MATH1010F University Mathematics

Final Review

Gary Choi

November 30, 2023
https://www.math.cuhk.edu.hk/course/2324/math1010f

Final exam

- Date: December 22 (Friday)
- Time: 09:30-11:30
- Venue: University Gymnasium
- Closed book, closed notes
- Bring student ID card, black/blue pen
- List of approved calculators:
http://www.res.cuhk.edu.hk/images/content/examinations/ use-of-calculators-during-course-examination/ Use-of-Calculators-during-Course-Examinations.pdf
- Scope: EVERYTHING!
- Limits and continuity
- Differentiation
- Integration

Basic notations

Set: a collection of elements

- $\{a, b, c\}=a$ set containing three elements a, b, c
- $x \in A$ means " x is an element of the set A "
- $A \subset B$ (also written as $A \subseteq B$) means " A is a subset of B "
(i.e. for any element $x \in A$, we have $x \in B$)
- $\{x: \cdots\}=\{x \mid \cdots\}=\{x$ such that $\cdots\}$
- $\mathbb{R}=$ the set of all real numbers
- $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}=$ the set of all integers
- $\mathbb{N}=\mathbb{Z}^{+}=\{x \in \mathbb{Z}: x>0\}=\{1,2,3, \ldots\}$
$=$ the set of all positive integers
- $\mathbb{Q}=\left\{x \in \mathbb{R}: x=\frac{p}{q}\right.$ for some $p, q \in \mathbb{Z}$ with $\left.q \neq 0\right\}$
$=$ the set of all rational numbers
- $\emptyset=\{ \}=$ empty set

Examples:

- $2 \in \mathbb{Z}$ (since 2 is an integer)
- $\pi \notin \mathbb{Q}$ (since π is an irrational number)
- $\{0,2,4,6, \ldots\} \subset \mathbb{Z}$

Basic notations

- Union: $A \cup B=\{x: x \in A$ or $x \in B\}$
- Intersection: $A \cap B=\{x: x \in A$ and $x \in B\}$
- Union of multiple sets $A_{1}, A_{2}, \ldots, A_{n}$:

$$
\bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \cdots \cup A_{n}
$$

- Intersection of multiple sets $A_{1}, A_{2}, \ldots, A_{n}$:

$$
\bigcap_{i=1}^{n} A_{i}=A_{1} \cap A_{2} \cap \cdots \cap A_{n}
$$

- Set difference: $A \backslash B=\{x: x \in A$ and $x \notin B\}$

Examples:

- $\{1,2,3\} \cup\{1,3,4,7\}=\{1,2,3,4,7\}$
- $\{1,2,3\} \cap\{1,3,4,7\}=\{1,3\}$
- $\{1,2,3\} \backslash\{1,3,4,7\}=\{2\}$

Basic notations

Intervals:

- $(a, b)=\{x \in \mathbb{R}: a<x<b\}$ (open interval)
- $[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\}$ (closed interval)
- $(a, b]=\{x \in \mathbb{R}: a<x \leq b\}$
- $[a, b)=\{x \in \mathbb{R}: a \leq x<b\}$
- $(a, \infty)=\{x \in \mathbb{R}: x>a\}$
- $[a, \infty)=\{x \in \mathbb{R}: x \geq a\}$
- $(-\infty, b)=\{x \in \mathbb{R}: x<b\}$
- $(-\infty, b]=\{x \in \mathbb{R}: x \leq b\}$

Examples:

- $(-1,3) \cup(0,4]=(-1,4]$
- $[0,5] \cap(1, \infty)=(1,5]$
- $(0,5) \backslash(1,2)=(0,1] \cup[2,5)$
- $\bigcup_{n \in \mathbb{Z}}[2 n \pi,(2 n+1) \pi)=\cdots \cup[-2 \pi,-\pi) \cup[0, \pi) \cup[2 \pi, 3 \pi) \cup \cdots$

(Lecture 1-2) Sequences

Examples:

- $a_{n}=\frac{1}{n}=1, \frac{1}{2}, \frac{1}{3}, \ldots$
- $b_{n}=2^{n-1}=1,2,4,8, \ldots$
- $c_{n}=(-1)^{n}=-1,1,-1,1, \ldots$
- Arithmetic sequences: $a_{n+1}-a_{n}=d$ for some constant d
- Geometric sequences: $a_{n+1}=r a_{n}$ for some constant r

Definitions:

- Monotonic increasing (or "increasing"): $a_{n} \leq a_{n+1}$ for all n
- Monotonic decreasing (or "decreasing"): $a_{n} \geq a_{n+1}$ for all n
- Monotonic: Either monotonic increasing or decreasing
- Strictly increasing: $a_{n}<a_{n+1}$ for all n
- Strictly decreasing: $a_{n}>a_{n+1}$ for all n
- Bounded below: there exists $M \in \mathbb{R}$ s.t. $a_{n}>M$ for all n
- Bounded above: there exists $M \in \mathbb{R}$ s.t. $a_{n}<M$ for all n
- Bounded: there exists $M \in \mathbb{R}$ s.t. $\left|a_{n}\right|<M$ for all n (i.e. both bounded below and bounded above)

(Lecture 1-2) Limits of sequences

Definitions:

- (Convergent sequence) If $\left\{a_{n}\right\}$ approaches a number L as n approaches infinity, we say $\lim _{n \rightarrow \infty} a_{n}=L$.
- (Divergent sequence) If no such L exists, we say that $\left\{a_{n}\right\}$ is divergent.
Note: If $\lim _{n \rightarrow \infty} a_{n}=\infty$ or $-\infty$, it is also divergent.
Uniqueness of limit: If a_{n} is convergent, then the limit is unique.
Basic arithmetic rules: If $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$, then
- $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=a \pm b$
- $\lim _{n \rightarrow \infty}\left(c a_{n}\right)=c a$ (where c is a constant)
- $\lim _{n \rightarrow \infty} a_{n} b_{n}=a b$
- $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{a}{b}($ if $b \neq 0)$

Example: $\lim _{n \rightarrow \infty}\left(\cos \frac{1}{n}-2\left(\frac{3}{4}\right)^{n}+\frac{1}{n^{2}}\right)=1-2 \cdot 0+0=1$

(Lecture 1-2) Limits of sequences

Limits involving $\pm \infty$:

- $\infty \pm L=\infty$
- $-\infty \pm L=-\infty$
- $\infty+\infty=\infty$
- $-\infty-\infty=-\infty$
- $L \cdot \infty=\left\{\begin{array}{cc}\infty & \text { if } L>0 \\ -\infty & \text { if } L<0\end{array}\right.$
- $\frac{L}{ \pm \infty}=0$
- (Indeterminate forms) $\infty-\infty, \frac{ \pm \infty}{ \pm \infty}, \frac{0}{0}, 0 \cdot \infty$: try further simplifying

Convergence \Rightarrow Boundedness:

$$
\text { If }\left\{a_{n}\right\} \text { is convergent, then }\left\{a_{n}\right\} \text { is bounded. }
$$

Remark: The converse is NOT true, i.e. bounded \nRightarrow convergent! Example: $\left\{(-1)^{n}\right\}=-1,1,-1,1, \ldots$ is bounded but divergent.

(Lecture 2) Monotone convergence theorem

$$
\text { If }\left\{a_{n}\right\} \text { is monotonic and bounded, then }\left\{a_{n}\right\} \text { is convergent. }
$$

Other versions:

- If $\left\{a_{n}\right\}$ is monotonic increasing and bounded above, then $\left\{a_{n}\right\}$ is convergent.
- If $\left\{a_{n}\right\}$ is monotonic decreasing and bounded below, then $\left\{a_{n}\right\}$ is convergent.
Example: To prove that $\left\{a_{n}\right\}$ with $\left\{\begin{array}{l}a_{n+1}=\sqrt{a_{n}+1} \\ a_{1}=1\end{array}\right.$ is convergent, we prove that (i) $\left\{a_{n}\right\}$ is bounded by 2 (by MI) and (ii) $\left\{a_{n}\right\}$ is monotonic increasing.

Remark:
The converse is NOT true: convergent \nRightarrow monotonic \& bounded! Example:
$\left\{\frac{(-1)^{n}}{n}\right\}=-1, \frac{1}{2},-\frac{1}{3}, \frac{1}{4}, \ldots$ converges to 0 , but the sequence is not monotonic.

(Lecture 3) Squeeze theorem (sandwich theorem)

$$
\begin{aligned}
& \text { If } b_{n} \leq a_{n} \leq c_{n} \text { for all } n \text { and } \lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n}=L, \\
& \text { then } \lim _{n \rightarrow \infty} a_{n}=L
\end{aligned}
$$

Example: $\lim _{n \rightarrow \infty} \frac{\sin (\cos n)}{n}=$?
Solution: Since $-1 \leq \sin (\cos n) \leq 1$ for all n, we have

$$
\frac{-1}{n} \leq \frac{\sin (\cos n)}{n} \leq \frac{1}{n}
$$

Now, since $\lim _{n \rightarrow \infty} \frac{-1}{n}=0=\lim _{n \rightarrow \infty} \frac{1}{n}$, by squeeze theorem, we have

$$
\lim _{n \rightarrow \infty} \frac{\sin (\cos n)}{n}=0
$$

Some possible ways to show that a sequence converges

(I) Find the limit directly using some basic limit results

$$
\begin{aligned}
& \qquad \lim _{n \rightarrow \infty} r^{n}=0 \text { if }|r|<1, \lim _{n \rightarrow \infty} \frac{1}{n}=0, \ldots \\
& \text { Example: } \lim _{n \rightarrow \infty}\left(\cos \frac{1}{n}+\left(\frac{3}{4}\right)^{n}+\frac{1}{n^{2}}\right)=1+0+0=1
\end{aligned}
$$

(II) Use the monotone convergence theorem

- Show that the sequence is bounded and monotonic (may need to use mathematical induction)
- Conclude that the sequence converges (i.e. can write $\lim _{n \rightarrow \infty} a_{n}=L$, then solve some equations to find L if needed).
Example: Show that $\left\{\begin{array}{l}a_{n+1}=\sqrt{a_{n}+1} \\ a_{1}=1\end{array}\right.$ converges.
(III) Use the squeeze theorem
- Find b_{n}, c_{n} s.t. $b_{n} \leq a_{n} \leq c_{n}$ and $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n}(=L)$.
- Conclude that $\lim _{n \rightarrow \infty} a_{n}=L$.

Example: Show that $\left\{a_{n}\right\}=\left\{\frac{(-1)^{n}+\sin n}{n}\right\}$ converges.
If a way does not work, it does NOT imply that the sequence is divergent! Try another way.

