MATH1010F University Mathematics

Final Review

Gary Choi

November 30, 2023

https://www.math.cuhk.edu.hk/course/2324/math1010f

Final exam

- Date: December 22 (Friday)
- Time: 09:30 11:30
- Venue: University Gymnasium
- Closed book, closed notes
- Bring student ID card, black/blue pen
- List of approved calculators:

http://www.res.cuhk.edu.hk/images/content/examinations/

use-of-calculators-during-course-examination/

Use-of-Calculators-during-Course-Examinations.pdf

- Scope: EVERYTHING!
 - Limits and continuity
 - Differentiation
 - Integration

Basic notations

Set: a collection of elements

- ▶ {*a*, *b*, *c*} = a set containing three elements *a*, *b*, *c*
- $x \in A$ means "x is an element of the set A"
- $A \subset B$ (also written as $A \subseteq B$) means "A is a subset of B"

(i.e. for any element
$$x \in A$$
, we have $x \in B$)

•
$$\{x:\cdots\} = \{x|\cdots\} = \{x \text{ such that }\cdots\}$$

- $\mathbb{R} =$ the set of all real numbers
- $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\} = \text{the set of all integers}$

 $\mathbb{N} = \mathbb{Z}^+ = \{x \in \mathbb{Z} : x > 0\} = \{1, 2, 3, \dots\}$

= the set of all positive integers

▶
$$\mathbb{Q} = \{x \in \mathbb{R} : x = \frac{p}{q} \text{ for some } p, q \in \mathbb{Z} \text{ with } q \neq 0\}$$

= the set of all rational numbers

▶
$$\emptyset = \{ \} =$$
empty set

- ▶ $2 \in \mathbb{Z}$ (since 2 is an integer)
- $\pi \notin \mathbb{Q}$ (since π is an irrational number)
- $\blacktriangleright \ \{0,2,4,6,\dots\} \subset \mathbb{Z}$

Basic notations

- Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$
- Intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}$
- Union of multiple sets A_1, A_2, \ldots, A_n :

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n$$

► Intersection of multiple sets $A_1, A_2, ..., A_n$: $\bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \cdots \cap A_n$

Set difference: $A \setminus B = \{x : x \in A \text{ and } x \notin B\}$ Examples:

- $\blacktriangleright \ \{1,2,3\} \cup \{1,3,4,7\} = \{1,2,3,4,7\}$
- $\blacktriangleright \ \{1,2,3\} \cap \{1,3,4,7\} = \{1,3\}$
- $\blacktriangleright \ \{1,2,3\} \setminus \{1,3,4,7\} = \{2\}$

Basic notations

Intervals:

▶
$$(a, b) = \{x \in \mathbb{R} : a < x < b\}$$
 (open interval)
▶ $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$ (closed interval)
▶ $(a, b] = \{x \in \mathbb{R} : a < x \le b\}$
▶ $[a, b) = \{x \in \mathbb{R} : a \le x < b\}$
▶ $(a, \infty) = \{x \in \mathbb{R} : x > a\}$
▶ $(a, \infty) = \{x \in \mathbb{R} : x > a\}$
▶ $(-\infty, b) = \{x \in \mathbb{R} : x \le b\}$
▶ $(-\infty, b] = \{x \in \mathbb{R} : x \le b\}$
Examples:
▶ $(-1, 3) \cup (0, 4] = (-1, 4]$
▶ $[0, 5] \cap (1, \infty) = (1, 5]$
▶ $(0, 5) \setminus (1, 2) = (0, 1] \cup [2, 5)$
▶ $\bigcup_{n \in \mathbb{Z}} [2n\pi, (2n+1)\pi) = \cdots \cup [-2\pi, -\pi) \cup [0, \pi) \cup [2\pi, 3\pi) \cup \cdots$

(Lecture 1-2) Sequences

Examples:

- ► $a_n = \frac{1}{n} = 1, \frac{1}{2}, \frac{1}{3}, \dots$
- ▶ $b_n = 2^{n-1} = 1, 2, 4, 8, ...$
- $c_n = (-1)^n = -1, 1, -1, 1, ...$

• Arithmetic sequences: $a_{n+1} - a_n = d$ for some constant d

• Geometric sequences: $a_{n+1} = ra_n$ for some constant r

Definitions:

- ▶ Monotonic increasing (or "increasing"): $a_n \le a_{n+1}$ for all n
- ▶ Monotonic decreasing (or "decreasing"): $a_n \ge a_{n+1}$ for all n
- Monotonic: Either monotonic increasing or decreasing
- Strictly increasing: $a_n < a_{n+1}$ for all n
- Strictly decreasing: $a_n > a_{n+1}$ for all n
- ▶ Bounded below: there exists $M \in \mathbb{R}$ s.t. $a_n > M$ for all n
- **Bounded above**: there exists $M \in \mathbb{R}$ s.t. $a_n < M$ for all n
- Bounded: there exists M ∈ ℝ s.t. |a_n| < M for all n (i.e. both bounded below and bounded above)

(Lecture 1-2) Limits of sequences

Definitions:

- (Convergent sequence) If $\{a_n\}$ approaches a number L as n approaches infinity, we say $\lim_{n \to \infty} a_n = L$.
- (Divergent sequence) If no such L exists, we say that {a_n} is divergent.

