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Final exam

▶ Date: December 22 (Friday)

▶ Time: 09:30 - 11:30

▶ Venue: University Gymnasium

▶ Closed book, closed notes

▶ Bring student ID card, black/blue pen

▶ List of approved calculators:
http://www.res.cuhk.edu.hk/images/content/examinations/

use-of-calculators-during-course-examination/

Use-of-Calculators-during-Course-Examinations.pdf

▶ Scope: EVERYTHING!
▶ Limits and continuity
▶ Differentiation
▶ Integration
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Basic notations
Set: a collection of elements
▶ {a, b, c} = a set containing three elements a, b, c
▶ x ∈ A means “x is an element of the set A”
▶ A ⊂ B (also written as A ⊆ B) means “A is a subset of B”

(i.e. for any element x ∈ A, we have x ∈ B)
▶ {x : · · · } = {x | · · · } = {x such that · · · }
▶ R = the set of all real numbers
▶ Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } = the set of all integers
▶ N = Z+ = {x ∈ Z : x > 0} = {1, 2, 3, . . . }

= the set of all positive integers
▶ Q = {x ∈ R : x = p

q for some p, q ∈ Z with q ̸= 0}
= the set of all rational numbers

▶ ∅ = { } = empty set

Examples:
▶ 2 ∈ Z (since 2 is an integer)
▶ π /∈ Q (since π is an irrational number)
▶ {0, 2, 4, 6, . . . } ⊂ Z
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Basic notations
▶ Union: A ∪ B = {x : x ∈ A or x ∈ B}
▶ Intersection: A ∩ B = {x : x ∈ A and x ∈ B}
▶ Union of multiple sets A1,A2, . . . ,An:

n⋃
i=1

Ai = A1 ∪ A2 ∪ · · · ∪ An

▶ Intersection of multiple sets A1,A2, . . . ,An:
n⋂

i=1

Ai = A1 ∩ A2 ∩ · · · ∩ An

▶ Set difference: A \ B = {x : x ∈ A and x /∈ B}
Examples:

▶ {1, 2, 3} ∪ {1, 3, 4, 7} = {1, 2, 3, 4, 7}
▶ {1, 2, 3} ∩ {1, 3, 4, 7} = {1, 3}
▶ {1, 2, 3} \ {1, 3, 4, 7} = {2}
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Basic notations
Intervals:

▶ (a, b) = {x ∈ R : a < x < b} (open interval)

▶ [a, b] = {x ∈ R : a ≤ x ≤ b} (closed interval)

▶ (a, b] = {x ∈ R : a < x ≤ b}
▶ [a, b) = {x ∈ R : a ≤ x < b}
▶ (a,∞) = {x ∈ R : x > a}
▶ [a,∞) = {x ∈ R : x ≥ a}
▶ (−∞, b) = {x ∈ R : x < b}
▶ (−∞, b] = {x ∈ R : x ≤ b}

Examples:

▶ (−1, 3) ∪ (0, 4] = (−1, 4]

▶ [0, 5] ∩ (1,∞) = (1, 5]

▶ (0, 5) \ (1, 2) = (0, 1] ∪ [2, 5)

▶
⋃
n∈Z

[2nπ, (2n+1)π) = · · · ∪ [−2π,−π)∪ [0, π)∪ [2π, 3π)∪ · · ·
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(Lecture 1–2) Sequences
Examples:

▶ an = 1
n = 1, 12 ,

1
3 , ...

▶ bn = 2n−1 = 1, 2, 4, 8, ...
▶ cn = (−1)n = −1, 1,−1, 1, ...
▶ Arithmetic sequences: an+1 − an = d for some constant d
▶ Geometric sequences: an+1 = ran for some constant r

Definitions:
▶ Monotonic increasing (or “increasing”): an ≤ an+1 for all n
▶ Monotonic decreasing (or “decreasing”): an ≥ an+1 for all n
▶ Monotonic: Either monotonic increasing or decreasing
▶ Strictly increasing: an < an+1 for all n
▶ Strictly decreasing: an > an+1 for all n
▶ Bounded below: there exists M ∈ R s.t. an > M for all n
▶ Bounded above: there exists M ∈ R s.t. an < M for all n
▶ Bounded: there exists M ∈ R s.t. |an| < M for all n

(i.e. both bounded below and bounded above)
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(Lecture 1–2) Limits of sequences
Definitions:
▶ (Convergent sequence) If {an} approaches a number L as n

approaches infinity, we say lim
n→∞

an = L.

▶ (Divergent sequence) If no such L exists, we say that {an} is
divergent.
Note: If lim

n→∞
an = ∞ or −∞, it is also divergent.

Uniqueness of limit: If an is convergent, then the limit is unique.

Basic arithmetic rules: If lim
n→∞

an = a and lim
n→∞

bn = b, then

▶ lim
n→∞

(an ± bn) = a± b

▶ lim
n→∞

(can) = ca (where c is a constant)

▶ lim
n→∞

anbn = ab

▶ lim
n→∞

an
bn

=
a

b
(if b ̸= 0)

Example: lim
n→∞

(
cos

1

n
− 2

(
3

4

)n

+
1

n2

)
= 1− 2 · 0 + 0 = 1
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(Lecture 1–2) Limits of sequences
Limits involving ±∞:

▶ ∞± L = ∞
▶ −∞± L = −∞
▶ ∞+∞ = ∞
▶ −∞−∞ = −∞

▶ L · ∞ =

{
∞ if L > 0
−∞ if L < 0

▶ L
±∞ = 0

▶ (Indeterminate forms) ∞−∞, ±∞
±∞ , 0

0 , 0 · ∞: try further
simplifying

Convergence ⇒ Boundedness:

If {an} is convergent, then {an} is bounded.

Remark: The converse is NOT true, i.e. bounded ̸⇒ convergent!
Example: {(−1)n} = −1, 1,−1, 1, . . . is bounded but divergent.
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(Lecture 2) Monotone convergence theorem

If {an} is monotonic and bounded, then {an} is convergent.

Other versions:

▶ If {an} is monotonic increasing and bounded above,
then {an} is convergent.

▶ If {an} is monotonic decreasing and bounded below,
then {an} is convergent.

Example: To prove that {an} with

{
an+1 =

√
an + 1

a1 = 1
is

convergent, we prove that (i) {an} is bounded by 2 (by MI) and
(ii) {an} is monotonic increasing.

Remark:
The converse is NOT true: convergent ̸⇒ monotonic & bounded!
Example:

{ (−1)n

n } = −1, 12 ,−
1
3 ,

1
4 , . . . converges to 0, but the sequence is

not monotonic.
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(Lecture 3) Squeeze theorem (sandwich theorem)

If bn ≤ an ≤ cn for all n and lim
n→∞

bn = lim
n→∞

cn = L,

then lim
n→∞

an = L.

Example: lim
n→∞

sin(cos n)

n
= ?

Solution: Since −1 ≤ sin(cos n) ≤ 1 for all n, we have

−1

n
≤ sin(cos n)

n
≤ 1

n
.

Now, since lim
n→∞

−1

n
= 0 = lim

n→∞

1

n
, by squeeze theorem, we have

lim
n→∞

sin(cos n)

n
= 0.
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Some possible ways to show that a sequence converges
(I) Find the limit directly using some basic limit results

▶ lim
n→∞

rn = 0 if |r | < 1, lim
n→∞

1

n
= 0, ...

Example: lim
n→∞

(
cos

1

n
+

(
3

4

)n

+
1

n2

)
= 1 + 0 + 0 = 1

(II) Use the monotone convergence theorem
▶ Show that the sequence is bounded and monotonic (may need

to use mathematical induction)
▶ Conclude that the sequence converges (i.e. can write

lim
n→∞

an = L, then solve some equations to find L if needed).

Example: Show that

{
an+1 =

√
an + 1

a1 = 1
converges.

(III) Use the squeeze theorem
▶ Find bn, cn s.t. bn ≤ an ≤ cn and lim

n→∞
bn = lim

n→∞
cn (= L).

▶ Conclude that lim
n→∞

an = L.

Example: Show that {an} =
{

(−1)n+sin n
n

}
converges.

If a way does not work, it does NOT imply that the sequence is
divergent! Try another way.
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Some possible ways to show that a sequence diverges

(I) Show that {an} is unbounded (i.e. lim
n→∞

|an| = ∞)

▶ Reason: If a sequence converges, it must be bounded

Example: an = (−1)nn2 diverges as lim
n→∞

|an| = lim
n→∞

n2 = ∞

(II) Show that {an} contains two subsequences which
converge to two different values
▶ Reason: If a sequence converges, then the limit must be

unique

Example: an = (−1)n diverges since {a1, a3, a5, . . . } converges
to −1 and {a2, a4, a6, . . . } converges to 1.