Some possible ways to show that a sequence diverges

(I) Show that $\left\{a_{n}\right\}$ is unbounded (i.e. $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\infty$)

- Reason: If a sequence converges, it must be bounded

Example: $a_{n}=(-1)^{n} n^{2}$ diverges as $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty} n^{2}=\infty$
(II) Show that $\left\{a_{n}\right\}$ contains two subsequences which converge to two different values

- Reason: If a sequence converges, then the limit must be unique

Example: $a_{n}=(-1)^{n}$ diverges since $\left\{a_{1}, a_{3}, a_{5}, \ldots\right\}$ converges to -1 and $\left\{a_{2}, a_{4}, a_{6}, \ldots\right\}$ converges to 1 .

If a way does not work, it does NOT imply that the sequence is convergent! Try another way.

(Lecture 3) Infinite series

Series: $\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\cdots+a_{n}$
Examples:
$\sum_{k=1}^{n} k=1+2+\cdots+n=\frac{n(n+1)}{2}$

- (Arithmetic sum) $\sum_{k=1}^{n}(a+(k-1) d)=\frac{2 a+(n-1) d}{2}$
- (Geometric sum) $\sum_{k=1}^{n} a r^{k-1}=\frac{a\left(r^{n}-1\right)}{(r-1)}($ if $r \neq 1)$

Convergence of infinite series: We say that an infinite series $\sum_{k=1}^{\infty}$
sums $\left\{s_{n}\right\}$ (where $s_{n}=a_{1}+a_{2}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k}$) converges.
Example: (Euler's number) $e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots \approx 2.718$

(Lecture 3) Functions

Definitions:

- $f: A \rightarrow B$
- A: Domain
- B: Codomain
- f : Some rule of assigning elements in A to elements in B
- Range of $f=\{f(x): x \in A\}$ (also known as image of f)
- Natural domain = largest domain on which f can be defined

Examples:

- For $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x)=x^{2}$, the range of f is $[0, \infty)$
- The natural domain of $f(x)=\frac{1}{\sqrt{x+1}}$ is $(-1, \infty)$
- The natural domain of $\tan (x)$ is

$$
\mathbb{R} \backslash\left\{ \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \ldots\right\}=\bigcup_{n \in \mathbb{Z}}\left(\left(n-\frac{1}{2}\right) \pi,\left(n+\frac{1}{2}\right) \pi\right)
$$

(Lecture 3-4) Injective, subjective, bijective functions, and inverse functions

- $f: A \rightarrow B$ is said to be injective (or "1-1", "one-to-one") if for any $x_{1}, x_{2} \in A$ with $x_{1} \neq x_{2}$, we have $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ (Or equivalently, if $f\left(x_{1}\right)=f\left(x_{2}\right)$ then we have $x_{1}=x_{2}$)
- $f: A \rightarrow B$ is said to be surjective (or "onto") if for any $y \in B$, there exists $x \in A$ such that $y=f(x)$
- f is bijective if it is both injective and surjective
- If $f: A \rightarrow B$ is a bijective function, the inverse function $f^{-1}: B \rightarrow A$ satisfies $f^{-1}(f(x))=x$ for all $x \in A$ and $f\left(f^{-1}(y)\right)=y$ for all $y \in B$

Examples:

- $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x)=x^{3}$ is bijective
- $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x)=x^{2}$ is not injective as $f(-1)=f(1)=1$
- $f:[0, \infty) \rightarrow \mathbb{R}$ with $f(x)=x^{2}$ is injective but not surjective
- $f:[0, \infty) \rightarrow[0, \infty)$ with $f(x)=x^{2}$ is bijective, and the inverse function is $f^{-1}:[0, \infty) \rightarrow[0, \infty)$ with $f^{-1}(y)=\sqrt{y}$

(Lecture 3-4) Even, odd, periodic functions

- f is an even function if $f(-x)=f(x)$ for all x
- f is an odd function if $f(-x)=-f(x)$ for all x
- f is a periodic function if there exists a constant k such that $f(x)=f(x+k)$ for all x

Examples:

- $f(x)=x^{2}$ is even because $f(-x)=(-x)^{2}=x^{2}=f(x)$ for all x
- $f(x)=x^{3}+\sin x$ is odd because
$f(-x)=(-x)^{3}+\sin (-x)=-x^{3}-\sin x=-(f(x))$ for all x
- $f(x)=x+1$ is neither odd nor even because $f(-1)=0 \neq \pm f(1)$
- $f(x)=3 \sin x+\cos \frac{x}{2}$ is periodic because
$f(x+4 \pi)=3 \sin (x+4 \pi)+\cos \frac{x+4 \pi}{2}=$
$3 \sin (x+4 \pi)+\cos \left(\frac{x}{2}+2 \pi\right)=3 \sin x+\cos \frac{x}{2}=f(x)$ for all x

(Lecture 4-5) Some common functions

Exponential function $e^{x}: \mathbb{R} \rightarrow \mathbb{R}^{+}$
$>e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$

- bijective function

Logarithmic function $\ln : \mathbb{R}^{+} \rightarrow \mathbb{R}$

- Inverse function of $e^{x}\left(y=e^{x} \Leftrightarrow x=\ln y\right)$
- bijective function

Sine function $\sin : \mathbb{R} \rightarrow[-1,1]$

- $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$
- odd function (because $\sin (-x)=-\sin x$)
- periodic function (because $\sin (x+2 \pi)=\sin x$)

Cosine function $\cos : \mathbb{R} \rightarrow[-1,1]$
$-\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\cdots$

- even function (because $\cos (-x)=\cos x$)
- periodic function (because $\cos (x+2 \pi)=\cos x$)

(Lecture 4-5) Limit of functions

Definitions:

- Left-hand limit: We say that $\lim _{x \rightarrow a^{-}} f(x)=L$ if $f(x)$ is close enough to L whenever x is close enough to a and $x<a$.
- Right-hand limit: We say that $\lim _{x \rightarrow a^{+}} f(x)=L$ if $f(x)$ is close enough to L whenever x is close enough to a and $x>a$.
- Two-sided limit: We say that $\lim _{x \rightarrow a} f(x)=L$ if both the left-hand limit and the right-hand limit exist and are equal, i.e.

$$
\lim _{x \rightarrow a} f(x)=L \Longleftrightarrow \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L
$$

Remark: Whether f is defined at a or the value of f at a is NOT important for finding $\lim _{x \rightarrow a^{-}} f(x), \lim _{x \rightarrow a^{+}} f(x), \lim _{x \rightarrow a} f(x)$
Example: If $f(x)=\left\{\begin{array}{ll}-x & \text { if } x<0 \\ 1 & \text { if } x=0 \\ x^{2} & \text { if } x>0\end{array}\right.$, we have
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(-x)=0$ and $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x^{2}=0$,
so the two-sided limit exists and we have $\lim _{x \rightarrow 0} f(x)=0(\neq 1)$

(Lecture 4-5) Properties of limits of functions

If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then

- $\lim _{x \rightarrow a} f(x) \pm g(x)=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
- $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$ (where c is a constant)
- $\lim _{x \rightarrow a} f(x) g(x)=\left(\lim _{x \rightarrow a} f(x)\right) \cdot\left(\lim _{x \rightarrow a} g(x)\right)$
- $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}\left(\right.$ if $\left.\lim _{x \rightarrow a} g(x) \neq 0\right)$

Examples:

- $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{x^{2}+x}\right)=\lim _{x \rightarrow 0} \frac{(x+1)-1}{x(x+1)}=\lim _{x \rightarrow 0} \frac{1}{x+1}=1$
- $\lim _{x \rightarrow 2} \frac{2-x}{3-\sqrt{x^{2}+5}}=\lim _{x \rightarrow 2}\left(\frac{2-x}{3-\sqrt{x^{2}+5}} \cdot \frac{3+\sqrt{x^{2}+5}}{3+\sqrt{x^{2}+5}}\right)$

$$
=\lim _{x \rightarrow 2} \frac{(2-x)\left(3+\sqrt{x^{2}+5}\right)}{4-x^{2}}=\lim _{x \rightarrow 2} \frac{3+\sqrt{x^{2}+5}}{2+x}=\frac{6}{4}=\frac{3}{2}
$$

(Lecture 4-5) Properties of limits of functions

Some other useful limit results:

- $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$
- $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1$
- $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$

Examples:

- $\lim _{x \rightarrow 0} \frac{e^{3 x}-1}{x}=\lim _{x \rightarrow 0} \frac{e^{3 x}-1}{3 x} \cdot 3=1 \cdot 3=3$
$-\lim _{x \rightarrow 0} \frac{\sin 2 x}{\sin 3 x}=\lim _{x \rightarrow 0} \frac{\frac{\sin 2 x}{2 x}(2 x)}{\frac{\sin 3 x}{3 x}(3 x)}=\frac{\left(\lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x}\right) \cdot 2}{\left(\lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x}\right) \cdot 3}=\frac{1 \cdot 2}{1 \cdot 3}=\frac{2}{3}$

(Lecture 5) Sequential criterion

$$
\begin{gathered}
\text { We have } \lim _{x \rightarrow a} f(x)=L \quad \text { (limit of function) } \\
\text { if and only if }
\end{gathered}
$$

For any sequence $\left\{x_{n}\right\}$ with $x_{n} \neq a$ for any n and $\lim _{n \rightarrow \infty} x_{n}=a$, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L \quad$ (limit of sequence).

Consequence: If we can find two sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ such that:

- $x_{n} \neq a, y_{n} \neq a$ for all n and $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=a$
- but $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq \lim _{n \rightarrow \infty} f\left(y_{n}\right)$,
then $\lim _{x \rightarrow a} f(x)$ does not exist.
Example: Prove that $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist.
Solution: Let $\left\{x_{n}\right\}=\left\{\frac{1}{n \pi}\right\}=\frac{1}{\pi}, \frac{1}{2 \pi}, \frac{1}{3 \pi}, \cdots$ and
$\left\{y_{n}\right\}=\left\{\frac{1}{2 n \pi+\frac{\pi}{2}}\right\}=\frac{1}{2 \pi+\frac{\pi}{2}}, \frac{1}{4 \pi+\frac{\pi}{2}}, \frac{1}{6 \pi+\frac{\pi}{2}}, \cdots$, then we have
$\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=0$ but $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=0 \neq \lim _{n \rightarrow \infty} f\left(y_{n}\right)=1$.

(Lecture 5) Squeeze theorem for functions

Let f, g, h be functions. If $f(x) \leq g(x) \leq h(x)$ for any $x \neq a$ on a neighborhood of a and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$, then the limit of $g(x)$ at $x=a$ exists and we have $\lim _{x \rightarrow a} g(x)=L$.