Note: If
$$\lim_{n\to\infty} a_n = \infty$$
 or $-\infty$, it is also divergent.

Uniqueness of limit: If a_n is convergent, then the limit is unique.

Basic arithmetic rules: If
$$\lim_{n \to \infty} a_n = a$$
 and $\lim_{n \to \infty} b_n = b$, then

$$\lim_{n \to \infty} (a_n \pm b_n) = a \pm b$$

$$\lim_{n \to \infty} (ca_n) = ca \text{ (where } c \text{ is a constant)}$$

$$\lim_{n \to \infty} a_n b_n = ab$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b} \text{ (if } b \neq 0)$$
Example: $\lim_{n \to \infty} \left(\cos \frac{1}{n} - 2 \left(\frac{3}{4} \right)^n + \frac{1}{n^2} \right) = 1 - 2 \cdot 0 + 0 = 1$

(Lecture 1-2) Limits of sequences

Limits involving $\pm\infty$:

$$\begin{split} & \infty \pm L = \infty \\ & -\infty \pm L = -\infty \\ & \infty + \infty = \infty \\ & -\infty - \infty = -\infty \\ & L \cdot \infty = \begin{cases} \infty & \text{if } L > 0 \\ -\infty & \text{if } L < 0 \end{cases} \\ & \frac{L}{\pm \infty} = 0 \\ & \text{(Indeterminate forms)} \ \infty - \infty, \ \frac{\pm \infty}{\pm \infty}, \ \frac{0}{0}, \ 0 \cdot \infty: \ \text{try further simplifying} \end{split}$$

Convergence \Rightarrow **Boundedness**:

If
$$\{a_n\}$$
 is convergent, then $\{a_n\}$ is bounded.

Remark: The converse is **NOT** true, i.e. bounded \Rightarrow convergent! Example: $\{(-1)^n\} = -1, 1, -1, 1, \dots$ is bounded but divergent.

(Lecture 2) Monotone convergence theorem

If $\{a_n\}$ is monotonic and bounded, then $\{a_n\}$ is convergent.

Other versions:

- If {a_n} is monotonic increasing and bounded above, then {a_n} is convergent.
- If {a_n} is monotonic decreasing and bounded below, then {a_n} is convergent.

Example: To prove that $\{a_n\}$ with $\begin{cases} a_{n+1} = \sqrt{a_n + 1} \\ a_1 = 1 \end{cases}$ is convergent, we prove that (i) $\{a_n\}$ is bounded by 2 (by MI) and (ii) $\{a_n\}$ is monotonic increasing.

Remark:

The converse is **NOT** true: convergent \Rightarrow monotonic & bounded! Example:

 $\overline{\{\frac{(-1)^n}{n}\}} = -1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, \dots$ converges to 0, but the sequence is not monotonic.

(Lecture 3) Squeeze theorem (sandwich theorem)

If
$$b_n \leq a_n \leq c_n$$
 for all n and $\lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n = L$,
then $\lim_{n \to \infty} a_n = L$.

Example: $\lim_{n \to \infty} \frac{\sin(\cos n)}{n} = ?$ Solution: Since $-1 \le \sin(\cos n) \le 1$ for all *n*, we have

$$\frac{-1}{n} \le \frac{\sin(\cos n)}{n} \le \frac{1}{n}.$$

Now, since $\lim_{n\to\infty} \frac{-1}{n} = 0 = \lim_{n\to\infty} \frac{1}{n}$, by squeeze theorem, we have

$$\lim_{n\to\infty}\frac{\sin(\cos n)}{n}=0.$$

Some possible ways to show that a sequence converges (1) Find the limit directly using some basic limit results

 $\lim_{n \to \infty} r^n = 0 \text{ if } |r| < 1, \lim_{n \to \infty} \frac{1}{n} = 0, \dots$ $\underline{\text{Example:}}_{n \to \infty} \lim_{n \to \infty} \left(\cos \frac{1}{n} + \left(\frac{3}{4}\right)^n + \frac{1}{n^2} \right) = 1 + 0 + 0 = 1$

(II) Use the monotone convergence theorem

Show that the sequence is bounded and monotonic (may need to use mathematical induction)

Conclude that the sequence converges (i.e. can write $\lim_{n\to\infty} a_n = L$, then solve some equations to find L if needed).

Example: Show that $\begin{cases} a_{n+1} = \sqrt{a_n + 1} \\ a_1 = 1 \end{cases}$ converges.

(III) Use the squeeze theorem

▶ Find b_n, c_n s.t. b_n ≤ a_n ≤ c_n and lim_{n→∞} b_n = lim_{n→∞} c_n (= L).
 ▶ Conclude that lim_{n→∞} a_n = L.
 Example: Show that {a_n} = {(-1)ⁿ+sin n / n} converges.
 If a way does not work, it does NOT imply that the sequence is divergent! Try another way.