If a way does not work, it does NOT imply that the sequence is
convergent! Try another way.
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(Lecture 3) Infinite series

Series:
n∑

k=1

ak = a1 + a2 + · · ·+ an

Examples:

▶
n∑

k=1

k = 1 + 2 + · · ·+ n =
n(n + 1)

2

▶ (Arithmetic sum)
n∑

k=1

(a+ (k − 1)d) =
2a+ (n − 1)d

2

▶ (Geometric sum)
n∑

k=1

ark−1 =
a(rn − 1)

(r − 1)
(if r ̸= 1)

Convergence of infinite series: We say that an infinite series
∞∑
k=1

ak = a1 + a2 + a3 + · · · is convergent if the sequence of partial

sums {sn} (where sn = a1 + a2 + · · ·+ an =
n∑

k=1

ak) converges.

Example: (Euler’s number) e = 1 + 1
1! +

1
2! +

1
3! + · · · ≈ 2.718
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(Lecture 3) Functions

Definitions:
▶ f : A → B

▶ A: Domain
▶ B: Codomain
▶ f : Some rule of assigning elements in A to elements in B

▶ Range of f = {f (x) : x ∈ A} (also known as image of f )

▶ Natural domain = largest domain on which f can be defined

Examples:

▶ For f : R → R with f (x) = x2, the range of f is [0,∞)

▶ The natural domain of f (x) = 1√
x+1

is (−1,∞)

▶ The natural domain of tan(x) is

R \ {±π

2
,±3π

2
,±5π

2
, . . . } =

⋃
n∈Z

(
(n − 1

2
)π, (n +

1

2
)π

)

14 / 83



(Lecture 3–4) Injective, subjective, bijective functions, and
inverse functions

▶ f : A → B is said to be injective (or “1-1”, “one-to-one”) if
for any x1, x2 ∈ A with x1 ̸= x2, we have f (x1) ̸= f (x2)
(Or equivalently, if f (x1) = f (x2) then we have x1 = x2)

▶ f : A → B is said to be surjective (or “onto”) if
for any y ∈ B, there exists x ∈ A such that y = f (x)

▶ f is bijective if it is both injective and surjective
▶ If f : A → B is a bijective function, the inverse function

f −1 : B → A satisfies f −1(f (x)) = x for all x ∈ A and
f (f −1(y)) = y for all y ∈ B

Examples:

▶ f : R → R with f (x) = x3 is bijective

▶ f : R → R with f (x) = x2 is not injective as f (−1) = f (1) = 1

▶ f : [0,∞) → R with f (x) = x2 is injective but not surjective

▶ f : [0,∞) → [0,∞) with f (x) = x2 is bijective, and the inverse
function is f −1 : [0,∞) → [0,∞) with f −1(y) =

√
y

15 / 83



(Lecture 3–4) Even, odd, periodic functions

▶ f is an even function if f (−x) = f (x) for all x

▶ f is an odd function if f (−x) = −f (x) for all x

▶ f is a periodic function if there exists a constant k such that
f (x) = f (x + k) for all x

Examples:

▶ f (x) = x2 is even because f (−x) = (−x)2 = x2 = f (x) for all x

▶ f (x) = x3 + sin x is odd because
f (−x) = (−x)3 + sin(−x) = −x3 − sin x = −(f (x)) for all x

▶ f (x) = x + 1 is neither odd nor even because f (−1) = 0 ̸= ±f (1)

▶ f (x) = 3 sin x + cos x
2 is periodic because

f (x + 4π) = 3 sin(x + 4π) + cos x+4π
2 =

3 sin(x + 4π) + cos
(
x
2 + 2π

)
= 3 sin x + cos x

2 = f (x) for all x
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(Lecture 4–5) Some common functions
Exponential function ex : R → R+

▶ ex = 1 + x + x2

2! +
x3

3! + · · ·
▶ bijective function

Logarithmic function ln : R+ → R
▶ Inverse function of ex (y = ex ⇔ x = ln y)

▶ bijective function

Sine function sin : R → [−1, 1]

▶ sin x = x − x3

3! +
x5

5! −
x7

7! + · · ·
▶ odd function (because sin(−x) = − sin x)

▶ periodic function (because sin(x + 2π) = sin x)

Cosine function cos : R → [−1, 1]

▶ cos x = 1− x2

2! +
x4

4! −
x6

6! +
x8

8! − · · ·
▶ even function (because cos(−x) = cos x)

▶ periodic function (because cos(x + 2π) = cos x)
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(Lecture 4–5) Limit of functions
Definitions:
▶ Left-hand limit: We say that lim

x→a−
f (x) = L if f (x) is close

enough to L whenever x is close enough to a and x < a.
▶ Right-hand limit: We say that lim

x→a+
f (x) = L if f (x) is close

enough to L whenever x is close enough to a and x > a.
▶ Two-sided limit: We say that lim

x→a
f (x) = L if both the

left-hand limit and the right-hand limit exist and are equal, i.e.

lim
x→a

f (x) = L ⇐⇒ lim
x→a−

f (x) = lim
x→a+

f (x) = L

Remark: Whether f is defined at a or the value of f at a is NOT
important for finding lim

x→a−
f (x), lim

x→a+
f (x), lim

x→a
f (x)

Example: If f (x) =

 −x if x < 0
1 if x = 0
x2 if x > 0

, we have

lim
x→0−

f (x) = lim
x→0−

(−x) = 0 and lim
x→0+

f (x) = lim
x→0+

x2 = 0,

so the two-sided limit exists and we have lim
x→0

f (x) = 0 (̸= 1)
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(Lecture 4–5) Properties of limits of functions
If lim

x→a
f (x) and lim

x→a
g(x) exist, then

▶ lim
x→a

f (x)± g(x) = lim
x→a

f (x)± lim
x→a

g(x)

▶ lim
x→a

cf (x) = c lim
x→a

f (x) (where c is a constant)

▶ lim
x→a

f (x)g(x) =
(
lim
x→a

f (x)
)
·
(
lim
x→a

g(x)
)

▶ lim
x→a

f (x)

g(x)
=

lim
x→a

f (x)

lim
x→a

g(x)
(if lim

x→a
g(x) ̸= 0)

Examples:

▶ lim
x→0

(
1

x
− 1

x2 + x

)
= lim

x→0

(x + 1)− 1

x(x + 1)
= lim

x→0

1

x + 1
= 1

▶ lim
x→2

2− x

3−
√
x2 + 5

= lim
x→2

(
2− x

3−
√
x2 + 5

· 3 +
√
x2 + 5

3 +
√
x2 + 5

)
= lim

x→2

(2− x)(3 +
√
x2 + 5)

4− x2
= lim

x→2

3 +
√
x2 + 5

2 + x
=

6

4
=

3

2
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(Lecture 4–5) Properties of limits of functions

Some other useful limit results:

▶ lim
x→0

ex − 1

x
= 1

▶ lim
x→0

ln(1 + x)

x
= 1

▶ lim
x→0

sin x

x
= 1

Examples:

▶ lim
x→0

e3x − 1

x
= lim

x→0

e3x − 1

3x
· 3 = 1 · 3 = 3

▶ lim
x→0

sin 2x

sin 3x
= lim

x→0

sin 2x
2x (2x)

sin 3x
3x (3x)

=

(
lim
x→0

sin 2x

2x

)
· 2(

lim
x→0

sin 3x

3x

)
· 3

=
1 · 2
1 · 3

=
2

3
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(Lecture 5) Sequential criterion

We have lim
x→a

f (x) = L (limit of function)

if and only if
For any sequence {xn} with xn ̸= a for any n and lim

n→∞
xn = a,

we have lim
n→∞

f (xn) = L (limit of sequence).

Consequence: If we can find two sequences {xn}, {yn} such that:
▶ xn ̸= a, yn ̸= a for all n and lim

n→∞
xn = lim

n→∞
yn = a

▶ but lim
n→∞

f (xn) ̸= lim
n→∞

f (yn),

then lim
x→a

f (x) does not exist.

Example: Prove that lim
x→0

sin
1

x
does not exist.

Solution: Let {xn} =
{

1
nπ

}
= 1

π ,
1
2π ,

1
3π , · · · and

{yn} =
{

1
2nπ+π

2

}
= 1

2π+π
2
, 1
4π+π

2
, 1
6π+π

2
, · · · , then we have

lim
n→∞

xn = lim
n→∞

yn = 0 but lim
n→∞

f (xn) = 0 ̸= lim
n→∞

f (yn) = 1.