Example: $\lim _{x \rightarrow 0} x \sin \frac{1}{e^{x^{2}}-1}=$?
Solution:
Since $-1 \leq \sin \frac{1}{e^{x^{2}}-1} \leq 1$ for all x, we have $-x \leq x \sin \frac{1}{e^{x^{2}}-1} \leq x$.
As $\lim _{x \rightarrow 0}(-x)=0=\lim _{x \rightarrow 0} x$, by squeeze theorem, $\lim _{x \rightarrow 0} x \sin \frac{1}{e^{x^{2}}-1}=0$.

(Lecture 6-7) Limits at infinity

Definitions:

- We say that $\lim _{x \rightarrow \infty} f(x)=L$ if $f(x)$ is close enough to L whenever x is large enough.
- (Similar for $\lim _{x \rightarrow-\infty} f(x)$)

Examples:

- $\lim _{x \rightarrow \infty} \frac{1}{x-1}=0$
- $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$
- $\lim _{x \rightarrow \infty}\left(1+\frac{1}{2 x}\right)^{3 x}=\lim _{x \rightarrow \infty}\left(1+\frac{1}{2 x}\right)^{3 x \cdot \frac{2}{2}}=$
$\lim _{x \rightarrow \infty}\left(1+\frac{1}{2 x}\right)^{2 x \cdot \frac{3}{2}}=\left(\lim _{x \rightarrow \infty}\left(1+\frac{1}{2 x}\right)^{2 x}\right)^{\frac{3}{2}}=e^{\frac{3}{2}}$
- $\lim _{x \rightarrow \infty} \frac{x^{k}}{e^{x}}=0$ and $\lim _{x \rightarrow \infty} \frac{(\ln x)^{k}}{x}=0$ for any positive integer k

(Lecture 7) Continuity of functions

f is said to be continuous at $x=a$ if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

In other words, we have:
(i) The limit $\lim _{x \rightarrow a} f(x)$ exists (i.e. $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$), and
(ii) It is equal to the value of f at $x=a$.
f is said to be continuous on an interval (a, b) if f is continuous at every point on (a, b).

Examples:

- $x^{n}, \cos x, \sin x, e^{x}$ are continuous on \mathbb{R}
- $\ln (x)$ is continuous on \mathbb{R}^{+}
- $f(x)=\left\{\begin{array}{ll}-x+1 & \text { if } x<0 \\ \cos x & \text { if } x \geq 0\end{array}\right.$ is continuous at $x=0$

(Lecture 7) Properties of continuous functions

Properties:

- If $f(x)$ and $g(x)$ are continuous at $x=a$, then the following functions are also continuous at $x=a$:
- $f(x) \pm g(x)$
- $c f(x)$ (where c is a constant)
- $f(x) g(x)$
- $\frac{f(x)}{g(x)}$ (if $\left.g(a) \neq 0\right)$
- If $f(x)$ is continuous at $x=a$ and $g(u)$ is continuous at $u=f(a)$, then the composition $(g \circ f)(x)$ (i.e. $g(f(x)))$ is also continuous at $x=a$.

Examples:

- $\cos (x)+2 x$ is continuous on \mathbb{R} because both $\cos x$ and x are continuous on \mathbb{R}.
- $\sin \left(x^{3}+1\right)$ is continuous at $x=0$ because $x^{3}+1$ is continuous at $x=0$ and $\sin (u)$ is continuous at $u=1$.
(Lecture 7) Intermediate value theorem and extreme value theorem

Intermediate value theorem (IVT):

Let f be a continuous function on $[a, b]$.
For any real number L between $f(a)$ and $f(b)$
(i.e. $f(a)<L<f(b)$ or $f(b)<L<f(a)$), there exists $c \in(a, b)$ such that $f(c)=L$.

Example: Show that $f(x)=x^{7}+x^{3}+1$ has a real root.
Solution: Note that $f(-1)=-1<0$ and $f(0)=1>0$. As f is continuous, by IVT, there exists $c \in(-1,0)$ s.t. $f(c)=0$.

Extreme value theorem (EVT):

Let f be a continuous function on $[a, b]$. Then there exists $\alpha, \beta \in[a, b]$ such that $f(\alpha) \leq f(x) \leq f(\beta)$ for any $x \in[a, b]$ (i.e. f has a global maximum and a global minimum in $[a, b]$).

(Lecture 8) Differentiability of functions

f is said to be differentiable at $x=a$ if the following limit (called the derivative of f at $x=a$) exists:

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Another form:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Remark: For piecewise functions, we need to check both
$\lim _{x \rightarrow a^{-}} \frac{f(x)-f(a)}{x-a}$ and $\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a}$
Example (finding derivative by definition, i.e. first principle):

- If $f(x)=x^{2}$, then

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h}=2 x
\end{aligned}
$$

(Lecture 8-9) Derivatives of polynomial, exponential, logarithmic, and trigonometric functions

- $\left(x^{n}\right)^{\prime}=n x^{n-1}$
- $\left(e^{x}\right)^{\prime}=e^{x}$
- $(\ln x)^{\prime}=\frac{1}{x}$
- $\left(a^{x}\right)^{\prime}=a^{x} \ln a$
- $(\sin x)^{\prime}=\cos x$
- $(\cos x)^{\prime}=-\sin x$
- $(\tan x)^{\prime}=\sec ^{2} x=\frac{1}{\cos ^{2} x}$
- $(c)^{\prime}=0$ (where c is a constant)
- $(\sinh x)^{\prime}=\cosh x\left(\right.$ where $\left.\sinh x=\frac{e^{x}-e^{-x}}{2}, \cosh x=\frac{e^{x}+e^{-x}}{2}\right)$
- $(\cosh x)^{\prime}=\sinh x$
- $(\tanh x)^{\prime}=\operatorname{sech}^{2} x=\frac{1}{\cosh ^{2} x}$

(Lecture 8-9) Differentiation rules (sum, difference,

 product, and quotient rules)If f and g are differentiable at a point, then the following functions are also differentiable at that point:

- $(f(x) \pm g(x))^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)$
- $(c f(x))^{\prime}=c f^{\prime}(x)$ (where c is a constant)
- Product rule:

$$
(f g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

- Quotient rule:

$$
\left(\frac{f}{g}\right)^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}} \quad(\text { if } g(x) \neq 0)
$$

Examples:

- $\left(x^{3} \sin x\right)^{\prime}=\left(x^{3}\right)^{\prime} \sin x+x^{3}(\sin x)^{\prime}=3 x^{2} \sin x+x^{3} \cos x$
- $\left(\frac{\sin x}{x^{2}+1}\right)^{\prime}=\frac{(\sin x)^{\prime}\left(x^{2}+1\right)+(\sin x)\left(x^{2}+1\right)^{\prime}}{\left(x^{2}+1\right)^{2}}=\frac{\left(x^{2}+1\right) \cos x+2 x \sin x}{\left(x^{2}+1\right)^{2}}$

(Lecture 8-9) Differentiation rules (chain rule)

Chain rule:

If $f(x)$ is differentiable at $x=a$ and $g(u)$ is differentiable at $u=f(a)$, then $(g \circ f)$ is differentiable at $x=a$ and we have

$$
(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) f^{\prime}(a)
$$

In other words, we have

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

Examples:

- $\left(\sin x^{2}\right)^{\prime}=\frac{d(\sin u)}{d u} \frac{d u}{d x}\left(\right.$ let $\left.u=x^{2}\right)=(\cos u)(2 x)=2 x \cos x^{2}$
- $\left(e^{\sin x}\right)^{\prime}=e^{\sin x} \cos x$

A more complicated version: $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d v} \cdot \frac{d v}{d x}$

Example:

- $\left(\ln \left(\cos \left(x^{3}\right)\right)\right)^{\prime}=\frac{1}{\cos x^{3}} \cdot\left(-\sin \left(x^{3}\right)\right) \cdot\left(3 x^{2}\right)=-3 x^{2} \tan x^{3}$

(Lecture 8-9) Continuity and differentiability

Property:
If f is differentiable at $x=a$, then f is continuous at $x=a$
The converse is NOT true: if f is continuous at $x=a$, it may or may not be differentiable at $x=a$
Example: $f(x)=|x|= \begin{cases}-x & \text { if } x<0 \\ x & \text { if } x \geq 0\end{cases}$

- $f(x)$ is continuous on \mathbb{R} (i.e. at every point $x \in \mathbb{R}$):
- For any $a<0, \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a}(-x)=-a=f(a)$
- For any $a>0, \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} x=a=f(a)$
- For $a=0$, we have $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(-x)=0=f(0)$ and

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x=0=f(0), \text { and hence } \lim _{x \rightarrow 0} f(x)=f(0)
$$

- $f(x)$ is not differentiable at $x=0$:

Note that $f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{|h|-0}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}$ but
$\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=1$ and $\lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{-h}{h}=-1$

(Lecture 8-9) Continuity and differentiability

Another example of continuous but not differentiable functions:

$$
\begin{aligned}
f(x) & =|x+1|-|x|+|x-1| \\
& =\left\{\begin{array}{lll}
-(x+1)-(-x)-(x-1) & =-x & \text { if } x<-1 \\
(x+1)-(-x)-(x-1) & =x+2 & \text { if }-1 \leq x<0 \\
(x+1)-(x)-(x-1) & =-x+2 & \text { if } 0 \leq x<1 \\
(x+1)-(x)+(x-1) & =x & \text { if } x \geq 1
\end{array}\right.
\end{aligned}
$$

- $f(x)$ is continuous on \mathbb{R}
- $f(x)$ is not differentiable at $x=-1,0,1$

(Lecture 10-11) Implicit differentiation

Idea: Find y^{\prime} without having to explicitly write $y=f(x)$.
Example:
$\overline{\text { If } x \sin y}+y^{2}=x+3 y$, find the slope of tangent at $(0,0)$.
Solution:

$$
\begin{aligned}
\left(x \sin y+y^{2}\right)^{\prime} & =(x+3 y)^{\prime} \\
\left(\sin y+x(\cos y) y^{\prime}\right)+2 y y^{\prime} & =1+3 y^{\prime} \\
(x \cos y+2 y-3) y^{\prime} & =1-\sin y \\
y^{\prime} & =\frac{1-\sin y}{x \cos y+2 y-3}
\end{aligned}
$$

The slope of tangent at $(0,0)$ is $\frac{1-\sin 0}{0 \cdot \cos 0+2 \cdot 0-3}=-\frac{1}{3}$

(Lecture 10-11) Logarithmic differentiation

Idea: Find the derivative of some complicated functions using logarithms.