Some possible ways to show that a sequence diverges

(1) Show that $\{a_n\}$ is unbounded (i.e. $\lim_{n \to \infty} |a_n| = \infty$)

Reason: If a sequence converges, it must be bounded

Example: $a_n = (-1)^n n^2$ diverges as $\lim_{n \to \infty} |a_n| = \lim_{n \to \infty} n^2 = \infty$

(II) Show that $\{a_n\}$ contains two subsequences which converge to two different values

Reason: If a sequence converges, then the limit must be unique

Example: $a_n = (-1)^n$ diverges since $\{a_1, a_3, a_5, ...\}$ converges to -1 and $\{a_2, a_4, a_6, ...\}$ converges to 1.

If a way does not work, it **does NOT imply** that the sequence is convergent! Try another way.

(Lecture 3) Infinite series **Series**: $\sum_{k=1}^{n} a_{k} = a_{1} + a_{2} + \dots + a_{n}$ Examples: • $\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$ • (Arithmetic sum) $\sum_{k=1}^{n} (a + (k-1)d) = \frac{2a + (n-1)d}{2}$ • (Geometric sum) $\sum_{k=1}^{n} ar^{k-1} = \frac{a(r^n-1)}{(r-1)}$ (if $r \neq 1$) Convergence of infinite series: We say that an infinite series $\sum a_k = a_1 + a_2 + a_3 + \cdots$ is convergent if the sequence of partial sums $\{s_n\}$ (where $s_n = a_1 + a_2 + \cdots + a_n = \sum a_k$) converges. Example: (Euler's number) $e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots \approx 2.718$

(Lecture 3) Functions

Definitions:

• $f: A \to B$

- A: Domain
- B: Codomain
- f: Some rule of assigning elements in A to elements in B
- ▶ Range of $f = \{f(x) : x \in A\}$ (also known as image of f)

Natural domain = largest domain on which f can be defined Examples:

- For $f : \mathbb{R} \to \mathbb{R}$ with $f(x) = x^2$, the range of f is $[0, \infty)$
- The natural domain of $f(x) = \frac{1}{\sqrt{x+1}}$ is $(-1, \infty)$

The natural domain of tan(x) is

$$\mathbb{R}\setminus\{\pm\frac{\pi}{2},\pm\frac{3\pi}{2},\pm\frac{5\pi}{2},\ldots\}=\bigcup_{n\in\mathbb{Z}}\left((n-\frac{1}{2})\pi,(n+\frac{1}{2})\pi\right)$$

(Lecture 3–4) Injective, subjective, bijective functions, and inverse functions

- f: A → B is said to be injective (or "1-1", "one-to-one") if for any x₁, x₂ ∈ A with x₁ ≠ x₂, we have f(x₁) ≠ f(x₂) (Or equivalently, if f(x₁) = f(x₂) then we have x₁ = x₂)
- f: A → B is said to be surjective (or "onto") if for any y ∈ B, there exists x ∈ A such that y = f(x)
- f is bijective if it is both injective and surjective
- ▶ If $f : A \to B$ is a bijective function, the inverse function $f^{-1} : B \to A$ satisfies $f^{-1}(f(x)) = x$ for all $x \in A$ and $f(f^{-1}(y)) = y$ for all $y \in B$

Examples:

• $f : \mathbb{R} \to \mathbb{R}$ with $f(x) = x^3$ is bijective

• $f : \mathbb{R} \to \mathbb{R}$ with $f(x) = x^2$ is not injective as f(-1) = f(1) = 1

- $f: [0,\infty) \to \mathbb{R}$ with $f(x) = x^2$ is injective but not surjective
- ▶ $f:[0,\infty) \to [0,\infty)$ with $f(x) = x^2$ is bijective, and the inverse function is $f^{-1}:[0,\infty) \to [0,\infty)$ with $f^{-1}(y) = \sqrt{y}$

(Lecture 3-4) Even, odd, periodic functions

- f is an even function if f(-x) = f(x) for all x
- f is an odd function if f(-x) = -f(x) for all x
- f is a periodic function if there exists a constant k such that
 f(x) = f(x + k) for all x

- $f(x) = x^2$ is even because $f(-x) = (-x)^2 = x^2 = f(x)$ for all x
- ► $f(x) = x^3 + \sin x$ is odd because $f(-x) = (-x)^3 + \sin(-x) = -x^3 - \sin x = -(f(x))$ for all x
- f(x) = x + 1 is neither odd nor even because $f(-1) = 0 \neq \pm f(1)$
- ► $f(x) = 3 \sin x + \cos \frac{x}{2}$ is periodic because $f(x + 4\pi) = 3 \sin(x + 4\pi) + \cos \frac{x + 4\pi}{2} =$ $3 \sin(x + 4\pi) + \cos \left(\frac{x}{2} + 2\pi\right) = 3 \sin x + \cos \frac{x}{2} = f(x)$ for all x

(Lecture 4-5) Some common functions

Exponential function $e^{x} : \mathbb{R} \to \mathbb{R}^{+}$

•
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

bijective function

Logarithmic function $\mathsf{ln}:\mathbb{R}^+\to\mathbb{R}$

• Inverse function of e^x ($y = e^x \Leftrightarrow x = \ln y$)

bijective function

Sine function $\mathsf{sin}:\mathbb{R}\to [-1,1]$

•
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

• odd function (because sin(-x) = -sin x)