21 / 83



(Lecture 5) Squeeze theorem for functions

Let f , g , h be functions. If f (x) ≤ g(x) ≤ h(x) for any x ̸= a
on a neighborhood of a and lim

x→a
f (x) = lim

x→a
h(x) = L,

then the limit of g(x) at x = a exists
and we have lim

x→a
g(x) = L.

Example: lim
x→0

x sin
1

ex2 − 1
= ?

Solution:

Since −1 ≤ sin 1
ex2−1

≤ 1 for all x , we have −x ≤ x sin
1

ex2 − 1
≤ x .

As lim
x→0

(−x) = 0 = lim
x→0

x , by squeeze theorem, lim
x→0

x sin
1

ex2 − 1
= 0.
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(Lecture 6–7) Limits at infinity
Definitions:

▶ We say that lim
x→∞

f (x) = L if f (x) is close enough to L

whenever x is large enough.

▶ (Similar for lim
x→−∞

f (x))

Examples:

▶ lim
x→∞

1

x − 1
= 0

▶ e = lim
n→∞

(
1 +

1

n

)n

= lim
x→∞

(
1 +

1

x

)x

▶ lim
x→∞

(
1 +

1

2x

)3x

= lim
x→∞

(
1 +

1

2x

)3x · 2
2

=

lim
x→∞

(
1 +

1

2x

)2x · 3
2

=

(
lim
x→∞

(
1 +

1

2x

)2x
) 3

2

= e
3
2

▶ lim
x→∞

xk

ex
= 0 and lim

x→∞

(ln x)k

x
= 0 for any positive integer k
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(Lecture 7) Continuity of functions

f is said to be continuous at x = a if

lim
x→a

f (x) = f (a).

In other words, we have:

(i) The limit lim
x→a

f (x) exists (i.e. lim
x→a−

f (x) = lim
x→a+

f (x)), and

(ii) It is equal to the value of f at x = a.

f is said to be continuous on an interval (a, b) if f is continuous at
every point on (a, b).

Examples:

▶ xn, cos x , sin x , ex are continuous on R
▶ ln(x) is continuous on R+

▶ f (x) =

{
−x + 1 if x < 0
cos x if x ≥ 0

is continuous at x = 0
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(Lecture 7) Properties of continuous functions

Properties:
▶ If f (x) and g(x) are continuous at x = a, then the following

functions are also continuous at x = a:
▶ f (x)± g(x)
▶ cf (x) (where c is a constant)
▶ f (x)g(x)
▶ f (x)

g(x) (if g(a) ̸= 0)

▶ If f (x) is continuous at x = a and g(u) is continuous at
u = f (a), then the composition (g ◦ f )(x) (i.e. g(f (x))) is
also continuous at x = a.

Examples:

▶ cos(x) + 2x is continuous on R because both cos x and x are
continuous on R.

▶ sin(x3 + 1) is continuous at x = 0 because x3 + 1 is
continuous at x = 0 and sin(u) is continuous at u = 1.
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(Lecture 7) Intermediate value theorem and extreme value
theorem

Intermediate value theorem (IVT):

Let f be a continuous function on [a, b].
For any real number L between f (a) and f (b)
(i.e. f (a) < L < f (b) or f (b) < L < f (a)),
there exists c ∈ (a, b) such that f (c) = L.

Example: Show that f (x) = x7 + x3 + 1 has a real root.

Solution: Note that f (−1) = −1 < 0 and f (0) = 1 > 0. As f is
continuous, by IVT, there exists c ∈ (−1, 0) s.t. f (c) = 0.

Extreme value theorem (EVT):

Let f be a continuous function on [a, b]. Then there exists
α, β ∈ [a, b] such that f (α) ≤ f (x) ≤ f (β) for any x ∈ [a, b]
(i.e. f has a global maximum and a global minimum in [a, b]).
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(Lecture 8) Differentiability of functions
f is said to be differentiable at x = a if the following limit (called
the derivative of f at x = a) exists:

f ′(a) = lim
x→a

f (x)− f (a)

x − a

Another form:

f ′(a) = lim
h→0

f (a+ h)− f (a)

h
Remark: For piecewise functions, we need to check both

lim
x→a−

f (x)− f (a)

x − a
and lim

x→a+

f (x)− f (a)

x − a

Example (finding derivative by definition, i.e. first principle):

▶ If f (x) = x2, then

f ′(x) = lim
h→0

f (x + h)− f (x)

h

= lim
h→0

(x + h)2 − x2

h
= lim

h→0

2xh + h2

h
= 2x .
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(Lecture 8–9) Derivatives of polynomial, exponential,
logarithmic, and trigonometric functions

▶ (xn)′ = nxn−1

▶ (ex)′ = ex

▶ (ln x)′ =
1

x
▶ (ax)′ = ax ln a

▶ (sin x)′ = cos x

▶ (cos x)′ = − sin x

▶ (tan x)′ = sec2 x =
1

cos2 x
▶ (c)′ = 0 (where c is a constant)

▶ (sinh x)′ = cosh x (where sinh x =
ex − e−x

2
, cosh x =

ex + e−x

2
)

▶ (cosh x)′ = sinh x

▶ (tanh x)′ = sech2x =
1

cosh2 x
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(Lecture 8–9) Differentiation rules (sum, difference,
product, and quotient rules)

If f and g are differentiable at a point, then the following functions
are also differentiable at that point:

▶ (f (x)± g(x))′ = f ′(x)± g ′(x)

▶ (cf (x))′ = cf ′(x) (where c is a constant)

▶ Product rule:

(fg)′(x) = f ′(x)g(x) + f (x)g ′(x)

▶ Quotient rule:(
f

g

)′
(x) =

f ′(x)g(x)− f (x)g ′(x)

(g(x))2
(if g(x) ̸= 0)

Examples:

▶ (x3 sin x)′ = (x3)′ sin x + x3(sin x)′ = 3x2 sin x + x3 cos x

▶
(

sin x
x2+1

)′
= (sin x)′(x2+1)+(sin x)(x2+1)′

(x2+1)2
= (x2+1) cos x+2x sin x

(x2+1)2
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(Lecture 8–9) Differentiation rules (chain rule)
Chain rule:
If f (x) is differentiable at x = a and g(u) is differentiable at
u = f (a), then (g ◦ f ) is differentiable at x = a and we have

(g ◦ f )′(a) = g ′(f (a))f ′(a)

In other words, we have

dy

dx
=

dy

du
· du
dx

Examples:

▶ (sin x2)′ = d(sin u)
du

du
dx (let u = x2) = (cos u)(2x) = 2x cos x2

▶ (esin x)′ = esin x cos x

A more complicated version:
dy

dx
=

dy

du
· du
dv

· dv
dx

Example:

▶
(
ln(cos(x3))

)′
=

1

cos x3
· (− sin(x3)) · (3x2) = −3x2 tan x3
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(Lecture 8–9) Continuity and differentiability
Property:

If f is differentiable at x = a, then f is continuous at x = a

The converse is NOT true: if f is continuous at x = a, it may or
may not be differentiable at x = a

Example: f (x) = |x | =
{

−x if x < 0
x if x ≥ 0

▶ f (x) is continuous on R (i.e. at every point x ∈ R):
▶ For any a < 0, lim

x→a
f (x) = lim

x→a
(−x) = −a = f (a)

▶ For any a > 0, lim
x→a

f (x) = lim
x→a

x = a = f (a)

▶ For a = 0, we have lim
x→0−

f (x) = lim
x→0−

(−x) = 0 = f (0) and

lim
x→0+

f (x) = lim
x→0+

x = 0 = f (0), and hence lim
x→0

f (x) = f (0)

▶ f (x) is not differentiable at x = 0:

Note that f ′(0) = lim
h→0

f (h)− f (0)

h
= lim

h→0

|h| − 0

h
= lim

h→0

|h|
h

but

lim
h→0+

|h|
h

= lim
h→0+

h

h
= 1 and lim

h→0−

|h|
h

= lim
h→0+

−h

h
= −1
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(Lecture 8–9) Continuity and differentiability
Another example of continuous but not differentiable functions:

f (x) = |x + 1| − |x |+ |x − 1|

=


−(x + 1)− (−x)− (x − 1) = −x if x < −1
(x + 1)− (−x)− (x − 1) = x + 2 if − 1 ≤ x < 0
(x + 1)− (x)− (x − 1) = −x + 2 if 0 ≤ x < 1
(x + 1)− (x) + (x − 1) = x if x ≥ 1

▶ f (x) is continuous on R
▶ f (x) is not differentiable at x = −1, 0, 1
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(Lecture 10–11) Implicit differentiation

Idea: Find y ′ without having to explicitly write y = f (x).