Example: If $y=x^{x}$, find y^{\prime}.
Solution:

$$
\begin{aligned}
y & =x^{x} \\
\ln y & =\ln \left(x^{x}\right) \\
\ln y & =x \ln x \\
(\ln y)^{\prime} & =(x \ln x)^{\prime} \\
\frac{1}{y} y^{\prime} & =1 \cdot \ln x+x \cdot \frac{1}{x} \\
y^{\prime} & =y(\ln x+1)=x^{x}(\ln x+1)
\end{aligned}
$$

(Lecture 10-11) Derivatives of inverse functions

Inverse functions:

If $f(y)$ is a bijective and differentiable function with $f^{\prime}(y) \neq 0$ for any y, then the inverse function $y=f^{-1}(x)$ is differentiable:

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Examples:

$$
\begin{gathered}
y=\sin ^{-1} x \Rightarrow \sin y=x \Rightarrow(\cos y) y^{\prime}=1 \Rightarrow\left(\sin ^{-1} x\right)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} \\
y=\cos ^{-1} x \Rightarrow \cos y=x \Rightarrow(-\sin y) y^{\prime}=1 \Rightarrow\left(\cos ^{-1} x\right)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \\
y=\tan ^{-1} x \Rightarrow \tan y=x \Rightarrow\left(\sec ^{2} y\right) y^{\prime}=1 \Rightarrow\left(\tan ^{-1} x\right)^{\prime}=\frac{1}{1+x^{2}}
\end{gathered}
$$

(Lecture 11-12) Higher order derivatives

- Second derivative:

$$
y^{\prime \prime}=f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)
$$

- n-th derivative:

$$
y^{(n)}=f^{(n)}(x)=\frac{d^{n} y}{d x^{n}}=\frac{d}{d x}\left(\frac{d}{d x}\left(\frac{d}{d x}\left(\cdots \frac{d y}{d x}\right)\right)\right)
$$

- 0-th derivative:

$$
y^{(0)}=f^{(0)}(x)=f(x)
$$

Examples:

- $\left(\sin x^{2}\right)^{\prime \prime}=\left(\left(\sin x^{2}\right)^{\prime}\right)^{\prime}=\left(\left(\cos x^{2}\right)(2 x)\right)^{\prime}$

$$
=\left(-\sin x^{2}\right)(2 x)(2 x)+2 \cos x^{2}=-4 x^{2} \sin x^{2}+2 \cos x^{2}
$$

- Find $y^{\prime \prime}$ if $x y+\sin y=1$:

$$
\begin{aligned}
& (x y+\sin y)^{\prime}=1^{\prime} \Rightarrow\left(y+x y^{\prime}+y^{\prime} \cos y\right)=0 \Rightarrow y^{\prime}=\frac{-y}{x+\cos y} \\
\Rightarrow & y^{\prime \prime}=-\frac{y^{\prime}(x+\cos y)-y\left(1-y^{\prime} \sin y\right)}{(x+\cos y)^{2}}=\frac{2 y(x+\cos y)+y^{2} \sin y}{(x+\cos y)^{3}}
\end{aligned}
$$

(Lecture 11-12) Higher order differentiation rules

If f and g are n-times differentiable (i.e. $f^{(n)}$ and $g^{(n)}$ exist), then:

- $(f \pm g)^{(n)}=f^{(n)} \pm g^{(n)}$
- $(c f)^{(n)}=c f^{(n)}$ (where c is a constant)
- Leibniz's rule (product rule for higher order derivatives):

$$
(f g)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} f^{(n-k)} g^{(k)}
$$

where $\binom{n}{k}=\frac{n!}{(n-k)!k!}$ is the binomial coefficient.
Example: $\left(x^{3} \sin x\right)^{(4)}$
$\begin{aligned}= & 1 \cdot\left(x^{3}\right)^{\prime \prime \prime \prime} \sin x+4 \cdot\left(x^{3}\right)^{\prime \prime \prime}(\sin x)^{\prime}+6 \cdot\left(x^{3}\right)^{\prime \prime}(\sin x)^{\prime \prime}+4\left(x^{3}\right)^{\prime}(\sin x)^{\prime \prime \prime} \\ & +1 \cdot x^{3}(\sin x)^{\prime \prime \prime \prime} \\ = & 0+24 \cos x-36 x \sin x-12 x^{2} \cos x+x^{3} \sin x \\ = & \left(x^{3}-36 x\right) \sin x+\left(24-12 x^{2}\right) \cos x\end{aligned}$

(Lecture 12-13) n-times differentiability and continuity

If f is n-times differentiable at $x=a$
$\left(f^{(n)}(a)\right.$ exists, i.e. $f^{(n-1)}$ is differentiable at $\left.x=a\right)$, then $f^{(n-1)}$ is continuous at $x=a$.
f is n-times differentiable at $x=a$ (i.e. $f^{(n)}(a)$ exists)
$f^{(n-1)}(a)$ exists and $f^{(n-1)}$ is continuous at $x=a$
\Downarrow
\Downarrow
$f^{\prime}(a)$ exists and f^{\prime} is continuous at $x=a$
\Downarrow
f is continuous at $x=a$
However, the converse is NOT true!
Example: Let $f(x)=|x| x$, then:

- f is differentiable at $x=0$
- f^{\prime} is continuous at $x=0$
- but f^{\prime} is not differentiable at $x=0$ (i.e. $f^{\prime \prime}(0)$ does not exist)
(Lecture 14) Local extrema, critical points, turning points
Local maximum:
$f(x)$ has a local maximum at $x=a$ if $f(x) \leq f(a)$ for all x near a (more precisely, for all $x \in D \cap(a-\delta, a+\delta)$ where D is the domain and $\delta>0$ is some small number).

Local minimum:

$f(x)$ has a local minimum at $x=a$ if $f(x) \geq f(a)$ for all x near a. Note:
Local extremum points can be either interior points or endpoints!
Example: For $f:[-\pi, \pi] \rightarrow \mathbb{R}$ with $f(x)=\sin x$,
local maximum points $=(-\pi, 0),\left(\frac{\pi}{2}, 1\right)$
local minimum points $=\left(-\frac{\pi}{2},-1\right),(\pi, 0)$.
Critical points:
f has a critical point at $x=a$ if $f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist.
Turning points:
f has a turning point at $x=a$ if f^{\prime} changes sign at a.
Note: $\{$ Turning points $\} \subset\{$ Critical points $\}$
Example: $x=0$ is a critical point of $f(x)=x^{3}$, but it is not a turning point.

(Lecture 14) First and second derivative tests

Theorem:

Let $f(x)$ be a continuous function. If $f(x)$ has a local maximum/ minimum at $x=a$, then $x=a$ must be a critical point of $f(x)$.
First derivative test:
Let $f(x)$ be a continuous function and $x=a$ be a critical point.
(i) If f^{\prime} changes sign from + to - at a, then $f(x)$ has a local maximum at $x=a$.
(ii) If f^{\prime} changes sign from - to + at a, then $f(x)$ has a local minimum at $x=a$.

Second derivative test:

Let $f(x)$ be a continuous function.
(i) If $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$, then $f(x)$ has a local maximum at $x=a$.
(ii) If $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)>0$, then $f(x)$ has a local minimum at $x=a$.

(Lecture 15) Finding global extrema

Extreme value theorem (EVT) for closed and bounded intervals:
Let f be a continuous function on $[a, b]$. Then there exists $\alpha, \beta \in[a, b]$ such that $f(\alpha) \leq f(x) \leq f(\beta)$ for any $x \in[a, b]$ (i.e. f has a global maximum and a global minimum in $[a, b]$).

Note: For f on $(a, b),(a, b]$, or $[a, b), f$ may NOT have any global extrema in some cases!

Finding global extrema for functions on general intervals:

1. Check all critical points (including endpoints if applicable) to find all local extrema.
2. Compare the values of $f(x)$ at all such points as well as the limit of f as x approaches the open endpoints (if applicable) to determine the existence of global extrema.
Examples:
$\overline{f(x)=x^{2}}$ on $[-2,1]$: global min. point $=(0,0)$; global max. $=(-2,4)$
$f(x)=x^{2}$ on \mathbb{R} : global minimum point $=(0,0)$; no global max.
$f(x)=x^{2}$ on (0,1): no global min; no global max

(Lecture 15) Concavity and points of inflection

Concavity:

We say that $f(x)$ is

- concave upward on (a, b) if $f^{\prime \prime}(x)>0$ on (a, b)
- concave downward on (a, b) if $f^{\prime \prime}(x)<0$ on (a, b)

Example: $f(x)=x^{3} \Longrightarrow f^{\prime \prime}(x)=6 x$
$\overline{f \text { is concave upward on }(0, \infty) \text { and concave downward on }(-\infty, 0), ~() ~}$

Point of inflection:

We say that $x=a$ is an inflection point of $f(x)$ if $f^{\prime \prime}(x)$ changes sign at $x=a$.
Example: $f(x)=x^{3} \Longrightarrow f^{\prime \prime}(x)=6 x$
As $f^{\prime \prime}$ changes sign from - to + at $x=0, f$ has an inflection point at $x=0$.

(Lecture 15) Asymptotes (vertical, horizontal, oblique)

Vertical asymptotes:

- $x=a$ is a vertical asymptote of $f(x)$ if

$$
\lim _{x \rightarrow a^{-}} f(x)= \pm \infty \text { or } \lim _{x \rightarrow a^{+}} f(x)= \pm \infty
$$

Example: For $f(x)=x^{2}+\frac{1}{x-1}$,
$x=1$ is a vertical asymptote since $\lim _{x \rightarrow 1^{+}} f(x)=\infty$.

Horizontal asymptotes:

- $y=b$ is a horizontal asymptote of $f(x)$ if

$$
\lim _{x \rightarrow-\infty} f(x)=b \text { or } \lim _{x \rightarrow \infty} f(x)=b
$$

Note: $f(x)$ can have at most two different horizontal asymptotes (one for $\lim _{x \rightarrow-\infty}$ and one for $\lim _{x \rightarrow \infty}$)
Example: For $f(x)=e^{x}$, $y=0$ is a horizontal asymptote since $\lim _{x \rightarrow-\infty} f(x)=0$.

