

> lim f(x)g(x) = (l.m f(x)) ()I(lnag(x)>

X—a X—a
lim f(x)
. f(X) x—a o
> =
T g(x) Jim g(x) (F fm,g0) #£0)
Examples:

> |im (11>:Iim(x+1)_lzlim 1 -1
X

x—0 x2 + x x—=0 x(x+1) x—0 x + 1

» |m —m—mM— 2—x Iim< 2-x .3—1-\/X27+5>
x23 —/x2+5 x22\3—-v/x2+5 3+Vx2+5
i @ —x)(3+\/m):|. 3+Vx2+5 6 _3

X—2 4 — x2 X—2 2+ x 4 2
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(Lecture 4-5) Properties of limits of functions

Some other useful limit results:

CoeX—-1

> |im =1
x—0 X

oo In(1+x

> lim M%)
x—0 X
sin x

=1

> |im
x—0 X

=1

Examples:
3x e3x -1

> |im
x—0 X x—0 3x

> |im

x—0sin3x  x—0 M(gx) - <Iim sin 3X> 3 -
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(Lecture 5) Sequential criterion

We have Ii_}m f(x) =L (limit of function)
if and only if

For any sequence {x,} with x, # a for any n and lim x, = a,
n—o0

we have ILm f(xn) = L (limit of sequence).
n—oo

Consequence: If we can find two sequences {x,}, {yn} such that:

> x,,;éa,y,,;éaforallnandnli_>n;ox,,:n|i_>ngoy,,:a

> . .
but lim (x,) # lim (y),

then lim f(x) does not exist.
X—a

.1 .
Example: Prove that I|m sin — does not exist.
—_— x,

Solution: Let {x,} = {m} 11 L. and

{yn} = 2,,7r1+ } = ZWiw ; 47rfr7r ; 67rfrﬂ ,---, then we have
lim x, = I|m N Yn = 0 but I|m f(xn) =0# I|m flyn) = 1.
n—o0
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(Lecture 5) Squeeze theorem for functions

Let f, g, h be functions. If f(x) < g(x) < h(x) for any x # a
on a neighborhood of a and IiLn f(x) = lim h(x) =L,
X—a X—a
then the limit of g(x) at x = a exists
and we have IiLn g(x) = L.

Example: lim xsin —; =7

T 50 e 1

Solution:

Since —1 < sin —+— < 1 for all x, we have —x < xsin 5 < Xx.

e -1 e —1

. . . . 1

As lim(—x) =0 = lim x, by squeeze theorem, lim xsin ——— = 0.
x—0 x—0 x—0 ex’ —1
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(Lecture 6-7) Limits at infinity
Definitions:
» We say that Xll_>nc1>o f(x) = L if f(x) is close enough to L
whenever x is large enough.
» (Similar for lim f(x))
X—>—00

Examples:

> |im =0
x—00 X — 1

1\" 1\
» e = lim <1+> = |lim <1+)
n—00 n X—>00 X
. 1 3x . 1 3x-§
> |lim (1+ — = lim [(14+ — =
X—00 2x X—00 2x

. 1 2X'% . 1 2x % 5
m (1+ — =1 lm (1+— = e2
X—$00 2x X—$00 2x

k | k
> |im X—annd [im M

= 0 for any positive integer k
x—o00 eX X—»00 X
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(Lecture 7) Continuity of functions

f is said to be continuous at x = a if

lim f(x) = f(a).

X—a

In other words, we have:
(i) The limit IiLn f(x) exists (i.e. lim f(x)= lim f(x)), and

x—a~ x—at

(ii) It is equal to the value of f at x = a.

f is said to be continuous on an interval (a, b) if f is continuous at
every point on (a, b).
Examples:

» x" cosx, sinx, € are continuous on R

» In(x) is continuous on R

{ —x+1 ifx<0

| 2 =
f(x) COS X ifx>0

is continuous at x = 0
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(Lecture 7) Properties of continuous functions

Properties:

» If f(x) and g(x) are continuous at x = a, then the following
functions are also continuous at x = a:

> f(x) +g(x)
» cf(x) (where c is a constant)

> f(x)g(x)
> 10 (if g(a) #0)
» If f(x) is continuous at x = a and g(u) is continuous at
u = f(a), then the composition (g o )(x) (i.e. g(f(x))) is
also continuous at x = a.
Examples:

» cos(x) + 2x is continuous on R because both cos x and x are
continuous on R.

» sin(x3 + 1) is continuous at x = 0 because x> + 1 is
continuous at x = 0 and sin(u) is continuous at u = 1.
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(Lecture 7) Intermediate value theorem and extreme value

theorem
Intermediate value theorem (IVT):

Let f be a continuous function on [a, b.
For any real number L between f(a) and f(b)
(iie. f(a) <L < f(b)orf(b)<L<f(a)),
there exists ¢ € (a, b) such that f(c) = L.

Example: Show that f(x) = x” + x3 + 1 has a real root.

Solution: Note that f(—1) = -1 <0and f(0) =1>0. As f is
continuous, by IVT, there exists ¢ € (—1,0) s.t. f(c) =0.