Example:
If x sin y + y2 = x + 3y , find the slope of tangent at (0, 0).

Solution:

(x sin y + y2)′ = (x + 3y)′

(sin y + x(cos y)y ′) + 2yy ′ = 1 + 3y ′

(x cos y + 2y − 3)y ′ = 1− sin y

y ′ =
1− sin y

x cos y + 2y − 3

The slope of tangent at (0, 0) is
1− sin 0

0 · cos 0 + 2 · 0− 3
= −1

3
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(Lecture 10–11) Logarithmic differentiation

Idea: Find the derivative of some complicated functions
using logarithms.

Example: If y = xx , find y ′.

Solution:

y = xx

ln y = ln(xx)

ln y = x ln x

(ln y)′ = (x ln x)′

1

y
y ′ = 1 · ln x + x · 1

x

y ′ = y(ln x + 1) = xx(ln x + 1)
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(Lecture 10–11) Derivatives of inverse functions

Inverse functions:
If f (y) is a bijective and differentiable function with f ′(y) ̸= 0 for
any y , then the inverse function y = f −1(x) is differentiable:

(f −1)′(x) =
1

f ′(f −1(x))

Examples:

y = sin−1 x ⇒ sin y = x ⇒ (cos y)y ′ = 1 ⇒ (sin−1 x)′ =
1√

1− x2

y = cos−1 x ⇒ cos y = x ⇒ (− sin y)y ′ = 1 ⇒ (cos−1 x)′ = − 1√
1− x2

y = tan−1 x ⇒ tan y = x ⇒ (sec2 y)y ′ = 1 ⇒ (tan−1 x)′ =
1

1 + x2
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(Lecture 11–12) Higher order derivatives
▶ Second derivative:

y ′′ = f ′′(x) =
d2y

dx2
=

d

dx

(
dy

dx

)
▶ n-th derivative:

y (n) = f (n)(x) =
dny

dxn
=

d

dx

(
d

dx

(
d

dx

(
· · · dy

dx

)))
▶ 0-th derivative:

y (0) = f (0)(x) = f (x)

Examples:

▶ (sin x2)′′ = ((sin x2)′)′ = ((cos x2)(2x))′

= (− sin x2)(2x)(2x) + 2 cos x2 = −4x2 sin x2 + 2 cos x2

▶ Find y ′′ if xy + sin y = 1:

(xy + sin y)′ = 1′ ⇒ (y + xy ′ + y ′ cos y) = 0 ⇒ y ′ =
−y

x + cos y

⇒ y ′′ = −y ′(x + cos y)− y(1− y ′ sin y)

(x + cos y)2
=

2y(x + cos y) + y2 sin y
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(Lecture 11–12) Higher order differentiation rules
If f and g are n-times differentiable (i.e. f (n) and g (n) exist), then:

▶ (f ± g)(n) = f (n) ± g (n)

▶ (cf )(n) = cf (n) (where c is a constant)

▶ Leibniz’s rule (product rule for higher order derivatives):

(fg)(n) =
n∑

k=0

(
n
k

)
f (n−k)g (k)

where

(
n
k

)
=

n!

(n − k)!k!
is the binomial coefficient.

Example: (x3 sin x)(4)

= 1 · (x3)′′′′ sin x + 4 · (x3)′′′(sin x)′ + 6 · (x3)′′(sin x)′′ + 4(x3)′(sin x)′′′

+1 · x3(sin x)′′′′
= 0 + 24 cos x − 36x sin x − 12x2 cos x + x3 sin x
= (x3 − 36x) sin x + (24− 12x2) cos x
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(Lecture 12–13) n-times differentiability and continuity

If f is n-times differentiable at x = a

(f (n)(a) exists, i.e. f (n−1) is differentiable at x = a),

then f (n−1) is continuous at x = a.

f is n-times differentiable at x = a (i.e. f (n)(a) exists)
⇓

f (n−1)(a) exists and f (n−1) is continuous at x = a
⇓
...
⇓

f ′(a) exists and f ′ is continuous at x = a
⇓

f is continuous at x = a

However, the converse is NOT true!
Example: Let f (x) = |x |x , then:
▶ f is differentiable at x = 0

▶ f ′ is continuous at x = 0

▶ but f ′ is not differentiable at x = 0 (i.e. f ′′(0) does not exist)
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(Lecture 14) Local extrema, critical points, turning points
Local maximum:
f (x) has a local maximum at x = a if f (x) ≤ f (a) for all x near a
(more precisely, for all x ∈ D ∩ (a− δ, a+ δ) where D is the
domain and δ > 0 is some small number).
Local minimum:
f (x) has a local minimum at x = a if f (x) ≥ f (a) for all x near a.
Note:
Local extremum points can be either interior points or endpoints!
Example: For f : [−π, π] → R with f (x) = sin x ,
local maximum points = (−π, 0), (π2 , 1)

local minimum points = (−π
2 ,−1), (π, 0).

Critical points:
f has a critical point at x = a if f ′(a) = 0 or f ′(a) does not exist.
Turning points:
f has a turning point at x = a if f ′ changes sign at a.
Note: {Turning points} ⊂ {Critical points}
Example: x = 0 is a critical point of f (x) = x3, but it is not a turning

point.
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(Lecture 14) First and second derivative tests
Theorem:
Let f (x) be a continuous function. If f (x) has a local maximum/
minimum at x = a, then x = a must be a critical point of f (x).
First derivative test:

Let f (x) be a continuous function and x = a be a critical point.
(i) If f ′ changes sign from + to − at a, then f (x) has a

local maximum at x = a.
(ii) If f ′ changes sign from − to + at a,then f (x) has a

local minimum at x = a.

Second derivative test:

Let f (x) be a continuous function.
(i) If f ′(a) = 0 and f ′′(a) < 0, then f (x) has a local maximum

at x = a.
(ii) If f ′(a) = 0 and f ′′(a) > 0, then f (x) has a local minimum

at x = a.

40 / 83



(Lecture 15) Finding global extrema
Extreme value theorem (EVT) for closed and bounded intervals:

Let f be a continuous function on [a, b]. Then there exists
α, β ∈ [a, b] such that f (α) ≤ f (x) ≤ f (β) for any x ∈ [a, b]
(i.e. f has a global maximum and a global minimum in [a, b]).

Note: For f on (a, b), (a, b], or [a, b), f may NOT have any global
extrema in some cases!

Finding global extrema for functions on general intervals:

1. Check all critical points (including endpoints if applicable) to
find all local extrema.

2. Compare the values of f (x) at all such points as well as the
limit of f as x approaches the open endpoints (if applicable)
to determine the existence of global extrema.

Examples:

f (x) = x2 on [−2, 1]: global min. point = (0, 0); global max. = (−2, 4)
f (x) = x2 on R: global minimum point = (0, 0); no global max.

f (x) = x2 on (0, 1): no global min; no global max
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(Lecture 15) Concavity and points of inflection

Concavity:
We say that f (x) is

▶ concave upward on (a, b) if f ′′(x) > 0 on (a, b)

▶ concave downward on (a, b) if f ′′(x) < 0 on (a, b)

Example: f (x) = x3 =⇒ f ′′(x) = 6x
f is concave upward on (0,∞) and concave downward on (−∞, 0)

Point of inflection:
We say that x = a is an inflection point of f (x) if f ′′(x) changes
sign at x = a.
Example: f (x) = x3 =⇒ f ′′(x) = 6x
As f ′′ changes sign from − to + at x = 0, f has an inflection
point at x = 0.
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(Lecture 15) Asymptotes (vertical, horizontal, oblique)
Vertical asymptotes:
▶ x = a is a vertical asymptote of f (x) if

lim
x→a−

f (x) = ±∞ or lim
x→a+

f (x) = ±∞

Example: For f (x) = x2 +
1

x − 1
,

x = 1 is a vertical asymptote since lim
x→1+

f (x) = ∞.

Horizontal asymptotes:
▶ y = b is a horizontal asymptote of f (x) if

lim
x→−∞

f (x) = b or lim
x→∞

f (x) = b

Note: f (x) can have at most two different horizontal
asymptotes (one for lim

x→−∞
and one for lim

x→∞
)

Example: For f (x) = ex ,
y = 0 is a horizontal asymptote since lim

x→−∞
f (x) = 0.
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(Lecture 15) Asymptotes (vertical, horizontal, oblique)
Oblique asymptotes:
▶ y = ax + b is an oblique asymptote of f (x) if

lim
x→−∞

(f (x)− (ax + b)) = 0 or lim
x→∞

(f (x)− (ax + b)) = 0

▶ Note: f (x) can have at most two different oblique asymptotes
(one for lim

x→−∞
and one for lim

x→∞
)

Example: For f (x) = x + 3 +
2

x
, y = x + 3 is an oblique asymptote

since lim
x→∞

(f (x)− (x + 3)) = lim
x→∞

2

x
= 0.