• periodic function (because $sin(x + 2\pi) = sin x$)

Cosine function $\cos : \mathbb{R} \to [-1, 1]$

•
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \cdots$$

• even function (because $\cos(-x) = \cos x$)

• periodic function (because $cos(x + 2\pi) = cos x$)

(Lecture 4-5) Limit of functions

Definitions:

- ► Left-hand limit: We say that lim_{x→a⁻} f(x) = L if f(x) is close enough to L whenever x is close enough to a and x < a.</p>
- ▶ Right-hand limit: We say that $\lim_{x \to a^+} f(x) = L$ if f(x) is close enough to L whenever x is close enough to a and x > a.
- ► Two-sided limit: We say that lim f(x) = L if both the left-hand limit and the right-hand limit exist and are equal, i.e.

$$\lim_{x \to a} f(x) = L \iff \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L$$

Remark: Whether f is defined at a or the value of f at a is **NOT** important for finding $\lim_{x \to a^-} f(x)$, $\lim_{x \to a^+} f(x)$, $\lim_{x \to a} f(x)$ <u>Example:</u> If $f(x) = \begin{cases} -x & \text{if } x < 0 \\ 1 & \text{if } x = 0 \\ x^2 & \text{if } x > 0 \end{cases}$, we have $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (-x) = 0$ and $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^2 = 0$, so the two-sided limit exists and we have $\lim_{x \to 0} f(x) = 0 \ (\neq 1)$

(Lecture 4-5) Properties of limits of functions

If
$$\lim_{x \to a} f(x)$$
 and $\lim_{x \to a} g(x)$ exist, then

$$\lim_{x \to a} f(x) \pm g(x) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x) \text{ (where } c \text{ is a constant)}$$

$$\lim_{x \to a} f(x)g(x) = \left(\lim_{x \to a} f(x)\right) \cdot \left(\lim_{x \to a} g(x)\right)$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ (if } \lim_{x \to a} g(x) \neq 0)$$

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{x^2 + x} \right) = \lim_{x \to 0} \frac{(x+1) - 1}{x(x+1)} = \lim_{x \to 0} \frac{1}{x+1} = 1$$

$$\lim_{x \to 2} \frac{2 - x}{3 - \sqrt{x^2 + 5}} = \lim_{x \to 2} \left(\frac{2 - x}{3 - \sqrt{x^2 + 5}} \cdot \frac{3 + \sqrt{x^2 + 5}}{3 + \sqrt{x^2 + 5}} \right)$$

$$= \lim_{x \to 2} \frac{(2 - x)(3 + \sqrt{x^2 + 5})}{4 - x^2} = \lim_{x \to 2} \frac{3 + \sqrt{x^2 + 5}}{2 + x} = \frac{6}{4} = \frac{3}{2}$$

(Lecture 4-5) Properties of limits of functions

Some other useful limit results:

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$
$$\lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1$$
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^{3x} - 1}{x} = \lim_{x \to 0} \frac{e^{3x} - 1}{3x} \cdot 3 = 1 \cdot 3 = 3$$
$$\lim_{x \to 0} \frac{\sin 2x}{\sin 3x} = \lim_{x \to 0} \frac{\frac{\sin 2x}{2x}(2x)}{\frac{\sin 3x}{3x}(3x)} = \frac{\left(\lim_{x \to 0} \frac{\sin 2x}{2x}\right) \cdot 2}{\left(\lim_{x \to 0} \frac{\sin 3x}{3x}\right) \cdot 3} = \frac{1 \cdot 2}{1 \cdot 3} = \frac{2}{3}$$

(Lecture 5) Sequential criterion

We have $\lim_{x \to a} f(x) = L$ (limit of function) if and only if For any sequence $\{x_n\}$ with $x_n \neq a$ for any n and $\lim_{n \to \infty} x_n = a$, we have $\lim_{n \to \infty} f(x_n) = L$ (limit of sequence).

Consequence: If we can find two sequences $\{x_n\}, \{y_n\}$ such that: ▶ $x_n \neq a$, $y_n \neq a$ for all *n* and $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = a$ ▶ but $\lim_{n\to\infty} f(x_n) \neq \lim_{n\to\infty} f(y_n)$, then $\lim_{x\to a} f(x)$ does not exist. Example: Prove that $\lim_{x \to 0} \sin \frac{1}{x}$ does not exist. Solution: Let $\{x_n\} = \left\{\frac{1}{n\pi}\right\} = \frac{1}{\pi}, \frac{1}{2\pi}, \frac{1}{3\pi}, \cdots$ and $\{y_n\} = \left\{\frac{1}{2n\pi + \frac{\pi}{2}}\right\} = \frac{1}{2\pi + \frac{\pi}{2}}, \frac{1}{4\pi + \frac{\pi}{2}}, \frac{1}{6\pi + \frac{\pi}{2}}, \cdots$, then we have $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 0 \text{ but } \lim_{n\to\infty} f(x_n) = 0 \neq \lim_{n\to\infty} f(y_n) = 1.$

(Lecture 5) Squeeze theorem for functions

Let f, g, h be functions. If $f(x) \le g(x) \le h(x)$ for any $x \ne a$ on a neighborhood of a and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then the limit of g(x) at x = a exists and we have $\lim_{x \to a} g(x) = L$.