Extreme value theorem (EVT):

Let f be a continuous function on [a, b]. Then there exists
a, B € [a, b] such that f(a) < f(x) < f(B) for any x € [a, b]
(i.e. f has a global maximum and a global minimum in [a, b]).
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(Lecture 8) Differentiability of functions
f is said to be differentiable at x = a if the following limit (called
the derivative of f at x = a) exists:
f(x)—f
f'(a) = lim fx) = fa)
x—a X —a

Another form:
f(a+h)—f(a)

f'(a) = li
(2) ho0 h
Remark: For piecewise functions, we need to check both
f(x)—f~ f(x)—f
lim 7()() (2) and lim 7()() (2)
x—»a~ X —a x—at X —a

Example (finding derivative by definition, i.e. first principle):
> If f(x) = x?, then

. f(x+h)—f(x)
' = |
(x) hino h
 (x+h2—=x2  2xh+H?
=lm— = lim ——— = 2x.
h—0 h h—0 h

27/83



(Lecture 8-9) Derivatives of polynomial, exponential,
logarithmic, and trigonometric functions

> (Xn)l — anfl
» (eX)/ — eX
1
> (Inx) ==
(inx) = *
> (3¥) =a"Ina
> (sinx)’ = cosx
» (cosx) = —sinx
1
> (tanx) =sec’x =
(tanx) ¥ T cos?x
» (c) =0 (where c is a constant)
X —X X _|_ e—X
» (sinhx)" = cosh x (where sinh x = , coshx = 5 )
» (coshx)" = sinhx
1
> (tanhx)’ = sech®x = 5
cosh” x
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(Lecture 8-9) Differentiation rules (sum, difference,

product, and quotient rules)
If f and g are differentiable at a point, then the following functions
are also differentiable at that point:

> (f(x) £8(x)) = f'(x) £ &'(x)
» (cf(x)) = cf’(x) (where c is a constant)
» Product rule:

(fg)'(x) = f'(x)g(x) + f(x)g'(x)
» Quotient rule:

g (g(x))?

(if g(x) # 0)

Examples:
> (x3sinx) = (x3)'sin x + x3(sin x)’ = 3x?sin x + x3 cos x

p ( sinx /_ (sin x)"(x®>+1)+(sin x)(x>+1)" __ (x?+1) cos x+2x sin x
x2+1) — (x2+1)2 - (x2+1)2

29/83



(Lecture 8-9) Differentiation rules (chain rule)
Chain rule:
If f(x) is differentiable at x = a and g(v) is differentiable at
u = f(a), then (g o f) is differentiable at x = a and we have

(gof)(a) =g'(f(a))f"(a)

In other words, we have

ﬂ_dy du

dx  du dx

Examples:

> (sinxz)’ = d.(s‘;zu) % (let u = x?) = (cos u)(2x) = 2x cos x>
> (esmx)l — eSInX COS X

A licated ion: Q = Q @ ﬂ
more complicated version: o du dv o
Example:

> (In(cos(x%))) = ﬁ - (=sin(x®)) - (3x%) = —3x* tan x°
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(Lecture 8-9) Continuity and differentiability
Property:

‘ If fis differentiable at x = a, then f is continuous at x = a

The converse is NOT true: if f is continuous at x = a, it may or

may not be differentiable at x = a

—x ifx<0
Example: f(x) = |x| = { N x>0

> f(x) is continuous on R (i.e. at every point x € R):
» For any a <0, )I(ﬂ\a f(x)= XIi_nga(—x) =—a="f(a)
» For any a > 0, Iim f(x)= Iimx:a:f(a)
» Fora=0, we have I|m f(X )= Xlirgi(fx) =0=1(0) and
lim f(x) = I|m X = O = f(0), and hence XIi_r>n0 f(x) = f(0)

x—0T
> f(x) is not differentlable at x = 0:
f(h)y—f h| — h
Note that f'(0) = lim f(h) —1(0) _ lim Al =0 _ lim U but
n hh—>0 n h—0  h A h—0
T R A
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(Lecture 8-9) Continuity and differentiability

Another example of continuous but not differentiable functions:

FOx) = Ix + 1] = |x[ + [x = 1]

—(x+1)—(—x)—(x—-1) =-—x if x < —1

) x+)—(—=x)—(x—1) =x+2 if —1<x<0
(x+1)—(x)—(x—-1) =—x+2 if0<x<1
(x+1)—(x)+(x—-1) =X if x>1

» f(x) is continuous on R

» f(x) is not differentiable at x = —1,0,1
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(Lecture 10-11) Implicit differentiation
Idea: Find y’ without having to explicitly write y = f(x).

Example:
If xsiny + y? = x + 3y, find the slope of tangent at (0, 0).

Solution:

(xsiny 4+ y?) = (x + 3y)’
(siny + x(cosy)y’) +2yy’ = 1+ 3y
(xcosy +2y —3)y' =1—siny
, 1—siny

xcosy +2y —3

1—sin0 1

The slope of ' T
e slope of tangent at (0,0) 5 0-cos0+2-0—3 3
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(Lecture 10-11) Logarithmic differentiation

Idea: Find the derivative of some complicated functions
using logarithms.

Example: If y = x*, find y'.
Solution:

y=x*
Iny = In(x¥)
Iny = xInx
(Iny) = (xInx)’
)1/y':1-|nx—|—x-)1(
y =y(lnx+1) =x*(Inx + 1)

34/83



(Lecture 10-11) Derivatives of inverse functions

Inverse functions:
If f(y) is a bijective and differentiable function with f’(y) # 0 for
any y, then the inverse function y = f~1(x) is differentiable:

1
1Y (x) =
=519
Examples:
y=sin"tx=siny=x=(cosy)y’ =1= (sin"'x) = !
V1—x?
y=cos 'x=cosy =x=(—siny)y =1= (cos 'x) = — !
V1—x?
1
=tan 'x=tany = x = (sec’y)y’ =1 = (tan ' x) =
y =tan " x = tany = x = (sec” y)y (tan™" x) 52
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(Lecture 11-12) Higher order derivatives
> Second derivative:
d?y d (dy
"no__ gn ¢y _ 9 [%
y' =10 = dx?  dx (dx)
» n-th derivative:

dn d (d [(d d
(n) — gy = &Y _ B A
Y () dx"  dx <dx (dx < dx>)>

» 0-th derivative:

y @ = fO(x) = f(x)

Examples:
> (sinx?)"” = ((sinx?)")" = ((cos x?)(2x))’
= (—sinx?)(2x)(2x) + 2 cos x* = —4x? sin x> + 2 cos x>