▶ Finding oblique asymptotes:
Method 1: Directly work on f (x)− (ax + b), then check the
coefficients of different terms and see what a, b have to be
such that the limit = 0 as x → ∞ or −∞.

Method 2: Find a such that a = lim
x→∞

f (x)

x
(or lim

x→−∞
),

then find b = lim
x→∞

(f (x)− ax) (or lim
x→−∞

).
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(Lecture 15) Asymptotes (vertical, horizontal, oblique)

Example: f (x) =
√
x2 − 2x + 3

▶ No vertical asymptote (as f (x) is defined everywhere on R)
▶ No horizontal asymptote ( lim

x→∞
f (x) = ∞, lim

x→−∞
f (x) = ∞)

▶ Oblique asymptotes:

For x → ∞, we have

a = lim
x→∞

√
x2 − 2x + 3

x
= lim

x→∞

√
1− 2

x
+

3

x2
= 1, and

b = lim
x→∞

(
√

x2 − 2x + 3− x) = lim
x→∞

(x2 − 2x + 3)− x2

√
x2 − 2x + 3 + x

= −1

For x → −∞, we have

a = lim
x→−∞

√
x2 − 2x + 3

x
= lim

x→−∞
−
√

1 +
2

x
+

3

x2
= −1, and

b = lim
x→−∞

(
√

x2 − 2x + 3 + x) = lim
x→−∞

(x2 − 2x + 3)− x2

√
x2 − 2x + 3− x

= 1

So the oblique asymptotes are y = x − 1 and y = −x + 1.
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(Lecture 15) Curve sketching

To sketch a given function, do the following:

1. Find:
▶ (Natural) domain
▶ x-intercept
▶ y -intercept
▶ Asymptotes (vertical, horizontal, oblique)
▶ Critical points (and check whether they are local max/min)
▶ Inflection points (and check concavity)

2. Sketch the curve based on the information above.

Examples: See the main MATH1010 lecture notes.
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(Lecture 15) Curve sketching
Example: f (x) =

√
x2 − 2x + 3

▶ Domain: R (as
√
x2 − 2x + 3 =

√
(x − 1)2 + 2 is defined everywhere)

▶ x-intercept: None (as f (x) =
√

(x − 1)2 + 2 ̸= 0)

▶ y-intercept: f (0) =
√
3

▶ Asymptotes: y = x − 1 and y = −x + 1 (see the previous slide)

▶ Critical points: f ′(x) = x−1√
x2−2x+3

, so the only critical point is at x = 1.

By first derivative test, it is a local minimum.

▶ Inflection point: None (as f ′′(x) = 2√
x2−2x+3

> 0)
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(Lecture 15–17) Mean value theorem (MVT)

Rolle’s theorem:

If f is continuous on [a, b], differentiable on (a, b), and
f (a) = f (b), then there exists c ∈ (a, b) such that f ′(c) = 0.

Lagrange’s mean value theorem:

If f is continuous on [a, b] and differentiable on (a, b),

then there exists c ∈ (a, b) such that f ′(c) =
f (b)− f (a)

b − a
.

Cauchy’s mean value theorem:

If f , g are continuous on [a, b], differentiable on (a, b),
with g(a) ̸= g(b) and g ′(x) ̸= 0 on (a, b), then there

exists c ∈ (a, b) such that
f ′(c)

g ′(c)
=

f (b)− f (a)

g(b)− g(a)
.
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(Lecture 16) Inequalities

Using MVTs to prove inequalities:

Example: Prove that | cos(x)− cos(y)| ≤ |x − y | for all x , y ∈ R.

Solution:

▶ If x = y , we have | cos(x)− cos(y)| = 0 = |x − y |.
▶ If x ̸= y , by Lagrange’s MVT, there exists c between x and y

such that
cos(x)− cos(y)

x − y
= − sin(c).

Therefore, we have

| cos(x)− cos(y)|
|x − y |

= |−sin(c)| ≤ 1 ⇐⇒ | cos(x)−cos(y)| ≤ |x−y |

for all x , y ∈ R.
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(Lecture 16) Derivatives and inequalities
Increasing/decreasing functions and derivatives:
▶ f is (monotonic) increasing on (a, b) (i.e. f (x) ≤ f (y) for all

x , y ∈ (a, b) with x < y) if and only if f ′(x) ≥ 0 on (a, b).
▶ f is (monotonic) decreasing on (a, b) (i.e. f (x) ≥ f (y) for all

x , y ∈ (a, b) with x < y) if and only if f ′(x) ≤ 0 on (a, b).
▶ f is constant on (a, b) if and only if f ′(x) = 0 on (a, b).
▶ f is strictly increasing on (a, b) (i.e. f (x) < f (y) for all

x , y ∈ (a, b) with x < y) if f ′(x) > 0 on (a, b).
▶ f is strictly decreasing on (a, b) (i.e. f (x) > f (y) for all

x , y ∈ (a, b) with x < y) if f ′(x) < 0 on (a, b).

Using derivatives to prove inequalities:

Example: Let p > 1. Prove that (1 + x)p > 1 + px for all x > 0.

Solution: Let f (x) = (1 + x)p − (1 + px). Then

f ′(x) = p(1 + x)p−1 − p > 0

for all x > 0. Therefore, f is strictly increasing on (0,∞). We have

f (x) > f (0) = 0 =⇒ (1 + x)p > 1 + px .
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(Lecture 17) L’Hopital’s rule
L’Hopital’s rule:

Let a ∈ R or a = ±∞. If f and g are differentiable near a
and all of the following conditions are satisfied:
1. Both lim

x→a
f (x) = 0 and lim

x→a
g(x) = 0 or

both lim
x→a

f (x) = ±∞ and lim
x→a

g(x) = ±∞.

2. g ′(x) ̸= 0 near a.

3. lim
x→a

f ′(x)

g ′(x)
exists or = ±∞.

Then we have lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g ′(x)

Remarks:

▶ Similar results hold for one-sided limit ( lim
x→a−

and lim
x→a+

)

▶ Sometimes may need to apply the rule more than once

▶ Not always applicable! Check if the requirements are satisfied.
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(Lecture 17) L’Hopital’s rule
Handling different indeterminate forms:

▶
0

0
,
±∞
±∞

: May try to apply the L’Hopital’s rule directly

Example:

lim
x→0

tan x − x

x3
(
0

0
) = lim

x→0

sec2 x − 1

3x2
(
0

0
)

= lim
x→0

2 sec x sec x tan x

6x
= lim

x→0

sin x

3x cos3 x
=

1

3

▶ 0 · (±∞), ∞−∞: May try to convert them into
0

0
or

±∞
±∞

,

then apply the L’Hopital’s rule
Example:

lim
x→1

(x2 − 1) tan
πx

2
(0 · ∞) = lim

x→1

x2 − 1

cot πx
2

(
0

0
)

= lim
x→1

2x
π
2 · csc2 πx

2

= lim
x→1

2x sin2 πx
2

π
2

=
2 · 1 · 12

π
2

=
4

π
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(Lecture 17) L’Hopital’s rule
Handling different indeterminate forms:

▶ 1∞, ∞0, 00: May use logarithm and apply the L’Hopital’s
rule to the logged expression, then use lim

x→a
y = e limx→a ln y

Example: Find lim
x→0+

(x + sin x)x (00)

Solution: Let y = (x + sin x)x , then ln y = x ln(x + sin x) and

lim
x→0+

x ln(x + sin x) (0 · (±∞)) = lim
x→0+

ln(x + sin x)
1
x

(
∞
∞

)

= lim
x→0+

1
x+sin x (1 + cos x)

− 1
x2

= lim
x→0+

−x(1 + cos x)

1 + sin x
x

=
−0(1 + 1)

1 + 1
= 0

So lim
x→0+

(x + sin x)x = lim
x→0+

y = lim
x→0+

e ln y = e0 = 1
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(Lecture 18) Taylor polynomial
Taylor polynomial:

The n-th order Taylor polynomial of f (x) about a point x = a is

pn(x) = f (a) + f ′(a)(x − a) + · · ·+ f (n)(a)

n!
(x − a)n =

n∑
k=0

f (k)(a)

k!
(x − a)k

Property: We have f (k)(a) = p
(k)
n (a) for all k = 0, 1, . . . , n.