(Lecture 15) Asymptotes (vertical, horizontal, oblique)

Oblique asymptotes:

- $y=a x+b$ is an oblique asymptote of $f(x)$ if

$$
\lim _{x \rightarrow-\infty}(f(x)-(a x+b))=0 \text { or } \lim _{x \rightarrow \infty}(f(x)-(a x+b))=0
$$

- Note: $f(x)$ can have at most two different oblique asymptotes (one for $\lim _{x \rightarrow-\infty}$ and one for $\lim _{x \rightarrow \infty}$)
Example: For $f(x)=x+3+\frac{2}{x}, \quad y=x+3$ is an oblique asymptote since $\lim _{x \rightarrow \infty}(f(x)-(x+3))=\lim _{x \rightarrow \infty} \frac{2}{x}=0$.
- Finding oblique asymptotes:

Method 1: Directly work on $f(x)-(a x+b)$, then check the coefficients of different terms and see what a, b have to be such that the limit $=0$ as $x \rightarrow \infty$ or $-\infty$.
Method 2: Find a such that $a=\lim _{x \rightarrow \infty} \frac{f(x)}{x}$ (or $\lim _{x \rightarrow-\infty}$), then find $b=\lim _{x \rightarrow \infty}(f(x)-a x)$ (or $\lim _{x \rightarrow-\infty}$).

(Lecture 15) Asymptotes (vertical, horizontal, oblique)

Example: $f(x)=\sqrt{x^{2}-2 x+3}$

- No vertical asymptote (as $f(x)$ is defined everywhere on \mathbb{R})
- No horizontal asymptote $\left(\lim _{x \rightarrow \infty} f(x)=\infty, \lim _{x \rightarrow-\infty} f(x)=\infty\right)$
- Oblique asymptotes:

For $x \rightarrow \infty$, we have
$a=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}-2 x+3}}{x}=\lim _{x \rightarrow \infty} \sqrt{1-\frac{2}{x}+\frac{3}{x^{2}}}=1$, and
$b=\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-2 x+3}-x\right)=\lim _{x \rightarrow \infty} \frac{\left(x^{2}-2 x+3\right)-x^{2}}{\sqrt{x^{2}-2 x+3}+x}=-1$

For $x \rightarrow-\infty$, we have
$a=\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}-2 x+3}}{x}=\lim _{x \rightarrow-\infty}-\sqrt{1+\frac{2}{x}+\frac{3}{x^{2}}}=-1$, and
$b=\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}-2 x+3}+x\right)=\lim _{x \rightarrow-\infty} \frac{\left(x^{2}-2 x+3\right)-x^{2}}{\sqrt{x^{2}-2 x+3}-x}=1$
So the oblique asymptotes are $y=x-1$ and $y=-x+1$.

(Lecture 15) Curve sketching

To sketch a given function, do the following:

1. Find:

- (Natural) domain
- x-intercept
- y-intercept
- Asymptotes (vertical, horizontal, oblique)
- Critical points (and check whether they are local max/min)
- Inflection points (and check concavity)

2. Sketch the curve based on the information above.

Examples: See the main MATH1010 lecture notes.

(Lecture 15) Curve sketching

Example: $f(x)=\sqrt{x^{2}-2 x+3}$

- Domain: \mathbb{R} (as $\sqrt{x^{2}-2 x+3}=\sqrt{(x-1)^{2}+2}$ is defined everywhere)
- x-intercept: None (as $f(x)=\sqrt{(x-1)^{2}+2} \neq 0$)
- y-intercept: $f(0)=\sqrt{3}$
- Asymptotes: $y=x-1$ and $y=-x+1$ (see the previous slide)
- Critical points: $f^{\prime}(x)=\frac{x-1}{\sqrt{x^{2}-2 x+3}}$, so the only critical point is at $x=1$. By first derivative test, it is a local minimum.
- Inflection point: None (as $f^{\prime \prime}(x)=\frac{2}{\sqrt{x^{2}-2 x+3}}>0$)

(Lecture 15-17) Mean value theorem (MVT)

Rolle's theorem:

If f is continuous on $[a, b]$, differentiable on (a, b), and $f(a)=f(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Lagrange's mean value theorem:
If f is continuous on $[a, b]$ and differentiable on (a, b),
then there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
Cauchy's mean value theorem:
If f, g are continuous on $[a, b]$, differentiable on (a, b), with $g(a) \neq g(b)$ and $g^{\prime}(x) \neq 0$ on (a, b), then there exists $c \in(a, b)$ such that $\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$.

(Lecture 16) Inequalities

Using MVTs to prove inequalities:

Example: Prove that $|\cos (x)-\cos (y)| \leq|x-y|$ for all $x, y \in \mathbb{R}$.
Solution:

- If $x=y$, we have $|\cos (x)-\cos (y)|=0=|x-y|$.
- If $x \neq y$, by Lagrange's MVT, there exists c between x and y such that

$$
\frac{\cos (x)-\cos (y)}{x-y}=-\sin (c) .
$$

Therefore, we have

$$
\frac{|\cos (x)-\cos (y)|}{|x-y|}=|-\sin (c)| \leq 1 \Longleftrightarrow|\cos (x)-\cos (y)| \leq|x-y|
$$

for all $x, y \in \mathbb{R}$.

(Lecture 16) Derivatives and inequalities

Increasing/decreasing functions and derivatives:

- f is (monotonic) increasing on (a, b) (i.e. $f(x) \leq f(y)$ for all $x, y \in(a, b)$ with $x<y)$ if and only if $f^{\prime}(x) \geq 0$ on (a, b).
- f is (monotonic) decreasing on (a, b) (i.e. $f(x) \geq f(y)$ for all $x, y \in(a, b)$ with $x<y)$ if and only if $f^{\prime}(x) \leq 0$ on (a, b).
- f is constant on (a, b) if and only if $f^{\prime}(x)=0$ on (a, b).
- f is strictly increasing on (a, b) (i.e. $f(x)<f(y)$ for all $x, y \in(a, b)$ with $x<y)$ if $f^{\prime}(x)>0$ on (a, b).
- f is strictly decreasing on (a, b) (i.e. $f(x)>f(y)$ for all $x, y \in(a, b)$ with $x<y)$ if $f^{\prime}(x)<0$ on (a, b).
Using derivatives to prove inequalities:
Example: Let $p>1$. Prove that $(1+x)^{p}>1+p x$ for all $x>0$.
Solution: Let $f(x)=(1+x)^{p}-(1+p x)$. Then

$$
f^{\prime}(x)=p(1+x)^{p-1}-p>0
$$

for all $x>0$. Therefore, f is strictly increasing on $(0, \infty)$. We have

$$
f(x)>f(0)=0 \Longrightarrow(1+x)^{p}>1+p x
$$

(Lecture 17) L'Hopital's rule

L'Hopital's rule:

Let $a \in \mathbb{R}$ or $a= \pm \infty$. If f and g are differentiable near a and all of the following conditions are satisfied:

1. Both $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$ or both $\lim _{x \rightarrow a} f(x)= \pm \infty$ and $\lim _{x \rightarrow a} g(x)= \pm \infty$.
2. $g^{\prime}(x) \neq 0$ near a.
3. $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists or $= \pm \infty$.

Then we have $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
Remarks:

- Similar results hold for one-sided limit ($\lim _{x \rightarrow a^{-}}$and $\lim _{x \rightarrow a^{+}}$)
- Sometimes may need to apply the rule more than once
- Not always applicable! Check if the requirements are satisfied.

(Lecture 17) L'Hopital's rule

Handling different indeterminate forms:
$-\frac{0}{0}, \frac{ \pm \infty}{ \pm \infty}$: May try to apply the L'Hopital's rule directly
Example:
$\lim _{x \rightarrow 0} \frac{\tan x}{x^{3}}-x\left(\frac{0}{0}\right)=\lim _{x \rightarrow 0} \frac{\sec ^{2} x-1}{3 x^{2}}\left(\frac{0}{0}\right)$

$$
=\lim _{x \rightarrow 0} \frac{2 \sec x \sec x \tan x}{6 x}=\lim _{x \rightarrow 0} \frac{\sin x}{3 x \cos ^{3} x}=\frac{1}{3}
$$

- $0 \cdot(\pm \infty), \infty-\infty$: May try to convert them into $\frac{0}{0}$ or $\frac{ \pm \infty}{ \pm \infty}$, then apply the L'Hopital's rule Example:

$$
\begin{aligned}
& \lim _{x \rightarrow 1}\left(x^{2}-1\right) \tan \frac{\pi x}{2} \quad(0 \cdot \infty)=\lim _{x \rightarrow 1} \frac{x^{2}-1}{\cot \frac{\pi x}{2}}\left(\frac{0}{0}\right) \\
& \quad=\lim _{x \rightarrow 1} \frac{2 x}{\frac{\pi}{2} \cdot \csc ^{2} \frac{\pi x}{2}}=\lim _{x \rightarrow 1} \frac{2 x \sin ^{2} \frac{\pi x}{2}}{\frac{\pi}{2}}=\frac{2 \cdot 1 \cdot 1^{2}}{\frac{\pi}{2}}=\frac{4}{\pi}
\end{aligned}
$$

(Lecture 17) L'Hopital's rule

Handling different indeterminate forms:

- $1^{\infty}, \infty^{0}, 0^{0}$: May use logarithm and apply the L'Hopital's rule to the logged expression, then use $\lim _{x \rightarrow a} y=e^{\lim _{x \rightarrow a} \ln y}$
Example: Find $\lim _{x \rightarrow 0^{+}}(x+\sin x)^{x} \quad\left(0^{0}\right)$
Solution: Let $y=(x+\sin x)^{x}$, then $\ln y=x \ln (x+\sin x)$ and

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x \ln (x+\sin x)(0 \cdot(\pm \infty)) & =\lim _{x \rightarrow 0^{+}} \frac{\ln (x+\sin x)}{\frac{1}{x}}\left(\frac{\infty}{\infty}\right) \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x+\sin x}(1+\cos x)}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{-x(1+\cos x)}{1+\frac{\sin x}{x}} \\
& =\frac{-0(1+1)}{1+1}=0
\end{aligned}
$$

So $\lim _{x \rightarrow 0^{+}}(x+\sin x)^{x}=\lim _{x \rightarrow 0^{+}} y=\lim _{x \rightarrow 0^{+}} e^{\ln y}=e^{0}=1$

(Lecture 18) Taylor polynomial

Taylor polynomial:
The n-th order Taylor polynomial of $f(x)$ about a point $x=a$ is

$$
p_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Property: We have $f^{(k)}(a)=p_{n}^{(k)}(a)$ for all $k=0,1, \ldots, n$.
Example:
The 2nd order Taylor polynomial of $f(x)=\sqrt{1+x}$ about $x=0$ is
$p_{2}(x)=f(0)+f^{\prime}(0)(x-0)+\frac{f^{\prime \prime}(0)}{2}(x-0)^{2}=1+\frac{x}{2}-\frac{x^{2}}{8}$

Taylor's theorem:

Let $x \neq a$ (i.e. $x>a$ or $x<a$).
Suppose $f^{(n)}$ exists and is continuous on $[a, x]$ (or $[x, a]$), and $f^{(n+1)}$ exists on $(a, x)($ or $(x, a))$.
Then there exists $c \in(a, x)$ (or $(x, a))$ such that
$f(x)=p_{n}(x)+R_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}+\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$