» Find y" if xy +siny = 1:

. VAN / / 0=y — -y
(xy +siny) (y +xy" + y' cosy) y X cosy
s _Y/(x+cosy) —y(l—y'siny)  2y(x+cosy)+y’siny
(x +cosy)? (x +cosy)? 36/83




(Lecture 11-12) Higher order differentiation rules
If f and g are n-times differentiable (i.e. f(" and g(" exist), then:

> (f+ g)(N) = f(n) 4 g(n)
> (cf)(") = cf(" (where ¢ is a constant)
>

Leibniz's rule (product rule for higher order derivatives):

n

()" =3 <Z> F1—4) g (K)

k=0

|
where (n> - " is the binomial coefficient.
k (n—

k)!k!
Example: (x3 sin x)*)
=1-(3)"sinx+4-(x3)"(sinx)" + 6 (x3)"(sinx)" + 4(x>)'(sin x)"’
+1 - x3(sin x)""
=0+ 24 cos x — 36xsin x — 12x% cos x + x> sin x
= (x3 — 36x) sin x + (24 — 12x?) cos x
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(Lecture 12-13) n-times differentiability and continuity

If fis n-times differentiable at x = a
(F(")(a) exists, i.e. £("=1) is differentiable at x = a),
then f("=1) is continuous at x = a.

f is n-times differentiable at x = a (i.e. f(")(a) exists)

3
f("=1(a) exists and ("~ is continuous at x = a
4
I
f'(a) exists and f’ is continuous at x = a
4

f is continuous at x = a

However, the converse is NOT true!
Example: Let f(x) = |x|x, then:

» f is differentiable at x =0

» f’is continuous at x =0

» but f’ is not differentiable at x =0 (i.e. f”/(0) does not exist)
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(Lecture 14) Local extrema, critical points, turning points

Local maximum:

f(x) has a local maximum at x = a if f(x) < f(a) for all x near a
(more precisely, for all x € DN (a—d,a+ d) where D is the
domain and § > 0 is some small number).

Local minimum:

f(x) has a local minimum at x = a if f(x) > f(a) for all x near a.
Note:

Local extremum points can be either interior points or endpoints!
Example: For f : [—m, 7] — R with f(x) = sinx,

local maximum points = (—,0), (5,1)

local minimum points = (=%, —1), (7,0).

Critical points:

f has a critical point at x = a if f/(a) = 0 or f’(a) does not exist.
Turning points:

f has a turning point at x = a if ' changes sign at a.

Note: {Turning points} C {Critical points}

Example: x = 0 is a critical point of f(x) = x3, but it is not a turning

point. 39/83



(Lecture 14) First and second derivative tests
Theorem:
Let f(x) be a continuous function. If f(x) has a local maximum/

minimum at x = a, then x = a must be a critical point of f(x).
First derivative test:

Let f(x) be a continuous function and x = a be a critical point.
(i) If f changes sign from + to — at a, then f(x) has a

local maximum at x = a.
(i) If £’ changes sign from — to + at a,then f(x) has a

local minimum at x = a.

Second derivative test:

Let f(x) be a continuous function.
(i) If f’(a) = 0 and f"(a) < 0, then f(x) has a local maximum

at x = a.
(ii) If f/(a) =0 and ”(a) > 0, then f(x) has a local minimum
at x = a.
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(Lecture 15) Finding global extrema

Extreme value theorem (EVT) for closed and bounded intervals:

Let f be a continuous function on [a, b]. Then there exists
a, B € [a, b] such that f(a) < f(x) < f(B) for any x € [a, b]
(i.e. f has a global maximum and a global minimum in [a, b]).

Note: For f on (a, b), (a, b], or [a, b), f may NOT have any global
extrema in some cases!

Finding global extrema for functions on general intervals:

1. Check all critical points (including endpoints if applicable) to
find all local extrema.

2. Compare the values of f(x) at all such points as well as the
limit of f as x approaches the open endpoints (if applicable)
to determine the existence of global extrema.

Examples:
f(x) = x? on [-2,1]: global min. point = (0,0); global max. = (—2,4)
f(x) = x? on R: global minimum point = (0,0); no global max.

f(x) = x? on (0,1): no global min; no global max
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(Lecture 15) Concavity and points of inflection

Concavity:
We say that f(x) is
» concave upward on (a, b) if f’(x) > 0 on (a, b)
» concave downward on (a, b) if f”(x) < 0 on (a, b)
Example: f(x) = x3 = f"(x) = 6x
f is concave upward on (0, c0) and concave downward on (—oc, 0)

Point of inflection:

We say that x = a is an inflection point of f(x) if f”(x) changes
sign at x = a.

Example: f(x) = x3 = "(x) = 6x

As f” changes sign from — to + at x =0, f has an inflection
point at x = 0.
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(Lecture 15) Asymptotes (vertical, horizontal, oblique)
Vertical asymptotes:
» x = ais a vertical asymptote of f(x) if

lim f(x) =200 or lim f(x)=+oc0

X—ra— x—at
5 1
Example: For f(x) = x~ + Pl
X —
x = 1 is a vertical asymptote since lim f(x) = oc.

x—1*
Horizontal asymptotes:
» y = bis a horizontal asymptote of f(x) if
Xgrfoo f(x)=0b or Xll—>m:>o f(x)=»b
Note: f(x) can have at most two different horizontal
asymptotes (one for Iir11Oo and one for lim)

X—r X—00
X

Example: For f(x) = e*,

y = 0 is a horizontal asymptote since lim f(x)=0.
X—r—00
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(Lecture 15) Asymptotes (vertical, horizontal, oblique)
Oblique asymptotes:
» y = ax + bis an oblique asymptote of f(x) if
lim (f(x) —(ax+ b)) =0 or ILm (f(x) = (ax+ b)) =0