Example:

The 2nd order Taylor polynomial of f (x) =
√
1 + x about x = 0 is

p2(x) = f (0) + f ′(0)(x − 0) +
f ′′(0)

2
(x − 0)2 = 1 +

x

2
− x2

8
Taylor’s theorem:

Let x ̸= a (i.e. x > a or x < a).

Suppose f (n) exists and is continuous on [a, x ] (or [x , a]),

and f (n+1) exists on (a, x) (or (x , a)).
Then there exists c ∈ (a, x) (or (x , a)) such that

f (x) = pn(x) + Rn(x) =
n∑

k=0

f (k)(a)

k!
(x − a)k +

f (n+1)(c)

(n + 1)!
(x − a)n+1
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(Lecture 19–20) Taylor series
Taylor series:

The Taylor series of f (x) about a point x = a is the infinite series

T (x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · · =

∞∑
k=0

f (k)(a)

k!
(x − a)k

Property: If the remainder term in Taylor’s theorem Rn(x) → 0 as
n → ∞ on an interval I , then the Taylor series is equal to the
function (i.e. f (x) = T (x)) on I .

Examples: ex = 1 + x +
x2

2!
+ · · · =

∞∑
k=0

xk

k!
for all x ∈ R

sin x = x − x3

3!
+

x5

5!
− · · · =

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1 for all x ∈ R

cos x = 1− x2

2!
+

x4

4!
− · · · =

∞∑
k=0

(−1)k

(2k)!
x2k for all x ∈ R

ln(1 + x) = x − x2

2
+

x3

3
+ · · · =

∞∑
k=1

(−1)k+1

k
xk for |x | < 1
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(Lecture 19–20) Taylor series
Properties:

▶ If T (x) is the Taylor series of f (x) about x = 0, then T (xk) is
the Taylor series of f (xk) about x = 0 for all positive integer k

Example: The Taylor series of
sin x2

x2
about 0 is

1

x2

(
x2 − (x2)3

3!
+

(x2)5

5!
− · · ·

)
= 1− x4

3!
+

x8

5!
− · · ·

▶ Addition and subtraction of Taylor series

Example: The Taylor series of
sin x2

x2
+ cos x about 0 is(

1− x4

3!
+

x8

5!
− · · ·

)
+

(
1− x2

2!
+

x4

4!
− · · ·

)
= 2− x2

2
− x4

8
+ · · ·

▶ Multiplication and division of Taylor series

Example: The Taylor series of
sin x2

x2
cos3 x about 0 is(

1− x4

3!
+

x8

5!
− · · ·

)(
1− x2

2!
+

x4

4!
− · · ·

)3

= 1− 3x2

2
+

17x4

24
+ · · ·
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(Lecture 19–20) Taylor series

Properties:

▶ Composition of Taylor series
Example:
The Taylor series of cos (sin x) about 0 is

1− 1

2!

(
x − x3

3!
+

x5

5!
− · · ·

)2

+
1

4!

(
x − x3

3!
+

x5

5!
− · · ·

)4

− · · ·

= 1− x2

2
+

5x4

24
+ · · ·

▶ Differentiation of Taylor series
Example:

The Taylor series of − x

(1 + x)2
= x

(
1

1 + x

)′

is

x
(
1− x + x2 − x3 − · · ·

)′
= x(−1 + 2x − 3x2 + · · · )
= −x + 2x2 − 3x3 + · · ·
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(Lecture 20) Using Taylor series to find limits

Idea: To find lim
x→c

f (x), replace certain components in f (x)

with their Taylor series (if those components are equal to
their Taylor series for x near c)

Example:

lim
x→0

ln(1 + x)− x
√
1− x

x − sin x

= lim
x→0

(
x − x2

2 + x3

3 +O(x4)
)
− x

(
1− x

2 − x2

8 +O(x3)
)

x −
(
x − x3

6 +O(x5)
)

= lim
x→0

11
24x

3 +O(x4)
1
6x

3 +O(x5)

= lim
x→0

11
24 +O(x)
1
6 +O(x2)

=
11
24 + 0
1
6 + 0

=
11

4
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(Lecture 20) Indefinite integration
Indefinite integral:

Let f (x) be continuous. An antiderivative (or primitive
function) of f (x) is a function F (x) such that F ′(x) = f (x).
The collection of all antiderivatives of f (x) is called the

indefinite integral of f (x) and is denoted by

∫
f (x)dx .

We have

∫
f (x)dx = F (x) + C , where C is a constant.

Example: x2, x2 + 3, x2 − 1 are antiderivatives of 2x .
More generally, we have

∫
2x dx = x2 + C .

Properties:

▶
∫
(f (x)± g(x))dx =

∫
f (x)dx ±

∫
g(x)dx

▶
∫

kf (x)dx = k

∫
f (x)dx

Example:
∫
(x3 + 2x − 1) dx = x4

4 + x2 − x + C
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(Lecture 20) Some basic integrals

▶
∫

k dx = kx + C

▶
∫

xn dx =
xn+1

n + 1
+ C

(where n ̸= −1)

▶
∫

ex dx = ex + C

▶
∫

1

x
dx = ln |x |+ C

▶
∫

ax dx =
1

ln a
ax + C

▶
∫

sin x dx = − cos x + C

▶
∫

cos x dx = sin x + C

▶
∫

tan x dx = − ln | cos x |+ C

▶
∫

sec x dx =

ln |sec x + tan x |+ C

▶
∫

sec2 x dx = tan x + C

▶
∫

sec x tan x dx = sec x + C

▶
∫

csc x cot x dx = − csc x+C

▶
∫

1√
1− x2

dx = sin−1 x + C

▶
∫

1

1 + x2
dx = tan−1 x + C
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(Lecture 20) Integration by substitution∫
f (u(x))

du

dx
dx =

∫
f (u)du

Example:

∫ √
3x + 4 dx =?

Solution: Let u = 3x + 4, then du
dx = 3 ⇒ du = 3dx . We have∫ √

3x + 4 dx =

∫ √
u · 1

3
du =

2

9
u3/2 + C =

2

9
(3x + 4)3/2 + C

Example:

∫
e2x

2+1x dx =?

Solution: Let u = 2x2 + 1, then du
dx = 4x ⇒ du = 4xdx . We have∫

e2x
2+1x dx =

1

4

∫
eu du =

1

4
eu + C =

1

4
e2x

2+1 + C

Example:

∫
cos x sin x dx =

∫
sin x d(sin x) =

sin2 x

2
+ C
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(Lecture 21) Trigonometric integrals
Useful trigonometric identities for handling trigonometric integrals:

▶ sin2 x + cos2 x = 1

▶ 1 + tan2 x = sec2 x

▶ 1 + cot2 x = csc2 x

▶ sin 2x = 2 sin x cos x

▶ cos 2x = 2 cos2 x − 1 =
1− 2 sin2 x

▶ tan 2x =
2 tan x

1− tan2 x

▶ sin(x ± y) =
sin x cos y ± cos x sin y

▶ cos(x ± y) =
cos x cos y ∓ sin x sin y

▶ cos x cos y =
1

2
(cos(x + y) + cos(x − y))

▶ cos x sin y =
1

2
(sin(x + y)− sin(x − y))

▶ sin x sin y =
1

2
(cos(x − y)− cos(x + y))

Example:

∫
sin2 x dx =

∫
1− cos 2x

2
dx =

x

2
− sin 2x

4
+ C

Example:∫
sin 5x cos 3x dx =

∫
1

2
(sin 8x + sin 2x)dx = −cos 8x

16
− cos 2x

4
+ C
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(Lecture 21) Trigonometric integrals
For

∫
cosm x sinn x dx :

▶ If m is odd, let u = sin x
Example:

∫
cos3 x sin4 x dx =

∫
cos2 x sin4 x cos x dx

=
∫
(1− u2)u4 du = u5

5 − u7

7 + C = sin5 x
5 − sin7 x

7 + C
▶ If n is odd, let u = cos x

Example:
∫
sin5 x dx =

∫
sin4 x sin x dx = −

∫
(1− u2)2 du

= −
∫
(1− 2u2 + u4) du = −u + 2u3

3 − u5

5 + C =

− cos x + 2 cos3 x
3 − cos5 x

5 + C
▶ If both m, n are even, use double angle formulas to reduce the

power and then use the above methods (if applicable)
Example:

∫
sin4 x cos2 x dx =

∫ (
1−cos 2x

2

)2 · 1+cos 2x
2 dx = · · ·

For

∫
secm x tann x dx :

▶ If m is even, let u = tan x
▶ If n is odd, let u = sec x
▶ If m is odd and n is even, use tan2 x = sec2 x − 1 to write

everything in terms of sec x and use reduction formula
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(Lecture 21–22) Trigonometric substitution
Idea: Simplify some integrals (without any trigonometric
functions) by substituting x = some trigonometric functions

▶ For
√
a2 − x2, substitute x = a sin θ

▶ For
√
a2 + x2, substitute x = a tan θ

▶ For
√
x2 − a2, substitute x = a sec θ

Example:

∫
1√

9− x2
dx =?