Example:
$$\lim_{x \to 0} x \sin \frac{1}{e^{x^2} - 1} = ?$$

Solution:

Since $-1 \le \sin \frac{1}{e^{x^2} - 1} \le 1$ for all x, we have $-x \le x \sin \frac{1}{e^{x^2} - 1} \le x$. As $\lim_{x \to 0} (-x) = 0 = \lim_{x \to 0} x$, by squeeze theorem, $\lim_{x \to 0} x \sin \frac{1}{e^{x^2} - 1} = 0$.

(Lecture 6–7) Limits at infinity

Definitions:

- We say that lim _{x→∞} f(x) = L if f(x) is close enough to L whenever x is large enough.
- (Similar for $\lim_{x \to -\infty} f(x)$)

$$\lim_{x \to \infty} \frac{1}{x - 1} = 0$$

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{2x} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{1}{2x} \right)^{3x \cdot \frac{2}{2}} =$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{2x} \right)^{2x \cdot \frac{3}{2}} = \left(\lim_{x \to \infty} \left(1 + \frac{1}{2x} \right)^{2x} \right)^{\frac{3}{2}} = e^{\frac{3}{2}}$$

$$\lim_{x \to \infty} \frac{x^k}{e^x} = 0 \text{ and } \lim_{x \to \infty} \frac{(\ln x)^k}{x} = 0 \text{ for any positive integer } k$$

(Lecture 7) Continuity of functions

f is said to be continuous at x = a if

$$\lim_{x\to a}f(x)=f(a).$$

In other words, we have:

(i) The limit $\lim_{x \to a} f(x)$ exists (i.e. $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$), and (ii) It is equal to the value of f at x = a.

f is said to be continuous on an interval (a, b) if f is continuous at every point on (a, b).

- x^n , $\cos x$, $\sin x$, e^x are continuous on \mathbb{R}
- ▶ ln(x) is continuous on \mathbb{R}^+

$$\bullet f(x) = \begin{cases} -x+1 & \text{if } x < 0\\ \cos x & \text{if } x \ge 0 \end{cases} \text{ is continuous at } x = 0$$

(Lecture 7) Properties of continuous functions

Properties:

- If f(x) and g(x) are continuous at x = a, then the following functions are also continuous at x = a:
 - $f(x) \pm g(x)$
 - cf(x) (where c is a constant)
 - f(x)g(x)• $\frac{f(x)}{\sigma(x)}$ (if $g(a) \neq 0$)
- If f(x) is continuous at x = a and g(u) is continuous at u = f(a), then the composition (g ∘ f)(x) (i.e. g(f(x))) is also continuous at x = a.

- ► cos(x) + 2x is continuous on R because both cos x and x are continuous on R.
- Sin(x³ + 1) is continuous at x = 0 because x³ + 1 is continuous at x = 0 and sin(u) is continuous at u = 1.

(Lecture 7) Intermediate value theorem and extreme value theorem

Intermediate value theorem (IVT):

Let f be a continuous function on [a, b]. For any real number L between f(a) and f(b)(i.e. f(a) < L < f(b) or f(b) < L < f(a)), there exists $c \in (a, b)$ such that f(c) = L.

Example: Show that $f(x) = x^7 + x^3 + 1$ has a real root. Solution: Note that f(-1) = -1 < 0 and f(0) = 1 > 0. As f is continuous, by IVT, there exists $c \in (-1, 0)$ s.t. f(c) = 0.

Extreme value theorem (EVT):

Let f be a continuous function on [a, b]. Then there exists $\alpha, \beta \in [a, b]$ such that $f(\alpha) \leq f(x) \leq f(\beta)$ for any $x \in [a, b]$ (i.e. f has a global maximum and a global minimum in [a, b]).

(Lecture 8) Differentiability of functions

f is said to be differentiable at x = a if the following limit (called the derivative of f at x = a) exists:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Another form:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Remark: For piecewise functions, we need to check both $\lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} \text{ and } \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a}$

Example (finding derivative by definition, i.e. first principle):

• If
$$f(x) = x^2$$
, then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = 2x.$$

(Lecture 8–9) Derivatives of polynomial, exponential, logarithmic, and trigonometric functions

•
$$(x^n)' = nx^{n-1}$$

• $(e^x)' = e^x$
• $(\ln x)' = \frac{1}{x}$
• $(a^x)' = a^x \ln a$
• $(\sin x)' = \cos x$
• $(\cos x)' = -\sin x$
• $(\tan x)' = \sec^2 x = \frac{1}{\cos^2 x}$
• $(c)' = 0$ (where c is a constant)
• $(\sinh x)' = \cosh x$ (where $\sinh x = \frac{e^x - e^{-x}}{2}$, $\cosh x = \frac{e^x + e^{-x}}{2}$)
• $(\cosh x)' = \sinh x$
• $(\tanh x)' = \operatorname{sech}^2 x = \frac{1}{\cosh^2 x}$

(Lecture 8–9) Differentiation rules (sum, difference, product, and quotient rules)