(Lecture 19-20) Taylor series

Taylor series:
The Taylor series of $f(x)$ about a point $x=a$ is the infinite series

$$
T(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Property: If the remainder term in Taylor's theorem $R_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ on an interval I, then the Taylor series is equal to the function (i.e. $f(x)=T(x)$) on I.
Examples: $e^{x}=1+x+\frac{x^{2}}{2!}+\cdots=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \quad$ for all $x \in \mathbb{R}$
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1} \quad$ for all $x \in \mathbb{R}$
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k} \quad$ for all $x \in \mathbb{R}$
$\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^{k} \quad$ for $|x|<1$

(Lecture 19-20) Taylor series

Properties:

- If $T(x)$ is the Taylor series of $f(x)$ about $x=0$, then $T\left(x^{k}\right)$ is the Taylor series of $f\left(x^{k}\right)$ about $x=0$ for all positive integer k
Example: The Taylor series of $\frac{\sin x^{2}}{x^{2}}$ about 0 is

$$
\frac{1}{x^{2}}\left(x^{2}-\frac{\left(x^{2}\right)^{3}}{3!}+\frac{\left(x^{2}\right)^{5}}{5!}-\cdots\right)=1-\frac{x^{4}}{3!}+\frac{x^{8}}{5!}-\cdots
$$

- Addition and subtraction of Taylor series

Example: The Taylor series of $\frac{\sin x^{2}}{x^{2}}+\cos x$ about 0 is
$\left(1-\frac{x^{4}}{3!}+\frac{x^{8}}{5!}-\cdots\right)+\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots\right)=2-\frac{x^{2}}{2}-\frac{x^{4}}{8}+\cdots$

- Multiplication and division of Taylor series

Example: The Taylor series of $\frac{\sin x^{2}}{x^{2}} \cos ^{3} x$ about 0 is

$$
\left(1-\frac{x^{4}}{3!}+\frac{x^{8}}{5!}-\cdots\right)\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots\right)^{3}=1-\frac{3 x^{2}}{2}+\frac{17 x^{4}}{24}+\cdots
$$

(Lecture 19-20) Taylor series

Properties:

- Composition of Taylor series

Example:
The Taylor series of $\cos (\sin x)$ about 0 is

$$
\begin{aligned}
& 1-\frac{1}{2!}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)^{2}+\frac{1}{4!}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)^{4}-\cdots \\
& =1-\frac{x^{2}}{2}+\frac{5 x^{4}}{24}+\cdots
\end{aligned}
$$

- Differentiation of Taylor series

Example:
The Taylor series of $-\frac{x}{(1+x)^{2}}=x\left(\frac{1}{1+x}\right)^{\prime}$ is
$x\left(1-x+x^{2}-x^{3}-\cdots\right)^{\prime}$
$=x\left(-1+2 x-3 x^{2}+\cdots\right)$
$=-x+2 x^{2}-3 x^{3}+\cdots$

(Lecture 20) Using Taylor series to find limits

Idea: To find $\lim _{x \rightarrow c} f(x)$, replace certain components in $f(x)$ with their Taylor series (if those components are equal to their Taylor series for x near c)

Example:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\ln (1+x)-x \sqrt{1-x}}{x-\sin x} \\
&= \lim _{x \rightarrow 0} \frac{\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\mathcal{O}\left(x^{4}\right)\right)-x\left(1-\frac{x}{2}-\frac{x^{2}}{8}+\mathcal{O}\left(x^{3}\right)\right)}{x-\left(x-\frac{x^{3}}{6}+\mathcal{O}\left(x^{5}\right)\right)} \\
&= \lim _{x \rightarrow 0} \\
&= \lim _{x \rightarrow 0} \frac{\frac{11}{24} x^{3}+\mathcal{O}\left(x^{4}\right)}{\frac{1}{6} x^{3}+\mathcal{O}\left(x^{5}\right)} \\
& \frac{\frac{11}{24}+\mathcal{O}(x)}{\frac{1}{6}+\mathcal{O}\left(x^{2}\right)}=\frac{\frac{11}{24}+0}{\frac{1}{6}+0}=\frac{11}{4}
\end{aligned}
$$

(Lecture 20) Indefinite integration

Indefinite integral:

Let $f(x)$ be continuous. An antiderivative (or primitive function) of $f(x)$ is a function $F(x)$ such that $F^{\prime}(x)=f(x)$. The collection of all antiderivatives of $f(x)$ is called the indefinite integral of $f(x)$ and is denoted by $\int f(x) d x$. We have $\int f(x) d x=F(x)+C$, where C is a constant.

Example: $x^{2}, x^{2}+3, x^{2}-1$ are antiderivatives of $2 x$. More generally, we have $\int 2 x d x=x^{2}+C$.

Properties:

- $\int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x$
- $\int k f(x) d x=k \int f(x) d x$

Example: $\int\left(x^{3}+2 x-1\right) d x=\frac{x^{4}}{4}+x^{2}-x+C$

(Lecture 20) Some basic integrals

- $\int k d x=k x+C$
- $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$ (where $n \neq-1$)
- $\int e^{x} d x=e^{x}+C$
- $\int \tan x d x=-\ln |\cos x|+C$
- $\int \frac{1}{x} d x=\ln |x|+C$
- $\int a^{x} d x=\frac{1}{\ln a} a^{x}+C$
- $\int \sin x d x=-\cos x+C$
- $\int \cos x d x=\sin x+C$
- $\int \sec x d x=$ $\ln |\sec x+\tan x|+C$
- $\int \sec ^{2} x d x=\tan x+C$
- $\int \sec x \tan x d x=\sec x+C$
- $\int \csc x \cot x d x=-\csc x+C$
- $\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+C$
- $\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+C$

(Lecture 20) Integration by substitution

$$
\int f(u(x)) \frac{d u}{d x} d x=\int f(u) d u
$$

Example: $\int \sqrt{3 x+4} d x=$?
Solution: Let $u=3 x+4$, then $\frac{d u}{d x}=3 \Rightarrow d u=3 d x$. We have
$\int \sqrt{3 x+4} d x=\int \sqrt{u} \cdot \frac{1}{3} d u=\frac{2}{9} u^{3 / 2}+C=\frac{2}{9}(3 x+4)^{3 / 2}+C$
Example: $\int e^{2 x^{2}+1} x d x=$?
Solution: Let $u=2 x^{2}+1$, then $\frac{d u}{d x}=4 x \Rightarrow d u=4 x d x$. We have

$$
\int e^{2 x^{2}+1} x d x=\frac{1}{4} \int e^{u} d u=\frac{1}{4} e^{u}+C=\frac{1}{4} e^{2 x^{2}+1}+C
$$

Example: $\int \cos x \sin x d x=\int \sin x d(\sin x)=\frac{\sin ^{2} x}{2}+C$

(Lecture 21) Trigonometric integrals

Useful trigonometric identities for handling trigonometric integrals:

- $\sin ^{2} x+\cos ^{2} x=1$
- $1+\tan ^{2} x=\sec ^{2} x$
- $1+\cot ^{2} x=\csc ^{2} x$
- $\sin 2 x=2 \sin x \cos x$
- $\cos 2 x=2 \cos ^{2} x-1=$ $1-2 \sin ^{2} x$
- $\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$
- $\sin (x \pm y)=$ $\sin x \cos y \pm \cos x \sin y$
- $\cos (x \pm y)=$ $\cos x \cos y \mp \sin x \sin y$
- $\cos x \cos y=$

$$
\frac{1}{2}(\cos (x+y)+\cos (x-y))
$$

- $\cos x \sin y=$

$$
\frac{1}{2}(\sin (x+y)-\sin (x-y))
$$

- $\sin x \sin y=$

$$
\frac{1}{2}(\cos (x-y)-\cos (x+y))
$$

Example: $\int \sin ^{2} x d x=\int \frac{1-\cos 2 x}{2} d x=\frac{x}{2}-\frac{\sin 2 x}{4}+C$
Example:
$\int \sin 5 x \cos 3 x d x=\int \frac{1}{2}(\sin 8 x+\sin 2 x) d x=-\frac{\cos 8 x}{16}-\frac{\cos 2 x}{4}+C$

(Lecture 21) Trigonometric integrals

For $\int \cos ^{m} x \sin ^{n} x d x$:

- If m is odd, let $u=\sin x$

Example: $\int \cos ^{3} x \sin ^{4} x d x=\int \cos ^{2} x \sin ^{4} x \cos x d x$
$=\int\left(1-u^{2}\right) u^{4} d u=\frac{u^{5}}{5}-\frac{u^{7}}{7}+C=\frac{\sin ^{5} x}{5}-\frac{\sin ^{7} x}{7}+C$

- If n is odd, let $u=\cos x$

Example: $\int \sin ^{5} x d x=\int \sin ^{4} x \sin x d x=-\int\left(1-u^{2}\right)^{2} d u$
$=-\int\left(1-2 u^{2}+u^{4}\right) d u=-u+\frac{2 u^{3}}{3}-\frac{u^{5}}{5}+C=$
$-\cos x+\frac{2 \cos ^{3} x}{3}-\frac{\cos ^{5} x}{5}+C$

- If both m, n are even, use double angle formulas to reduce the power and then use the above methods (if applicable)
Example: $\int \sin ^{4} x \cos ^{2} x d x=\int\left(\frac{1-\cos 2 x}{2}\right)^{2} \cdot \frac{1+\cos 2 x}{2} d x=\cdots$
For $\int \sec ^{m} x \tan ^{n} x d x$:
- If m is even, let $u=\tan x$
- If n is odd, let $u=\sec x$
- If m is odd and n is even, use $\tan ^{2} x=\sec ^{2} x-1$ to write everything in terms of $\sec x$ and use reduction formula

(Lecture 21-22) Trigonometric substitution

Idea: Simplify some integrals (without any trigonometric functions) by substituting $x=$ some trigonometric functions

- For $\sqrt{a^{2}-x^{2}}$, substitute $x=a \sin \theta$
- For $\sqrt{a^{2}+x^{2}}$, substitute $x=a \tan \theta$
- For $\sqrt{x^{2}-a^{2}}$, substitute $x=a \sec \theta$