Solution: Let x = 3 sin θ, then dx = 3 cos θ dθ. We have∫
1√

9− x2
dx =

∫
3 cos θ√
9− 9 sin2 θ

dθ =

∫
1 dθ = θ + C = sin−1 x

3
+ C

Example:

∫
x3√
1 + x2

dx =?

Solution: Let x = tan θ, then dx = sec2 θ dθ. We have
∫

x3
√
1+x2

dx

=
∫

tan3 θ sec2 θ√
1+tan2 θ

dθ =
∫
tan3 θ sec θ dθ =

∫
(sec2 θ − 1) d(sec θ)

= sec3 θ
3 − sec θ + C = (

√
1+x2)3

3 −
√
1 + x2 + C
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Example with different possible substitutions

Example:

∫
x3

(x2 + 1)3
dx =?

Method 1: Let u = x2 + 1. We have du = 2x dx and so∫
x3

(x2 + 1)3
dx =

1

2

∫
x2

(x2 + 1)3
2x dx =

1

2

∫
u − 1

u3
du

=
1

2

(
− 1

u
+

1

2u2

)
+ C = − 1

2(x2 + 1)
+

1

4(x2 + 1)2
+ C = − 2x2 + 1

4(x2 + 1)2
+ C

Method 2: Let x = tan θ. We have dx = sec2 θ dθ and so∫
x3

(x2 + 1)3
dx =

∫
tan3 θ

(tan2 θ + 1)3
sec2 θ dθ =

∫
tan3 θ

sec6 θ
sec2 θ dθ

=

∫
sin3 θ cos θ dθ =

∫
sin3 θ d(sin θ) =

sin4 θ

4
+ C =

1

4 csc4 θ
+ C

=
1

4(1 + cot2 θ)2
+ C =

1

4(1 + 1
x2
)2

+ C =
x4

4(x2 + 1)2
+ C

Note: The results are consistent as x4

4(x2+1)2
−
(
− 2x2+1

4(x2+1)2

)
= 1

4 ,

which is just a constant.
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(Lecture 22) Integration by parts

∫
u dv = uv −

∫
v du

Example:∫
ln x dx = x ln x −

∫
x d(ln x) = x ln x −

∫
x · 1

x
dx = x ln x − x + C

Example:

∫
xex dx =

∫
x dex = xex −

∫
exdx = xex − ex + C

More generally, for

∫
xnf (x) dx :

▶ If f (x) = sin x , cos x , ex etc. (easy to integrate), try∫
xnf (x) dx =

∫
xnd(F (x)) = xnF (x)−

∫
F (x)d(xn)

▶ If f (x) = sin−1 x , cos−1 x , ln x etc. (hard to integrate) , try∫
xnf (x) dx =

∫
f (x)d(

xn+1

n + 1
) =

xn+1f (x)

n + 1
−
∫

xn+1

n + 1
d(f (x))
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(Lecture 22) Integration by parts
Other common techniques:
▶ Integration by parts + solving equation

Example:

∫
ex cos x dx =?

Solution: We have

I =

∫
ex cos x dx =

∫
ex d(sin x) = ex sin x −

∫
sin xdex

= ex sin x −
∫

ex sin x dx = ex sin x +

∫
ex d cos x

= ex sin x + ex cos x −
∫

cos x dex

= ex sin x + ex cos x −
∫

ex cos x dx

Therefore, we have I = ex sin x + ex cos x − I + C (as the two
indefinite integrals may differ by a constant) and hence

I =
ex sin x + ex cos x

2
+ C
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(Lecture 22) Integration by parts
Other common techniques:

▶ Substitution + integration by parts

Example:

∫
cos(ln x) dx =?

Solution: Let u = ln x , then

du =
1

x
dx =⇒ dx = x du = eudu.

Therefore,∫
cos(ln x)dx =

∫
cos u · eudu

=
eu sin u + eu cos u

2
+ C

=
x sin(ln x) + x cos(ln x)

2
+ C
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(Lecture 22) Reduction formula
For integrals of the form

In =

∫
cosn x dx ,

∫
sinn x dx ,

∫
xn cos x dx ,

∫
xn sin x dx ,∫

xnex dx ,

∫
(ln x)n dx ,

∫
ex cosn x dx ,

∫
ex sinn x dx ,∫

1

(x2 + a2)n
dx ,

∫
1

(a2 − x2)n
dx etc.,

use integration by parts to write In in terms of some Ik with k < n.

Example:

In =

∫
xnex dx =

∫
xn d(ex) = xnex −

∫
ex d(xn)

= xnex −
∫

nxn−1ex dx = xnex − nIn−1

So
∫
x10ex dx = I10 = x10ex − 10I9 = x10ex − 10(x9ex − 9I8) = · · ·

(We can continue the process and eventually get some simple integral)
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(Lecture 22) Partial fraction

Rational function: R(x) =
f (x)

g(x)
where f (x), g(x) are polynomials

Examples:
x4

x2 + 1
,

2x + 1

3x2 + 4x + 1
, . . .

Partial fraction decomposition:
Goal: Express R(x) = q(x) + (some simple fractions)

1. Extract q(x) first (if deg(f (x)) ≥ deg(g(x))).

2. Factorize g(x) into a product of linear polynomials (in the
form of ax + b) and irreducible quadratic polynomials (in the
form of ax2 + bx + c with b2 − 4ac < 0).

3. Write down the general terms in the partial fraction:
Factors of g(x) Terms in partial fraction

ax + b A
ax+b

(ax + b)k A1

ax+b + A2

(ax+b)2 + · · ·+ Ak

(ax+b)k

ax2 + bx + c Bx+C
ax2+bx+c

(ax2 + bx + c)k B1x+C1

ax2+bx+c + B2x+C2

(ax2+bx+c)2 + · · ·+ Bkx+Ck

(ax2+bx+c)k

4. Determine the coefficients Ai ,Bi ,Ci
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(Lecture 22) Partial fraction
Example: Note that

9x − 13

x2 + x − 12
=

9x − 13

(x + 4)(x − 3)
. Therefore, we have

9x − 13

(x + 4)(x − 3)
=

A

x + 4
+

B

x − 3
=

(A+ B)x + (−3A+ 4B)

(x + 4)(x − 3)
.

Comparing coefficients,

{
A+ B = 9

−3A+ 4B = −13
=⇒ A = 7,B = 2.

Therefore,
9x − 13

x2 + x − 12
=

7

x + 4
+

2

x − 3
.

Example: Note that
x2 + 20x + 11

(x + 1)2(x − 3)
=

A

x + 1
+

B

(x + 1)2
+

C

x − 3
.

Therefore, we have

x2 + 20x + 11 = A(x + 1)(x − 3) + B(x − 3) + C(x + 1)2.

Putting x = 3, we get C = 5.
Putting x = −1, we get B = 2.
Putting x = 0, we get 11 = −3A+ 2(−3) + 5(1)2 =⇒ A = −4.

Therefore,
x2 + 20x + 11

(x + 1)2(x − 3)
= − 4

x + 1
+

2

(x + 1)2
+

5

x − 3
.
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(Lecture 22) Partial fraction
Example:

4x6 + x4 − 1

x4 − 1
=

4x6−4x2 + x4 − 1+4x2

x4 − 1

= 4x2 + 1 +
4x2

x4 − 1
= 4x2 + 1 +

4x2

(x − 1)(x + 1)(x2 + 1)

Therefore, we have

4x2

(x − 1)(x + 1)(x2 + 1)
=

A

x − 1
+

B

x + 1
+

Cx + D

x2 + 1

=
A(x + 1)(x2 + 1) + B(x − 1)(x2 + 1) + (Cx + D)(x − 1)(x + 1)

(x − 1)(x + 1)(x2 + 1)

=
(A+ B + C)x3 + (A− B + D)x2 + (A+ B − C)x + (A− B − D)

(x − 1)(x + 1)(x2 + 1)

Comparing coefficients,
A+ B + C = 0
A− B + D = 4
A+ B − C = 0
A− B − D = 0

=⇒ A = 1, B = −1, C = 0, D = 2.