X—r—00

» Note: f(x) can have at most two different oblique asymptotes

(one for lim and one for lim )
X—>—00 X—>00

2
Example: For f(x) =x+ 3+ =, y = x+ 3 is an oblique asymptote
—_— X

since lim (f(x) —(x+3)) = lim —=0.
X—>00 X—00 X
» Finding oblique asymptotes:
Method 1: Directly work on f(x) — (ax + b), then check the
coefficients of different terms and see what a, b have to be

such that the limit = 0 as x — 0o or —o0.

f
Method 2: Find a such that a = lim fx) (or lim ),
X—o0 X X——00

then find b= XI|_>rr;o(f(x) — ax) (or XETOO).
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(Lecture 15) Asymptotes (vertical, horizontal, oblique)
Example: f(x) = v'x> —2x +3
» No vertical asymptote (as f(x) is defined everywhere on R)
» No horizontal asymptote ( lim f(x) =00, lim f(x)=00)
X—00 X—r—00
» Oblique asymptotes:
For x — oo, we have

. 2_
Az fim VX2 HE3 1—7+f_1 and
X—> 00 X X-)OO

b= lim(vVx?—2x+3—x) = I|m 2X+3 ) =X =1
x—roeo \/ —2x+3+x

For x — —o0, we have

. 2_
a= lim 7”2’(”_ 1+ +7 —1, and
X——00 X—> 00

= lim (Vx2—2x+3+x)= I|m 2X+3 _X =1
x——o00 \/ 2—2x+3—x

So the oblique asymptotes are y = x —1 and y = —x + 1.
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(Lecture 15) Curve sketching

To sketch a given function, do the following:
1. Find:

» (Natural) domain
P> x-intercept
P> y-intercept
> Asymptotes (vertical, horizontal, oblique)
» Critical points (and check whether they are local max/min)
» Inflection points (and check concavity)

2. Sketch the curve based on the information above.

Examples: See the main MATH1010 lecture notes.
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(Lecture 15) Curve sketching
Example: f(x) = v'x?> —2x +3
P Domain: R (as v/x2 — 2x + 3 = /(x — 1)2 + 2 is defined everywhere)

x-intercept: None (as f(x) = /(x = 1)2+2 #0)
y-intercept: f(0) = /3
Asymptotes: y = x —1 and y = —x + 1 (see the previous slide)

>
>
>
P Critical points: f'(x) = \/ﬁ, so the only critical point is at x = 1.
By first derivative test, it is a local minimum.

P Inflection point: None (as f’(x) = ——2— > 0)

v/ x2—2x+3
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(Lecture 15-17) Mean value theorem (MVT)

Rolle’s theorem:

If f is continuous on [a, b], differentiable on (a, b), and
f(a) = f(b), then there exists ¢ € (a, b) such that f'(c) = 0.

Lagrange’s mean value theorem:

If f is continuous on [a, b] and differentiable on (a, b),
f(b) - f(a)

then there exists ¢ € (a, b) such that f'(c) = —

Cauchy’s mean value theorem:

If f,g are continuous on [a, b], differentiable on (a, b),
with g(a) # g(b) and g’(x) # 0 on (a, b), then there
Flc) _ F(b)~ f(a)
g'(c) g(b)—g(a)

exists ¢ € (a, b) such that
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(Lecture 16) Inequalities

Using MVTs to prove inequalities:

Example: Prove that | cos(x) — cos(y)| < |x — y| for all x,y € R.

Solution:
» If x =y, we have |cos(x) — cos(y)| =0 = |x — y|.

> If x £ y, by Lagrange’s MVT, there exists ¢ between x and y

such that
cos(x) — cos(y) — _sin(o).
X—=Yy
Therefore, we have

\cos(T)B:)c/Ts(Y) = |=sin(c)| < 1 <= | cos(x)—cos(y)| < [x—y]

for all x,y € R.
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(Lecture 16) Derivatives and inequalities
Increasing/decreasing functions and derivatives:

» f is (monotonic) increasing on (a, b) (i.e. f(x) < f(y) for all
x,y € (a, b) with x < y) if and only if f’(x) > 0 on (a, b).

» f is (monotonic) decreasing on (a, b) (i.e. f(x) > f(y) for all
x,y € (a,b) with x < y) if and only if f'(x) < 0 on (a, b).

> f is constant on (a, b) if and only if f'(x) =0 on (a, b).

» f is strictly increasing on (a, b) (i.e. f(x) < f(y) for all
x,y € (a,b) with x < y) if f'(x) > 0 on (a, b).

» f is strictly decreasing on (a, b) (i.e. f(x) > f(y) for all
x,y € (a,b) with x < y) if f'(x) <0 on (a,b).

Using derivatives to prove inequalities:

Example: Let p > 1. Prove that (1 + x)P > 1+ px for all x > 0.

Solution: Let f(x) = (1 + x)? — (1 + px). Then
f'(x)=p(l+x)Pt=p>0

for all x > 0. Therefore, f is strictly increasing on (0, 00). We have

f(x)>f(0)=0= (1+x)”>1+px.
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(Lecture 17) L'Hopital’s rule
L’Hopital’s rule:

Let a € R or a= £o0. If f and g are differentiable near a
and all of the following conditions are satisfied:
1. Both lim f(x) =0 and lim g(x) =0 or
X—a X—a
both lim f(x) = +o0 and lim g(x) = +oc.
X—a

X—a
2. g'(x) # 0 near a.
f/
3. lim (x) exists or = to0.
x—a g'(x)
!
Then we have lim @ = lim f/(X)
x—a g(x) x—ag/(x)
Remarks:
» Similar results hold for one-sided limit ( lim and lim)

x—a~ x—at
» Sometimes may need to apply the rule more than once

» Not always applicable! Check if the requirements are satisfied.
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(Lecture 17) L'Hopital’s rule