Example: $\int \frac{1}{\sqrt{9-x^{2}}} d x=$?
Solution: Let $x=3 \sin \theta$, then $d x=3 \cos \theta d \theta$. We have
$\int \frac{1}{\sqrt{9-x^{2}}} d x=\int \frac{3 \cos \theta}{\sqrt{9-9 \sin ^{2} \theta}} d \theta=\int 1 d \theta=\theta+C=\sin ^{-1} \frac{x}{3}+C$
Example: $\int \frac{x^{3}}{\sqrt{1+x^{2}}} d x=$?
Solution: Let $x=\tan \theta$, then $d x=\sec ^{2} \theta d \theta$. We have $\int \frac{x^{3}}{\sqrt{1+x^{2}}} d x$
$=\int \frac{\tan ^{3} \theta \sec ^{2} \theta}{\sqrt{1+\tan ^{2} \theta}} d \theta=\int \tan ^{3} \theta \sec \theta d \theta=\int\left(\sec ^{2} \theta-1\right) d(\sec \theta)$
$=\frac{\sec ^{3} \theta}{3}-\sec \theta+C=\frac{\left(\sqrt{1+x^{2}}\right)^{3}}{3}-\sqrt{1+x^{2}}+C$

Example with different possible substitutions

Example: $\int \frac{x^{3}}{\left(x^{2}+1\right)^{3}} d x=$?
Method 1: Let $u=x^{2}+1$. We have $d u=2 x d x$ and so

$$
\begin{aligned}
& \int \frac{x^{3}}{\left(x^{2}+1\right)^{3}} d x=\frac{1}{2} \int \frac{x^{2}}{\left(x^{2}+1\right)^{3}} 2 x d x=\frac{1}{2} \int \frac{u-1}{u^{3}} d u \\
& =\frac{1}{2}\left(-\frac{1}{u}+\frac{1}{2 u^{2}}\right)+C=-\frac{1}{2\left(x^{2}+1\right)}+\frac{1}{4\left(x^{2}+1\right)^{2}}+C=-\frac{2 x^{2}+1}{4\left(x^{2}+1\right)^{2}}+C
\end{aligned}
$$

Method 2: Let $x=\tan \theta$. We have $d x=\sec ^{2} \theta d \theta$ and so

$$
\begin{aligned}
& \int \frac{x^{3}}{\left(x^{2}+1\right)^{3}} d x=\int \frac{\tan ^{3} \theta}{\left(\tan ^{2} \theta+1\right)^{3}} \sec ^{2} \theta d \theta=\int \frac{\tan ^{3} \theta}{\sec ^{6} \theta} \sec ^{2} \theta d \theta \\
& =\int \sin ^{3} \theta \cos \theta d \theta=\int \sin ^{3} \theta d(\sin \theta)=\frac{\sin ^{4} \theta}{4}+C=\frac{1}{4 \csc ^{4} \theta}+C \\
& =\frac{1}{4\left(1+\cot ^{2} \theta\right)^{2}}+C=\frac{1}{4\left(1+\frac{1}{x^{2}}\right)^{2}}+C=\frac{x^{4}}{4\left(x^{2}+1\right)^{2}}+C
\end{aligned}
$$

Note: The results are consistent as $\frac{x^{4}}{4\left(x^{2}+1\right)^{2}}-\left(-\frac{2 x^{2}+1}{4\left(x^{2}+1\right)^{2}}\right)=\frac{1}{4}$, which is just a constant.

(Lecture 22) Integration by parts

$$
\int u d v=u v-\int v d u
$$

Example:
$\int \ln x d x=x \ln x-\int x d(\ln x)=x \ln x-\int x \cdot \frac{1}{x} d x=x \ln x-x+C$
Example: $\int x e^{x} d x=\int x d e^{x}=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+C$
More generally, for $\int x^{n} f(x) d x$:

- If $f(x)=\sin x, \cos x, e^{x}$ etc. (easy to integrate), try

$$
\int x^{n} f(x) d x=\int x^{n} d(F(x))=x^{n} F(x)-\int F(x) d\left(x^{n}\right)
$$

- If $f(x)=\sin ^{-1} x, \cos ^{-1} x, \ln x$ etc. (hard to integrate), try

$$
\int x^{n} f(x) d x=\int f(x) d\left(\frac{x^{n+1}}{n+1}\right)=\frac{x^{n+1} f(x)}{n+1}-\int \frac{x^{n+1}}{n+1} d(f(x))
$$

(Lecture 22) Integration by parts

Other common techniques:

- Integration by parts + solving equation

Example: $\int e^{x} \cos x d x=$?
Solution: We have

$$
\begin{aligned}
I & =\int e^{x} \cos x d x=\int e^{x} d(\sin x)=e^{x} \sin x-\int \sin x d e^{x} \\
& =e^{x} \sin x-\int e^{x} \sin x d x=e^{x} \sin x+\int e^{x} d \cos x \\
& =e^{x} \sin x+e^{x} \cos x-\int \cos x d e^{x} \\
& =e^{x} \sin x+e^{x} \cos x-\int e^{x} \cos x d x
\end{aligned}
$$

Therefore, we have $I=e^{x} \sin x+e^{x} \cos x-I+C$ (as the two indefinite integrals may differ by a constant) and hence

$$
I=\frac{e^{x} \sin x+e^{x} \cos x}{2}+C
$$

(Lecture 22) Integration by parts

Other common techniques:

- Substitution + integration by parts

Example: $\int \cos (\ln x) d x=$?
Solution: Let $u=\ln x$, then

$$
d u=\frac{1}{x} d x \Longrightarrow d x=x d u=e^{u} d u
$$

Therefore,

$$
\begin{aligned}
\int \cos (\ln x) d x & =\int \cos u \cdot e^{u} d u \\
& =\frac{e^{u} \sin u+e^{u} \cos u}{2}+C \\
& =\frac{x \sin (\ln x)+x \cos (\ln x)}{2}+C
\end{aligned}
$$

(Lecture 22) Reduction formula

For integrals of the form

$$
\begin{aligned}
I_{n}= & \int \cos ^{n} x d x, \int \sin ^{n} x d x, \int x^{n} \cos x d x, \int x^{n} \sin x d x \\
& \int x^{n} e^{x} d x, \int(\ln x)^{n} d x, \int e^{x} \cos ^{n} x d x, \int e^{x} \sin ^{n} x d x \\
& \int \frac{1}{\left(x^{2}+a^{2}\right)^{n}} d x, \int \frac{1}{\left(a^{2}-x^{2}\right)^{n}} d x \text { etc. }
\end{aligned}
$$

use integration by parts to write I_{n} in terms of some I_{k} with $k<n$.
Example:

$$
\begin{aligned}
I_{n} & =\int x^{n} e^{x} d x=\int x^{n} d\left(e^{x}\right)=x^{n} e^{x}-\int e^{x} d\left(x^{n}\right) \\
& =x^{n} e^{x}-\int n x^{n-1} e^{x} d x=x^{n} e^{x}-n I_{n-1}
\end{aligned}
$$

So $\int x^{10} e^{x} d x=I_{10}=x^{10} e^{x}-10 I_{9}=x^{10} e^{x}-10\left(x^{9} e^{x}-9 I_{8}\right)=\cdots$
(We can continue the process and eventually get some simple integral)

(Lecture 22) Partial fraction

Rational function: $R(x)=\frac{f(x)}{g(x)}$ where $f(x), g(x)$ are polynomials
Examples: $\frac{x^{4}}{x^{2}+1}, \frac{2 x+1}{3 x^{2}+4 x+1}, \ldots$

Partial fraction decomposition:

Goal: Express $R(x)=q(x)+$ (some simple fractions)

1. Extract $q(x)$ first (if $\operatorname{deg}(f(x)) \geq \operatorname{deg}(g(x))$).
2. Factorize $g(x)$ into a product of linear polynomials (in the form of $a x+b$) and irreducible quadratic polynomials (in the form of $a x^{2}+b x+c$ with $\left.b^{2}-4 a c<0\right)$.
3. Write down the general terms in the partial fraction:

Factors of $g(x)$	Terms in partial fraction
$a x+b$	$\frac{A}{a x+b}$
$(a x+b)^{k}$	$\frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\cdots+\frac{A_{k}}{a x+c}$
$a x^{2}+b x+c$	$(a x+b)^{k}$
$\left(a x^{2}+b x+c\right)^{k}$	$\frac{B_{1} x+C_{1}}{a x^{2}+b x+c}+\frac{B_{2}+C^{2}+b x+c}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{B_{k} x+C_{k}}{\left(a x^{2}+b x+c\right)^{k}}$

4. Determine the coefficients A_{i}, B_{i}, C_{i}

(Lecture 22) Partial fraction

Example: Note that $\frac{9 x-13}{x^{2}+x-12}=\frac{9 x-13}{(x+4)(x-3)}$. Therefore, we have

$$
\frac{9 x-13}{(x+4)(x-3)}=\frac{A}{x+4}+\frac{B}{x-3}=\frac{(A+B) x+(-3 A+4 B)}{(x+4)(x-3)}
$$

Comparing coefficients, $\left\{\begin{array}{c}A+B=9 \\ -3 A+4 B=-13\end{array} \Longrightarrow A=7, B=2\right.$.
Therefore, $\frac{9 x-13}{x^{2}+x-12}=\frac{7}{x+4}+\frac{2}{x-3}$.
Example: Note that $\frac{x^{2}+20 x+11}{(x+1)^{2}(x-3)}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{x-3}$.
Therefore, we have

$$
x^{2}+20 x+11=A(x+1)(x-3)+B(x-3)+C(x+1)^{2}
$$

Putting $x=3$, we get $C=5$.
Putting $x=-1$, we get $B=2$.
Putting $x=0$, we get $11=-3 A+2(-3)+5(1)^{2} \Longrightarrow A=-4$.
Therefore, $\frac{x^{2}+20 x+11}{(x+1)^{2}(x-3)}=-\frac{4}{x+1}+\frac{2}{(x+1)^{2}}+\frac{5}{x-3}$.

(Lecture 22) Partial fraction

Example:

$$
\begin{aligned}
\frac{4 x^{6}+x^{4}-1}{x^{4}-1} & =\frac{4 x^{6}-4 x^{2}+x^{4}-1+4 x^{2}}{x^{4}-1} \\
& =4 x^{2}+1+\frac{4 x^{2}}{x^{4}-1}=4 x^{2}+1+\frac{4 x^{2}}{(x-1)(x+1)\left(x^{2}+1\right)}
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& \frac{4 x^{2}}{(x-1)(x+1)\left(x^{2}+1\right)}=\frac{A}{x-1}+\frac{B}{x+1}+\frac{C x+D}{x^{2}+1} \\
& =\frac{A(x+1)\left(x^{2}+1\right)+B(x-1)\left(x^{2}+1\right)+(C x+D)(x-1)(x+1)}{(x-1)(x+1)\left(x^{2}+1\right)} \\
& =\frac{(A+B+C) x^{3}+(A-B+D) x^{2}+(A+B-C) x+(A-B-D)}{(x-1)(x+1)\left(x^{2}+1\right)}
\end{aligned}
$$

Comparing coefficients,

$$
\left\{\begin{array}{l}
A+B+C=0 \\
A-B+D=4 \\
A+B-C=0 \\
A-B-D=0
\end{array} \Longrightarrow A=1, B=-1, C=0, D=2\right.
$$

Therefore, $\frac{4 x^{6}+x^{4}-1}{x^{4}-1}=4 x^{2}+1+\frac{1}{x-1}-\frac{1}{x+1}+\frac{2}{x^{2}+1}$.