Therefore,
4x6 + x4 − 1

x4 − 1
= 4x2 + 1 +

1

x − 1
− 1

x + 1
+

2

x2 + 1
.
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(Lecture 22) Integration of partial fractions
Useful results for integrating partial fractions:

▶
∫

1

ax + b
dx =

1

a
ln |ax + b|+ C

▶
∫

1

(ax + b)k
dx (where k > 1) =

(ax + b)−k+1

a(−k + 1)
+ C

▶
∫

1

x2 + a2
dx =

1

a
tan−1 x

a
+ C

▶
∫

1

(x2 + a2)k
dx : use reduction formula/integration by parts

▶
∫

1

ax2 + bx + c
dx ,

∫
1

(ax2 + bx + c)k
dx : write

ax2 + bx + c = a
(
x + b

2a

)2
+
(
c − b2

4a

)
, then use the above

results

▶
∫

Ax + B

ax2 + bx + c
dx =

A

2a
ln |ax2 + bx + c |+

(
B − Ab

2a

)∫
1

ax2 + bx + c
dx
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(Lecture 22) Integration of rational functions

Example:

∫
4x6 + x4 − 1

x4 − 1
dx =?

Solution: By partial fraction decomposition, we have

4x6 + x4 − 1

x4 − 1
= 4x2 + 1 +

1

x − 1
− 1

x + 1
+

2

x2 + 1

and hence∫
4x6 + x4 − 1

x4 − 1
dx

=

∫ (
4x2 + 1 +

1

x − 1
− 1

x + 1
+

2

x2 + 1

)
dx

=
4x3

3
+ x + ln |x − 1| − ln |x + 1|+ 2 tan−1 x + C
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(Lecture 23) t-substitution
For

∫
f (x) dx where f (x) is a rational function in terms of

cos x , sin x , tan x , we can substitute t = tan
x

2
. Then we have

sin x =
2t

1 + t2
, cos x =

1− t2

1 + t2
, tan x =

2t

1− t2
, dx =

2

1 + t2
dt

and so
∫
f (x) dx becomes an integral of rational function in t.

Example:

∫
1

2 + cos x
dx =?

Solution: Let t = tan x
2 . We have∫

1

2 + cos x
dx =

∫
1

2 + 1−t2

1+t2

· 2

1 + t2
dt

=

∫
2

2(1 + t2) + (1− t2)
dt

=

∫
2

t2 + 3
dt

= 2 tan−1 t√
3
+ C = 2 tan−1 tan

x
2√
3

+ C
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(Lecture 23–24) Definite integration
Definite integral:

Let a ≤ b and f (x) be a continuous function on [a, b].

The definite integral

∫ b

a
f (x) dx is defined as the signed area

under the graph of y = f (x) between x = a and x = b.

Theorem (definite integral = limit of Riemann sum):∫ b

a
f (x) dx = lim

n→∞

n∑
k=1

f (xk)∆xk

where a = x0 < x1 < x2 < · · · < xn = b and ∆xk = xk − xk−1.
In particular, if all xk are equally spaced, we have∫ b

a
f (x) dx = lim

n→∞

n∑
k=1

f

(
a+

k

n
(b − a)

)
· b − a

n

Example:∫ 1

0

x2dx = lim
n→∞

n∑
k=1

(
k

n

)2
1

n
= lim

n→∞

1

n3

n∑
k=1

k2 = lim
n→∞

n(n + 1)(2n + 1)

6n3
=

1

3
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(Lecture 23–24) Definite integration

Properties of definite integrals:

▶
∫ a

a
f (x) dx = 0

▶
∫ b

a
kf (x) dx = k

∫ b

a
f (x) dx

▶
∫ b

a
(f (x)± g(x)) dx =

∫ b

a
f (x) dx ±

∫ b

a
g(x) dx

▶
∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx if c ∈ (a, b)

▶ For consistency, we also define

∫ a

b
f (x) dx = −

∫ b

a
f (x) dx
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(Lecture 24) Fundamental theorem of calculus (FTC)
First fundamental theorem of calculus:

Let f (t) be a continuous function. Then
d

dx

(∫ x

a
f (t) dt

)
= f (x).

Example: If g(x) =

∫ x

1
sin(t2 + 5) dt, find g ′(1).

Solution: By 1st FTC, g ′(x) = sin(x2 + 5) =⇒ g ′(1) = sin 6.

Example: If g(x) =

∫ sin x

0
et

3
dt, find g ′(x).

Solution: By 1st FTC,

g ′(x) =
d

du

(∫ u

0
et

3
dt

)
· du
dx

(let u = sin x)

= eu
3 · cos x = esin

3 x cos x .
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(Lecture 24) Fundamental theorem of calculus (FTC)
Second fundamental theorem of calculus:

Suppose F ′(x) = f (x) on [a, b]. Then

∫ b

a
f (x) dx = F (b)− F (a).

Example:

∫ 2

1
x2 dx =

[
x3

3

]2
1

=
23

3
− 13

3
=

7

3

Definite integral by substitution:∫ b

a
f (u(x))u′(x) dx =

∫ u(b)

u(a)
f (u) du

Example:

∫ 1

0

√
2x + 1 dx =?

Solution: Let u = 2x + 1, then du
dx = 2 ⇒ du = 2 dx . Also, when

x = 0 we have u = 1, and when x = 1 we have u = 3. Therefore,∫ 1

0

√
2x + 1 dx =

∫ 3

1

√
u
1

2
du =

[
u

3
2

3

]3
1

=
3
√
3

3
− 1

3
=

√
3− 1

3
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(Lecture 24) Fundamental theorem of calculus (FTC)
Integration by parts for definite integral:∫ b

a
uv ′ dx = [uv ]ba −

∫ b

a
vu′ dx

Example:

∫ 2

1
ln x dx = [x ln x ]21 −

∫ 2

1
x(ln x)′ dx =

(2 ln 2− 0)−
∫ 2

1
1 dx = 2 ln 2− (2− 1) = 2 ln 2− 1

Derivative of functions defined by definite integrals:

d

dx

(∫ v(x)

u(x)
f (t) dt

)
= f (v(x))v ′(x)− f (u(x))u′(x)

Example:
d

dx

(∫ x3

− sin x
et

2
dt

)
=

e(x
3)2 · 3x2 − e(− sin x)2 · (− cos x) = 3x2ex

6
+ esin

2 x cos x
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(Lecture 24) Evaluating limits by integrals
By treating the limit below as the limit of a Riemann sum, we have:

lim
n→∞

1

n

n∑
k=1

f

(
k

n

)
=

∫ 1

0
f (x) dx

Example: lim
n→∞

(
1√

n2 + 12
+

1√
n2 + 22

+ · · ·+ 1√
n2 + n2

)
=?

Solution: Note that
1√

n2 + k2
=

1

n
· 1√

1 +
(
k
n

)2 . We have

lim
n→∞

(
1√

n2 + 12
+

1√
n2 + 22

+ · · ·+ 1√
n2 + n2

)
= lim

n→∞

1

n

n∑
k=1

1√
1 +

(
k
n

)2 =

∫ 1

0

1√
1 + x2

dx

=
[
ln
∣∣∣√1 + x2 + x

∣∣∣]1
0
(using trigonometric substitution x = tan θ)

= ln(
√
2 + 1)
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(Lecture 24–25) Other definite integration techniques
▶ If f is an odd function, then

∫ a

−a
f (x) dx = 0.

Example:

∫ 2023

−2023

x4 sin x sin 2x sin 3x dx = 0

▶ If f is an even function, then

∫ a

−a
f (x) dx = 2

∫ a

0
f (x) dx .

Example:

∫ 1

−1

x2 cos x dx = 2

∫ 1

0

x2 cos x dx

▶ Other symmetry arguments

Example:

∫ π
2

0

sin3 x

sin3 x + cos3 x
dx =?

Solution: Let u = π
2
− x , then du = −dx and so

∫ π
2

0

sin3 x

sin3 x + cos3 x
dx

=

∫ 0

π
2

sin3
(
π
2
− u

)
sin3

(
π
2
− u

)
+ cos3

(
π
2
− u

) (−1)du =

∫ π
2

0

cos3 u

sin3 u + cos3 u
du.

Therefore,∫ π
2

0

sin3 x

sin3 x + cos3 x
dx +

∫ π
2

0

cos3 u

sin3 u + cos3 u
du =

∫ π
2

0

sin3 x + cos3 x

sin3 x + cos3 x
dx

=

∫ π
2

0

1 dx =
π

2
=⇒

∫ π
2

0

sin3 x

sin3 x + cos3 x
dx =

π

4
.
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Good luck on your final exam!
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