Handling different indeterminate forms:

> 0, oo : May try to apply the L'Hopital's rule directly
0’ +oo
Example:
tanx —x 0 . sec?x—1 .0
>|<[>no x3 (6) - l@o 3x2 (0)
~im 2sec x sec x tan x ~im sin x :1
x—0 6x x—03xcos3x 3

0 =+
» 0-(+00), oo — oco: May try to convert them into — or =
0 +oo

then apply the L'Hopital’s rule

Example: )
TX xc—1 0
lim(x?> —1)tan— (0-00) = li e
xinl(x ) an 2 ( OO) xinl cot =+ 7rX (0)
_ 2x _2xsin? X 2.1.12 4
= Ilm T 57X = ||m p = p = —

52/83



(Lecture 17) L'Hopital’s rule

Handling different indeterminate forms:
> 1, o0, 0% May use logarithm and apply the L'Hopital's
rule to the logged expression, then use IiLn y = elimx—alny
X—a
Example: Find lim (x +sinx)* (0°)
S EEE— x—0+
Solution: Let y = (x + sinx)*, then Iny = xIn(x + sin x) and

In(x +sinx) oo

1 (7)

lim xIn(x +sinx) (0-(£o0)) = lim

x—0t x—0*t X o0
1
b sy (1 + cos x)
x—07F —%
X
. —x(1+ cosx)
= I|n8+ 1 sin x
X + 55
_—0(+1)
1+1
So lim (x +sinx)* = lim y= lim " =& =1
x—0t x—0*t x—0t
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(Lecture 18) Taylor polynomial

Taylor polynomial:

The n-th order Taylor polynomial of f(x) about a point x=ais

Pu(x) = F(a) + (@) (x —a) -+ (a - —Z ol

Property: We have f(k)( )= p,(, )( ) forall k=0,1,...,n.

Example:

The 2nd order Taylor polynomial of f(x) = /1 + x about x =0 is
(0 2
pa(x) = F(0) + £(0)(x — 0) + #(X _0R=1+ % - %

Taylor’s theorem:

Let x # a (i.e. x > aor x < a).

Suppose (" exists and is continuous on [a, x] (or [x, a]),

and f("1) exists on (a,x) (or (x,a)).

Then there exists ¢ € (a,x) (or (x, a)) such that
£ k £(n+1)

F(x) = pa(x) + Ru(x) = Z kl(a)( SRR 1(;) (x —

k=0

a)n+1
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(Lecture 19-20) Taylor series

Taylor series:

The Taylor series of f(x) about a point x = a is the infinite series

f(k

"(a 2. Fk)(a B
T(x) = £(a) + F'(a)(x — a) + f,z(! )(X_a)2+...:kz;) k!( )ix— a)

Property: If the remainder term in Taylor's theorem R,(x) — 0 as

n — oo on an interval /, then the Taylor series is equal to the
function (i.e. f(x) = T(x )) on /.

Examples: e* —1—|—x+——|— Zkl forall x e R
x3 X5 o (—1)k 2k
e N ) 2kt

sinx = x — al + —;(2k+1)!x forall x e R
x*  x o (=1 o

cosx—1—2|—|——---:kzo(2k)!x forall x e R

2 3 0 _1k+1

In(1+x):x—);+);+-":;(zxk for |x| <1
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(Lecture 19-20) Taylor series
Properties:
> If T(x) is the Taylor series of f(x) about x = 0, then T(x*) is
the Taylor series of f(x*) about x = 0 for all positive integer k

Example: The Taylor series of % about 0 is

X
1/, (@ (2P B W8

» Addition and subtraction of Taylor series
2

. sin .
Example: The Taylor series of 2X + cos x about 0 is

X
X4 X8 X2 X4 X2 X4
12 X 1o % o
( 31 )+( 21 4 ) 2 8 "

» Multiplication and division of Taylor series

cos® x about 0 is

5

sin x

Example: The Taylor series of —
—_— X

1 x4 n x8 1 X2 n x4 3 3x2 17x*
3! 51 2! 41 2 24
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(Lecture 19-20) Taylor series

Properties:
» Composition of Taylor series
Example:
The Taylor series of cos (sin x) about 0 is
11<XX3+X5>2+1<XX3+X5>4
2! 31 5l 41 31 bl
=1— Xiz 57X4 + .-
2 24

» Differentiation of Taylor series

Example:
X 1 !
The Tayl ies of — = i
e Taylor series o T+ ) X(1+x) is
X(l—X+X2—X3—---)/

=x(—1+2x—-3x>+--+)
= -x+2x2 =33 ...
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(Lecture 20) Using Taylor series to find limits
Idea: To find IiLn f(x), replace certain components in f(x)
X—C

with their Taylor series (if those components are equal to
their Taylor series for x near c)

Example:
i In(1+ x) — xv1—x
im
x—0 X —sinx
' (X—%2+%3+O(X4)) —X(l—%—%2+0(x3))
= lim
x—0 X — (X - %3 + (’)(x5))
i 220 O
x=0 Ix3+ O(x5)
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(Lecture 20) Indefinite integration
Indefinite integral:

Let f(x) be continuous. An antiderivative (or primitive
function) of f(x) is a function F(x) such that F'(x) = f(x).
The collection of all antiderivatives of f(x) is called the

indefinite integral of f(x) and is denoted by /f(x)dx.

We have /f(x)dx = F(x) 4+ C, where C is a constant.

Example: x2, x2 + 3, x2 — 1 are antiderivatives of 2x.
More generally, we have [2x dx = x? + C.