(Lecture 22) Integration of partial fractions

Useful results for integrating partial fractions:
$-\int \frac{1}{a x+b} d x=\frac{1}{a} \ln |a x+b|+C$
$-\int \frac{1}{(a x+b)^{k}} d x($ where $k>1)=\frac{(a x+b)^{-k+1}}{a(-k+1)}+C$
$-\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C$
$-\int \frac{1}{\left(x^{2}+a^{2}\right)^{k}} d x$: use reduction formula/integration by parts
$-\int \frac{1}{a x^{2}+b x+c} d x, \int \frac{1}{\left(a x^{2}+b x+c\right)^{k}} d x$: write $a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}+\left(c-\frac{b^{2}}{4 a}\right)$, then use the above results

$$
\begin{aligned}
& \quad \int \frac{A x+B}{a x^{2}+b x+c} d x= \\
& \frac{A}{2 a} \ln \left|a x^{2}+b x+c\right|+\left(B-\frac{A b}{2 a}\right) \int \frac{1}{a x^{2}+b x+c} d x
\end{aligned}
$$

(Lecture 22) Integration of rational functions

Example: $\int \frac{4 x^{6}+x^{4}-1}{x^{4}-1} d x=$?
Solution: By partial fraction decomposition, we have

$$
\frac{4 x^{6}+x^{4}-1}{x^{4}-1}=4 x^{2}+1+\frac{1}{x-1}-\frac{1}{x+1}+\frac{2}{x^{2}+1}
$$

and hence

$$
\begin{aligned}
& \int \frac{4 x^{6}+x^{4}-1}{x^{4}-1} d x \\
& =\int\left(4 x^{2}+1+\frac{1}{x-1}-\frac{1}{x+1}+\frac{2}{x^{2}+1}\right) d x \\
& =\frac{4 x^{3}}{3}+x+\ln |x-1|-\ln |x+1|+2 \tan ^{-1} x+C
\end{aligned}
$$

(Lecture 23) t-substitution

For $\int f(x) d x$ where $f(x)$ is a rational function in terms of $\cos x, \sin x, \tan x$, we can substitute $t=\tan \frac{x}{2}$. Then we have

$$
\sin x=\frac{2 t}{1+t^{2}}, \cos x=\frac{1-t^{2}}{1+t^{2}}, \tan x=\frac{2 t}{1-t^{2}}, \quad d x=\frac{2}{1+t^{2}} d t
$$

and so $\int f(x) d x$ becomes an integral of rational function in t.
Example: $\int \frac{1}{2+\cos x} d x=$?
Solution: Let $t=\tan \frac{x}{2}$. We have

$$
\begin{aligned}
\int \frac{1}{2+\cos x} d x & =\int \frac{1}{2+\frac{1-t^{2}}{1+t^{2}}} \cdot \frac{2}{1+t^{2}} d t \\
& =\int \frac{2}{2\left(1+t^{2}\right)+\left(1-t^{2}\right)} d t \\
& =\int \frac{2}{t^{2}+3} d t \\
& =2 \tan ^{-1} \frac{t}{\sqrt{3}}+C=2 \tan ^{-1} \frac{\tan \frac{x}{2}}{\sqrt{3}}+C
\end{aligned}
$$

(Lecture 23-24) Definite integration

Definite integral:

Let $a \leq b$ and $f(x)$ be a continuous function on $[a, b]$.
The definite integral $\int_{a}^{b} f(x) d x$ is defined as the signed area under the graph of $y=f(x)$ between $x=a$ and $x=b$.

Theorem (definite integral = limit of Riemann sum):

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}\right) \Delta x_{k}
$$

where $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b$ and $\Delta x_{k}=x_{k}-x_{k-1}$. In particular, if all x_{k} are equally spaced, we have

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(a+\frac{k}{n}(b-a)\right) \cdot \frac{b-a}{n}
$$

Example:
$\int_{0}^{1} x^{2} d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{k}{n}\right)^{2} \frac{1}{n}=\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \sum_{k=1}^{n} k^{2}=\lim _{n \rightarrow \infty} \frac{n(n+1)(2 n+1)}{6 n^{3}}=\frac{1}{3}$

(Lecture 23-24) Definite integration

Properties of definite integrals:
$-\int_{a}^{a} f(x) d x=0$

- $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$
- $\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
- $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x \quad$ if $c \in(a, b)$
- For consistency, we also define $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$

(Lecture 24) Fundamental theorem of calculus (FTC)

First fundamental theorem of calculus:
Let $f(t)$ be a continuous function. Then

$$
\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)
$$

Example: If $g(x)=\int_{1}^{x} \sin \left(t^{2}+5\right) d t$, find $g^{\prime}(1)$.
Solution: By 1st FTC, $g^{\prime}(x)=\sin \left(x^{2}+5\right) \Longrightarrow g^{\prime}(1)=\sin 6$.
Example: If $g(x)=\int_{0}^{\sin x} e^{t^{3}} d t$, find $g^{\prime}(x)$.
Solution: By 1st FTC,

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d u}\left(\int_{0}^{u} e^{t^{3}} d t\right) \cdot \frac{d u}{d x}(\text { let } u=\sin x) \\
& =e^{u^{3}} \cdot \cos x=e^{\sin ^{3} x} \cos x .
\end{aligned}
$$

(Lecture 24) Fundamental theorem of calculus (FTC)

Second fundamental theorem of calculus:

Suppose $F^{\prime}(x)=f(x)$ on $[a, b]$. Then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
Example: $\int_{1}^{2} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{1}^{2}=\frac{2^{3}}{3}-\frac{1^{3}}{3}=\frac{7}{3}$
Definite integral by substitution:

$$
\int_{a}^{b} f(u(x)) u^{\prime}(x) d x=\int_{u(a)}^{u(b)} f(u) d u
$$

Example: $\int_{0}^{1} \sqrt{2 x+1} d x=$?
Solution: Let $u=2 x+1$, then $\frac{d u}{d x}=2 \Rightarrow d u=2 d x$. Also, when $x=0$ we have $u=1$, and when $x=1$ we have $u=3$. Therefore,

$$
\int_{0}^{1} \sqrt{2 x+1} d x=\int_{1}^{3} \sqrt{u} \frac{1}{2} d u=\left[\frac{u^{\frac{3}{2}}}{3}\right]_{1}^{3}=\frac{3 \sqrt{3}}{3}-\frac{1}{3}=\sqrt{3}-\frac{1}{3}
$$

(Lecture 24) Fundamental theorem of calculus (FTC)

 Integration by parts for definite integral:$$
\int_{a}^{b} u v^{\prime} d x=[u v]_{a}^{b}-\int_{a}^{b} v u^{\prime} d x
$$

Example: $\int_{1}^{2} \ln x d x=[x \ln x]_{1}^{2}-\int_{1}^{2} x(\ln x)^{\prime} d x=$
$(2 \ln 2-0)-\int_{1}^{2} 1 d x=2 \ln 2-(2-1)=2 \ln 2-1$
Derivative of functions defined by definite integrals:

$$
\frac{d}{d x}\left(\int_{u(x)}^{v(x)} f(t) d t\right)=f(v(x)) v^{\prime}(x)-f(u(x)) u^{\prime}(x)
$$

Example: $\frac{d}{d x}\left(\int_{-\sin x}^{x^{3}} e^{t^{2}} d t\right)=$
$e^{\left(x^{3}\right)^{2}} \cdot 3 x^{2}-e^{(-\sin x)^{2}} \cdot(-\cos x)=3 x^{2} e^{x^{6}}+e^{\sin ^{2} x} \cos x$

(Lecture 24) Evaluating limits by integrals

By treating the limit below as the limit of a Riemann sum, we have:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)=\int_{0}^{1} f(x) d x
$$

Example: $\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{n^{2}+1^{2}}}+\frac{1}{\sqrt{n^{2}+2^{2}}}+\cdots+\frac{1}{\sqrt{n^{2}+n^{2}}}\right)=$?
Solution: Note that $\frac{1}{\sqrt{n^{2}+k^{2}}}=\frac{1}{n} \cdot \frac{1}{\sqrt{1+\left(\frac{k}{n}\right)^{2}}}$. We have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{n^{2}+1^{2}}}+\frac{1}{\sqrt{n^{2}+2^{2}}}+\cdots+\frac{1}{\sqrt{n^{2}+n^{2}}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sqrt{1+\left(\frac{k}{n}\right)^{2}}}=\int_{0}^{1} \frac{1}{\sqrt{1+x^{2}}} d x \\
& =\left[\ln \left|\sqrt{1+x^{2}}+x\right|\right]_{0}^{1}(\text { using trigonometric substitution } x=\tan \theta) \\
& =\ln (\sqrt{2}+1)
\end{aligned}
$$

(Lecture 24-25) Other definite integration techniques

- If f is an odd function, then $\int_{-a}^{a} f(x) d x=0$.

Example: $\int_{-2023}^{2023} x^{4} \sin x \sin 2 x \sin 3 x d x=0$

- If f is an even function, then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$.

Example: $\int_{-1}^{1} x^{2} \cos x d x=2 \int_{0}^{1} x^{2} \cos x d x$

- Other symmetry arguments

Example: $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x=$?
Solution: Let $u=\frac{\pi}{2}-x$, then $d u=-d x$ and so $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x$

$$
=\int_{\frac{\pi}{2}}^{0} \frac{\sin ^{3}\left(\frac{\pi}{2}-u\right)}{\sin ^{3}\left(\frac{\pi}{2}-u\right)+\cos ^{3}\left(\frac{\pi}{2}-u\right)}(-1) d u=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{3} u}{\sin ^{3} u+\cos ^{3} u} d u
$$

Therefore,

$$
\begin{align*}
& \int_{0}^{\frac{\pi}{2}} \frac{\sin ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x+\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{3} u}{\sin ^{3} u+\cos ^{3} u} d u=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x \\
& =\int_{0}^{\frac{\pi}{2}} 1 d x=\frac{\pi}{2} \Longrightarrow \int_{0}^{\frac{\pi}{2}} \frac{\sin ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x=\frac{\pi}{4}
\end{align*}
$$

Good luck on your final exam!