If f and g are differentiable at a point, then the following functions are also differentiable at that point:

•
$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

•
$$(cf(x))' = cf'(x)$$
 (where c is a constant)

Product rule:

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

Quotient rule:

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \quad (\text{if } g(x) \neq 0)$$

•
$$(x^3 \sin x)' = (x^3)' \sin x + x^3 (\sin x)' = 3x^2 \sin x + x^3 \cos x$$

• $\left(\frac{\sin x}{x^2+1}\right)' = \frac{(\sin x)'(x^2+1)+(\sin x)(x^2+1)'}{(x^2+1)^2} = \frac{(x^2+1)\cos x+2x\sin x}{(x^2+1)^2}$

(Lecture 8–9) Differentiation rules (chain rule) Chain rule:

If f(x) is differentiable at x = a and g(u) is differentiable at u = f(a), then $(g \circ f)$ is differentiable at x = a and we have

$$(g \circ f)'(a) = g'(f(a))f'(a)$$

In other words, we have

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Examples:

•
$$(\sin x^2)' = \frac{d(\sin u)}{du} \frac{du}{dx} (\text{let } u = x^2) = (\cos u)(2x) = 2x \cos x^2$$

• $(e^{\sin x})' = e^{\sin x} \cos x$

A more complicated version: $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx}$ Example:

•
$$(\ln(\cos(x^3)))' = \frac{1}{\cos x^3} \cdot (-\sin(x^3)) \cdot (3x^2) = -3x^2 \tan x^3$$

(Lecture 8–9) Continuity and differentiability Property:

If f is differentiable at x = a, then f is continuous at x = a

The converse is **NOT** true: if f is continuous at x = a, it may or may not be differentiable at x = aExample: $f(x) = |x| = \begin{cases} -x & \text{if } x < 0 \\ x & \text{if } x > 0 \end{cases}$ • f(x) is continuous on \mathbb{R} (i.e. at every point $x \in \mathbb{R}$): For any a < 0, $\lim_{x \to a} f(x) = \lim_{x \to a} (-x) = -a = f(a)$ For any a > 0, $\lim_{x \to a} f(x) = \lim_{x \to a} x = a = f(a)$ For a = 0, we have $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (-x) = 0 = f(0)$ and $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x = 0 = f(0), \text{ and hence } \lim_{x \to 0^-} f(x) = f(0)$ • f(x) is not differentiable at x = 0: Note that $f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{|h| - 0}{h} = \lim_{h \to 0} \frac{|h|}{h}$ but $\lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = 1 \text{ and } \lim_{h \to 0^-} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{-h}{h} = -1$

(Lecture 8–9) Continuity and differentiability Another example of continuous but not differentiable functions:

$$f(x) = |x+1| - |x| + |x-1|$$

=
$$\begin{cases} -(x+1) - (-x) - (x-1) &= -x & \text{if } x < -1 \\ (x+1) - (-x) - (x-1) &= x+2 & \text{if } -1 \le x < 0 \\ (x+1) - (x) - (x-1) &= -x+2 & \text{if } 0 \le x < 1 \\ (x+1) - (x) + (x-1) &= x & \text{if } x \ge 1 \end{cases}$$

- f(x) is continuous on \mathbb{R}
- f(x) is not differentiable at x = -1, 0, 1

(Lecture 10-11) Implicit differentiation

Idea: Find y' without having to explicitly write y = f(x).

Example: If $x \sin y + y^2 = x + 3y$, find the slope of tangent at (0,0). Solution:

$$(x \sin y + y^2)' = (x + 3y)'$$

$$(\sin y + x(\cos y)y') + 2yy' = 1 + 3y'$$

$$(x \cos y + 2y - 3)y' = 1 - \sin y$$

$$y' = \frac{1 - \sin y}{x \cos y + 2y - 3}$$
The slope of tangent at (0,0) is
$$\frac{1 - \sin 0}{0 \cdot \cos 0 + 2 \cdot 0 - 3} = -\frac{1}{3}$$

(Lecture 10–11) Logarithmic differentiation

Idea: Find the derivative of some complicated functions using logarithms.

Example: If $y = x^x$, find y'.

Solution:

$$y = x^{x}$$

$$\ln y = \ln(x^{x})$$

$$\ln y = x \ln x$$

$$(\ln y)' = (x \ln x)'$$

$$\frac{1}{y}y' = 1 \cdot \ln x + x \cdot \frac{1}{x}$$

$$y' = y(\ln x + 1) = x^{x}(\ln x + 1)$$

(Lecture 10-11) Derivatives of inverse functions

Inverse functions:

If f(y) is a bijective and differentiable function with $f'(y) \neq 0$ for any y, then the inverse function $y = f^{-1}(x)$ is differentiable:

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

$$y = \sin^{-1} x \Rightarrow \sin y = x \Rightarrow (\cos y)y' = 1 \Rightarrow (\sin^{-1} x)' = \frac{1}{\sqrt{1 - x^2}}$$

$$y = \cos^{-1} x \Rightarrow \cos y = x \Rightarrow (-\sin y)y' = 1 \Rightarrow (\cos^{-1} x)' = -\frac{1}{\sqrt{1 - x^2}}$$
$$y = \tan^{-1} x \Rightarrow \tan y = x \Rightarrow (\sec^2 y)y' = 1 \Rightarrow (\tan^{-1} x)' = \frac{1}{1 + x^2}$$