Properties:
>p/(f(x)ig(x))dx:/f(x)dxi/g(x)dx
> / KF(x)dx = k / F(x)dx

Example: [(x3 4 2x — 1) dx:%+x2—x+C
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(Lecture 20) Some basic integrals

>

>

/kdX:kx+C
n+1

X"dX:X +C
n+1

(where n #£ —1)
/eX dx=¢e"+C
1
/fdx:|n|x\+C
%
1
/ax dx=—a"+C
Ina

/sinx dx = —cosx + C

/cosx dx =sinx+ C

>

v

v

v

/tanx dx =—In|cosx|+ C

secx dx =

In|secx +tanx|+ C

/sec2x dx =tanx + C

/secxtanx dx =secx + C

/cscxcotx dx = —cscx+C

=

/

1
14 x2

dx =sin"!x+ C

dx=tan 'x+ C
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(Lecture 20) Integration by substitution

/f(u(x))jzdxz /f(u)du

Example: /\/3x+4 dx =7

Solution: Let u = 3x + 4, then 9 = 3 = du = 3dx. We have

1 2 2
/\/3X+4 dxz/ﬁ~3du:9u3/2—|—C:9(3x+4)3/2+C

2
Example: /e2X lx dx =7

Solution: Let u = 2x2 + 1, then % = 4x = du = 4xdx. We have
1 1 1
/62x2+1x dx = 4/eu du = Zeu+ C = Z62X2—|—1 + C
sin® x
Example: /cosxsinx dx = /sinx d(sinx) = 5 +C
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(Lecture 21) Trigonometric integrals
Useful trigonometric identities for handling trigonometric integrals:

>
>
>
>
>

Example: /sin2x dX:/

sin®x +cos?x =1

1+ tan? x = sec® x

1+ cot? x = csc® x
sin 2x = 2sin x cos x

cos2x =2cos’x — 1 =

1—2sin®x

_ 2tanx
tan2x = 1 tan?x
sin(x £ y) =

sin x cosy = cosxsiny

Example:

1
/sin 5x cos3x dx = / E(sin 8x + sin2x)dx = —

> cos(xty)=
COS X COSy Fsinxsiny

> cosxcosy =

1

E(cos(x—ky) + cos(x — y))
> cosxsiny =

1, . .

S(6in(x +y) — sin(x — ))

> sinxsiny =

%(cos(x —y)—cos(x +y))

1 — cos2x X sin2x

cos8x  cos2x

16 4 +c
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(Lecture 21) Trigonometric integrals

For

cos™ xsin” x dx:

» If mis odd, let u =sinx

For

4 x cos x dx

Example: fcos3xsin4x dx = [ cos® xsin
_f 4du_7_7+c 5|nx_sin77><+C

If nis odd, let u = cosx

Example: [sin®x dx = [sin* xsinx dx = — [(1 — v?)? du

=—f(1-24 +u4)du:—u+¥—”;—|—C:

5
COSX+2COSX7COEX+C

If both m, n are even, use double angle formulas to reduce the
power and then use the above methods (if applicable)

. - 4 2 _ 1—cos2x )2 . 14cos2x _
Example: ['sin®x cos? x dx = [ (1=55%) 52X dx =

sec” xtan” x dx:

» If mis even, let u =tanx
» If nis odd, let u = secx

» If mis odd and n is even, use tan? x = sec

2x — 1 to write

everything in terms of sec x and use reduction formula
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(Lecture 21-22) Trigonometric substitution

Idea: Simplify some integrals (without any trigonometric
functions) by substituting x = some trigonometric functions

» For v a? — x2, substitute x = asinf
» For v a? + x2, substitute x = atan{
> For x2 — a2, substitute x = asecf
1
Example: — dx =7
7p/ 02

Solution: Let x = 3sin#, then dx = 3cosf df. We have

3cosb

1
- - dX: - -
/x/9f><2 V9 —9sin%d

d6:/1d9:9+C:sin_1§+C

Example:

3
Solution: Let x = tan 0, then dx = sec20 df. We have f ﬁ dx

fta" 6 sec’ (’dﬁ_ ftan395ec0 df = [(sec?6 — 1) d(sect)

V1+tan?

25“30 secl + C = —V1+x24+C
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Example with ding)erent possible substitutions

X
Examp|e: /M dx =

Method 1: Let u = x2 + 1. We have du = 2x dx and so

/(x2+1)3 /(X2+1)32xdx—7/”;31du

1 1 1 2x2 +1
5(“*@)+C—‘2(Xz+1)+4(x2+1)z+c—‘m+c

Method 2: Let x = tanf. We have dx = sec?f df and so

x3 tan® 6 5 tan’6 5
/de:/msecedGZ/s sec” 0 do

ect f

. 4
_ .3 B .3 . __sin" 0 _ 1
= /sm O cosf db = /sm 0 d(sin0) = T C= Tt
1 1 x*
T 4(1 + cot?h)? +C= 4(1_’_%2)2 +C= 4(x2 + 1) +C
. 2

Note: The results are consistent as 4(X§il)2 — <—4(2;2:11)2) = %,
which is just a constant.
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(Lecture 22) Integration by parts

/udv:uv—/vdu
Example:

/Inx dx:xlnx—/x d(lnx):xlnx—/x-1 dx =xInx—x+C
X

Example: /xex dx = /x de* = xe* — /exdx =xe¥—e*+C

More generally, for /x"f(x) dx:
» If f(x) = sinx,cosx, e* etc. (easy to integrate), try

/ () dx = / XMd(F(x)) = x"F(x) — / F)d(x")

> If f(x) =sin"!x,cos x,Inx etc. (hard to integrate) , try

Xn+1 NG 1 X x" 1
/an(X) dx:/f(x)d(n+1): ;:(1 ) —/njld(f(X))
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(Lecture 22) Integration by parts
Other common techniques:
> Integration by parts + solving equation

Example: | eXcosx dx =7

Solution: We have
/:/excosx dx:/ex d(sinx) = eXsinx—/sinxdeX
= eXsinx—/eXsinx dx = exsinx—i—/ex d cos x
= e*sinx + e cosx — /cosx de*
= eXsinx—i—eXcosx—/eXcosx dx

Therefore, we have | = e*sinx + e*cosx — | + C (as the two
indefinite integrals may differ by a constant) and hence

X si X cos
l:e |nx—ge OX+C
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(Lecture 22) Integration by parts
Other common techniques:
» Substitution + integration by parts

Example: /cos(ln x) dx =7

Solution: Let v = In x, then

du = %dx:> dx = x du = e"du.