(Lecture 11-12) Higher order derivatives

Second derivative:

$$y'' = f''(x) = \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$$

n-th derivative:

$$y^{(n)} = f^{(n)}(x) = \frac{d^n y}{dx^n} = \frac{d}{dx} \left(\frac{d}{dx} \left(\frac{d}{dx} \left(\cdots \frac{dy}{dx} \right) \right) \right)$$

0-th derivative:

$$y^{(0)} = f^{(0)}(x) = f(x)$$

•
$$(\sin x^2)'' = ((\sin x^2)')' = ((\cos x^2)(2x))'$$

= $(-\sin x^2)(2x)(2x) + 2\cos x^2 = -4x^2\sin x^2 + 2\cos x^2$

Find
$$y''$$
 if $xy + \sin y = 1$:

$$(xy + \sin y)' = 1' \Rightarrow (y + xy' + y'\cos y) = 0 \Rightarrow y' = \frac{-y}{x + \cos y}$$
$$\Rightarrow y'' = -\frac{y'(x + \cos y) - y(1 - y'\sin y)}{(x + \cos y)^2} = \frac{2y(x + \cos y) + y^2\sin y}{(x + \cos y)^3}$$
(Lecture 11-12) Higher order differentiation rules

If f and g are n-times differentiable (i.e. $f^{(n)}$ and $g^{(n)}$ exist), then:

•
$$(f \pm g)^{(n)} = f^{(n)} \pm g^{(n)}$$

• $(cf)^{(n)} = cf^{(n)}$ (where c is a constant

Leibniz's rule (product rule for higher order derivatives):

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)} g^{(k)}$$

where
$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$
 is the binomial coefficient.

 $\underline{\text{Example:}}_{1 \cdot (x^{3} \sin x)^{(4)}} = 1 \cdot (x^{3})^{'''} \sin x + 4 \cdot (x^{3})^{'''} (\sin x)' + 6 \cdot (x^{3})^{''} (\sin x)^{''} + 4(x^{3})' (\sin x)^{'''} \\
 + 1 \cdot x^{3} (\sin x)^{''''} = 0 + 24 \cos x - 36x \sin x - 12x^{2} \cos x + x^{3} \sin x \\
 = (x^{3} - 36x) \sin x + (24 - 12x^{2}) \cos x$

(Lecture 12–13) n-times differentiability and continuity

If f is n-times differentiable at x = a $(f^{(n)}(a)$ exists, i.e. $f^{(n-1)}$ is differentiable at x = a), then $f^{(n-1)}$ is continuous at x = a.

f is n-times differentiable at x = a (i.e. $f^{(n)}(a)$ exists) $f^{(n-1)}(a)$ exists and $f^{(n-1)}$ is continuous at x = a $\downarrow \downarrow$ f'(a) exists and f' is continuous at x = a $\downarrow \downarrow$ f is continuous at x = a

However, the converse is **NOT** true! Example: Let f(x) = |x|x, then:

- f is differentiable at x = 0
- f' is continuous at x = 0
- but f' is not differentiable at x = 0 (i.e. f''(0) does not exist)

(Lecture 14) Local extrema, critical points, turning points

Local maximum:

f(x) has a local maximum at x = a if $f(x) \le f(a)$ for all x near a (more precisely, for all $x \in D \cap (a - \delta, a + \delta)$ where D is the domain and $\delta > 0$ is some small number).

Local minimum:

f(x) has a local minimum at x = a if $f(x) \ge f(a)$ for all x near a. Note:

Local extremum points can be either interior points or endpoints! <u>Example</u>: For $f : [-\pi, \pi] \to \mathbb{R}$ with $f(x) = \sin x$, local maximum points $= (-\pi, 0), (\frac{\pi}{2}, 1)$ local minimum points $= (-\frac{\pi}{2}, -1), (\pi, 0)$.

Critical points:

f has a critical point at x = a if f'(a) = 0 or f'(a) does not exist. Turning points:

f has a turning point at x = a if f' changes sign at *a*. Note: {Turning points} \subset {Critical points} Example: x = 0 is a critical point of $f(x) = x^3$, but it is not a turning point.

(Lecture 14) First and second derivative tests

Theorem:

Let f(x) be a continuous function. If f(x) has a local maximum/ minimum at x = a, then x = a must be a critical point of f(x). **First derivative test**:

Let f(x) be a continuous function and x = a be a critical point.
(i) If f' changes sign from + to - at a, then f(x) has a local maximum at x = a.
(ii) If f' changes sign from - to + at a, then f(x) has a local minimum at x = a.

Second derivative test:

Let f(x) be a continuous function.
(i) If f'(a) = 0 and f''(a) < 0, then f(x) has a local maximum at x = a.
(ii) If f'(a) = 0 and f''(a) > 0, then f(x) has a local minimum at x = a.