Therefore,

/cos(lnx)dx:/cosu‘e”du

e'sinu+ e“cosu
= +C
2
in(l I
_ xsm(nx)—gxcos(nx) LC
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(Lecture 22) Reduction formula
For integrals of the form

I :/cos"x dx, /sin"x dx,/x” cos x dx, /x"sinx dx,
/x”eX dx,/(lnx)” dx, /excos”x dx, /exsin"x dx,

1 1
— d ———— dx etc.
/(X2+32)” %) /(azx2)” X BLCs

use integration by parts to write /, in terms of some [, with k < n.

I, = /x"eX dx = /x" d(e*) = x"e* — /ex d(x")

:x"ex—/nx” LeX dx = x"e* — nl,_q

Example:

So [x1%* dx = lg = x%e* — 10ly = x1%* — 10(xe* — 9f5) =
(We can continue the process and eventually get some simple |ntegra|)
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(Lecture 22) Partial fraction
f
Rational function: R(x) = gEX; where f(x), g(x) are polynomials
X
x* 2x +1
X241 3x2+4x+17""

Examples:

Partial fraction decomposition:
Goal: Express R(x) = g(x) + (some simple fractions)

1. Extract g(x) first (if deg(f(x)) > deg(g(x))).

2. Factorize g(x) into a product of linear polynomials (in the
form of ax + b) and irreducible quadratic polynomials (in the
form of ax? + bx + ¢ with b> — 4ac < 0).

3. Write down the general terms in the partial fraction:

Factors of g(x) | Terms in partial fraction
ax+b ax/ib
k A A A
(ax+b) T%+W+"'+W
ax?+ bx +c priay
By x+Cy

2 k Bix+G Box+G Ce _ DixrCr
(ax + bx + C) ax2+bx+c + (ax2+bx+c)? + T (ax?+bx+c)k

4. Determine the coefficients A;, B;, C;
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(Lecture 22) Partial fraction

9x — 13 9x — 13
E le: N h = . Theref h
xample: Note that 12 O a)(x—3) erefore, we have
9x — 13 A + B  (A+B)x+(-3A+4B)
(x+48)(x—3) x+4 x-3 (x+4)(x—3)
. - A+ B =9 B B
Comparing coefhcnents,{ _3A4+4B — 13 — A=7,B=2.
9x — 13 7 2
Therefore, x2—|—x—12_x+4+x—3'
x? 4+ 20x + 11 A B c
E le: Note that = .
=xampre: Tote tha (x+1)%(x —3) x+1+(x+1)2+x—3

Therefore, we have
x* +20x + 11 = A(x + 1)(x — 3) + B(x — 3) + C(x + 1)°.

Putting x = 3, we get C = 5.

Putting x = —1, we get B = 2.

Putting x = 0, we get 11 = —3A4 4+ 2(-3) + 5(1)’ = A = —4.
x* +20x + 11 4 2 5

Therefore, x+1)20x—3) =¥ + 17 + Y3
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(Lecture 22) Partial fraction

Example:

4x° 4+ x* —1 _ 4x°—4x? 4 x* — 144x°
x*—1 N x*—1
2

2
=4x°+1+ = 4>+ 1+ 4x

x4 —1 (x=1D(x+1)(x2+1)
Therefore, we have

4x° A B Cx+D
(x=1)(x+1)(x2+1) _x71+x+1+ x2+1
O Ax+ 1)+ 1)+ B(x —1)(x* + 1) + (Cx + D)(x — 1)(x + 1)
o (x=1(x+1)(x2+1)
 (A+B+O)x*+(A-B+D)xX*+(A+B—C)x+(A—B-D)
o (x =1 (x+1)(x2+1)

Comparing coefficients,
A+B+C =0
A-B+D =4
A+B-C =0
A-B-D =0

4x5 4 x* -1
xt—1

— A=1 B=-1,C=0, D=2.

1 1 2

Therefore, —3 " 1 + i1

=4+ 1+
X
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(Lecture 22) Integration of partial fractions
Useful results for integrating partial fractions:

1 1
>/ dx =—Inlax+ b|+ C
ax+b a

1 (ax + b)~k+1
> _— =~ 7
/(ax+b)’<dx (where k > 1) Skt 1) +C

1 1
> /dx:tan_lx—i—C
x2 + a2 a a

1
> /(2+2)kdx: use reduction formula/integration by parts
x%+ a

> / ;dx / 1 dx: write
ax2+bx+c ) (ax?+ bx+c)k
ax?+bx+c=a(x+ %)2 + <c — f—z), then use the above
results

> /dez
ax? + bx+ ¢

A Ab 1
— | 24 b B—-— —d
2an]ax+x+cl+( 2a>/ax2+bx+cx
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(Lecture 22) Integration of rational functions

4x% 4 x* — 1
Example: /ij dx =7
—_— x*—1

Solution: By partial fraction decomposition, we have

4x% + x* — 1 5 1 1 2
A 1 —
x4 —1 X +x71 X+1+X2+1
and hence
46 4
/x—l—x 1dx
x4 —1
1 1 2
= [ (4x*+1 — d
/(X L X+1+X2+1> X
3

_4x

3 +x+Injx =1 —In|x+1|+2tan"tx + C

74/83



(Lecture 23) t-substitution
For [ f(x) dx where f(x) is a rational function in terms of

. . X
cos x, sin x, tan x, we can substitute t = tan 5 Then we have

2t 1—¢2 . 2t J 2 i
— >, COsX = ——, tanx = ——, dx = ——
14 t2’ 14 t2’ 1—t2’ 14 ¢t2

and so [ f(x) dx becomes an integral of rational function in t.

1
E le: | ———— dx =7
=xampe: /2+cosx x

Solution: Let t = tan % We have

1 1 2
——dx= S dt
_/2—|—cosx = /2+1 2142

sinx =

1+¢2

2
:/2(1+r2)+(1—r2) o

2
= [ —— dt
/ t2 43
t tan 2
=2tan ' — + C=2tan ! 2

V3 V3

+C
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(Lecture 23-24) Definite integration

Definite integral:

Let a < b and f(x) be a continuous function on [a, b].

b
The definite integral / f(x) dx is defined as the signed area

under the graph of y = f(x) between x = a and x = b.

Theorem (definite integral = limit of Riemann sum):

b n
/a f(x) dx = nILngOkz_:l f(xk ) Axk

where a=xg < x1 < xp < - < xp =b and Axyx = xx — Xj_1.
In particular, if all x, are equally spaced, we have

/bf(x) dx:nin;Okzn:f(a+:(b_a)> ' b;a
’ =1

Example:

1 n 2 n
2, kN1 1 > . n(n+1)(2n+1) 1
[ =m0 (5) 5= tim g 36 = fim AR < g
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(Lecture 23-24) Definite integration

Properties of definite integrals:

> /:f(x) dx=0

> /abkf(x) dx:k/abf(x) dx

> /ab( (x) + g(x)) dx:/abf(x) dx:l:/abg(x) dx
>/abf(x)dx: Cf(x)dx+/cbf(x)dx if € (a,b)

a

a b
» For consistency, we also define / f(x) dx = —/ f(x) dx
b a
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(Lecture 24) Fundamental theorem of calculus (FTC)
First fundamental theorem of calculus:

Let f(t) be a continuous function. Then
d X
— f(t) dt | = f(x).
g ([, 10%) =10

Example: If g(x) = / sin(t> +5) dt, find g’(1).
E— 1

Solution: By 1st FTC, g/(x) = sin(x? + 5) = g'(1) = sin6.

Example: If g(x) :/ e’ dt, find g'(x).
0
Solution: By 1st FTC,

d s du
/ = — t - —_— = si
g (x)= » (/0 e dt) > (let u = sin x)

3 =3
=e" -cosx = e X cos x.
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(Lecture 24) Fundamental theorem of calculus (FTC)
Second fundamental theorem of calculus:

b
Suppose F'(x) = f(x) on [a, b]. Then / f(x) dx = F(b) — F(a).

2 372 23 13 7
Example: / x2 dx = [X] = —
1 311

Definite integral by substitution:

/a ’ F(u(x))u/(x) dx = / . f(u) du

1
Example: / V2x+1dx =7
0
du

Solution: Let u = 2x + 1, then " =2= du = 2 dx. Also, when
x = 0 we have u =1, and when x = 1 we have u = 3. Therefore,

3
u% _3\/§ 1 1

1 3 1
2 1d: 7d: _— - - = -
/va+ x /1ﬁ2” [3]1 3 3 V33

79/83



(Lecture 24) Fundamental theorem of calculus (FTC)
Integration by parts for definite integral:

b b
/ uv' dx = [uv]b — / v dx
a a

2 2
Example:/ Inx dx = [xlnx]%—/ x(Inx)" dx =
- 1 1

2
(2|n2—0)—/ ldx=2In2—(2—-1)=2In2-1
1

Derivative of functions defined by definite integrals:

v(x)
i ( / f(t) dt) — AV (x) — F(u(x)e (x)

dX (x)

d [ *
Example: — </ et’ dt) =
dx —sinx

3\2 a2 6 2
e0)7 . 3x2 — =507 (L cos x) = 3x2e + e X cos x
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(Lecture 24) Evaluating limits by integrals
By treating the limit below as the limit of a Riemann sum, we have:

1« k 1
nlfzon;f(n>—/o Flx) o

1 1 1
ExamP'ei”m< + +-~+>:?

n—o0 \/n2 + ]_12 \/n21_|_ 22 . v/n? 4 n2
Solution: Note that —— = — - ———. We have
o vVn?+k? n /1+(5)2
n

1 1 1
li +...+)
n—>oo<\/n2+12 \/n2+22 «/n2+n2

e n £ W -

[In ‘ 1+ x2+ XH (using trigonometric substitution x = tan @)

In(v2+1)
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(Lecture 24-25) Other definite integration techniques
» If f is an odd function, then / f(x) dx =0.

—a

2023
Example: / x*sinxsin 2xsin3x dx = 0
—2023

» If f is an even function, then / f(x) dx = 2/ f(x) dx.
0

—a

1 1
Example: / x?cosx dx = 2/ x% cos x dx
-1 0
» Other symmetry arguments
3

2 sin® x
Example./ g dx =?
—— Jo sin®x + cos3 x

El

2 sin® x

Solution: Let u = 7 — x, then du = —dx and so / —5 > dx
o sin’x 4+ cosdx

0 sin® (3 — u) 3 cos® u
- Ddu= [Ty
,/r sin® (3 — u) 4 cos® (3 — u) (=1)du /0 simutcosiu
erefore,
% 3

Th
z 3u 2 sin® x + cos® x
sin® x cos
[ oo [ B [,
sm sin® x + cos? x sin qucos3 o sin®x + cosdx

:/ ldx—f:>/ SmX3 dx = _.
0 sm X + €0S> x 4 82/83




Good luck on your final exam!
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