(Lecture 15) Finding global extrema

Extreme value theorem (EVT) for closed and bounded intervals:

Let f be a continuous function on [a, b]. Then there exists $\alpha, \beta \in [a, b]$ such that $f(\alpha) \leq f(x) \leq f(\beta)$ for any $x \in [a, b]$ (i.e. f has a global maximum and a global minimum in [a, b]).

Note: For f on (a, b), (a, b], or [a, b), f may NOT have any global extrema in some cases!

Finding global extrema for functions on general intervals:

- 1. Check all critical points (including endpoints if applicable) to find all local extrema.
- Compare the values of f(x) at all such points as well as the limit of f as x approaches the open endpoints (if applicable) to determine the existence of global extrema.

Examples:

 $\overline{f(x) = x^2}$ on [-2, 1]: global min. point = (0, 0); global max. = (-2, 4) $f(x) = x^2$ on \mathbb{R} : global minimum point = (0, 0); no global max. $f(x) = x^2$ on (0, 1): no global min; no global max (Lecture 15) Concavity and points of inflection

Concavity:

We say that f(x) is

- concave upward on (a, b) if f''(x) > 0 on (a, b)
- concave downward on (a, b) if f''(x) < 0 on (a, b)

Example: $f(x) = x^3 \Longrightarrow f''(x) = 6x$

f is concave upward on $(0,\infty)$ and concave downward on $(-\infty,0)$

Point of inflection:

We say that x = a is an inflection point of f(x) if f''(x) changes sign at x = a. Example: $f(x) = x^3 \Longrightarrow f''(x) = 6x$ As f'' changes sign from - to + at x = 0, f has an inflection point at x = 0. (Lecture 15) Asymptotes (vertical, horizontal, oblique) Vertical asymptotes:

• x = a is a vertical asymptote of f(x) if

$$\lim_{x \to a^{-}} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^{+}} f(x) = \pm \infty$$

Example: For $f(x) = x^2 + \frac{1}{x-1}$, x = 1 is a vertical asymptote since $\lim_{x \to 1^+} f(x) = \infty$.

Horizontal asymptotes:

• y = b is a horizontal asymptote of f(x) if

$$\lim_{x \to -\infty} f(x) = b \text{ or } \lim_{x \to \infty} f(x) = b$$

Note: f(x) can have at most two different horizontal asymptotes (one for $\lim_{x \to -\infty}$ and one for $\lim_{x \to \infty}$) Example: For $f(x) = e^x$, y = 0 is a horizontal asymptote since $\lim_{x \to -\infty} f(x) = 0$.

(Lecture 15) Asymptotes (vertical, horizontal, oblique) Oblique asymptotes:

• y = ax + b is an oblique asymptote of f(x) if

 $\lim_{x \to -\infty} (f(x) - (ax + b)) = 0 \text{ or } \lim_{x \to \infty} (f(x) - (ax + b)) = 0$

Note: f(x) can have at most two different oblique asymptotes (one for lim _{x→-∞} and one for lim _{x→∞})

- Example: For $f(x) = x + 3 + \frac{2}{x}$, y = x + 3 is an oblique asymptote since $\lim_{x \to \infty} (f(x) - (x + 3)) = \lim_{x \to \infty} \frac{2}{x} = 0$.
 - Finding oblique asymptotes: <u>Method 1</u>: Directly work on f(x) - (ax + b), then check the coefficients of different terms and see what a, b have to be such that the limit = 0 as x → ∞ or -∞. <u>Method 2</u>: Find a such that a = lim_{x→∞} f(x)/x (or lim_{x→-∞}), then find b = lim_{x→∞} (f(x) - ax) (or lim_{x→-∞}).

(Lecture 15) Asymptotes (vertical, horizontal, oblique) Example: $f(x) = \sqrt{x^2 - 2x + 3}$

- ▶ No vertical asymptote (as f(x) is defined everywhere on \mathbb{R})
- ▶ No horizontal asymptote $(\lim_{x \to \infty} f(x) = \infty, \lim_{x \to -\infty} f(x) = \infty)$
- Oblique asymptotes:

For
$$x \to \infty$$
, we have
 $a = \lim_{x \to \infty} \frac{\sqrt{x^2 - 2x + 3}}{x} = \lim_{x \to \infty} \sqrt{1 - \frac{2}{x} + \frac{3}{x^2}} = 1$, and
 $b = \lim_{x \to \infty} (\sqrt{x^2 - 2x + 3} - x) = \lim_{x \to \infty} \frac{(x^2 - 2x + 3) - x^2}{\sqrt{x^2 - 2x + 3} + x} = -1$

For
$$x \to -\infty$$
, we have
 $a = \lim_{x \to -\infty} \frac{\sqrt{x^2 - 2x + 3}}{x} = \lim_{x \to -\infty} -\sqrt{1 + \frac{2}{x} + \frac{3}{x^2}} = -1$, and
 $b = \lim_{x \to -\infty} (\sqrt{x^2 - 2x + 3} + x) = \lim_{x \to -\infty} \frac{(x^2 - 2x + 3) - x^2}{\sqrt{x^2 - 2x + 3} - x} = 1$

So the oblique asymptotes are y = x - 1 and y = -x + 1.

(Lecture 15) Curve sketching

To sketch a given function, do the following:

1. Find:

- (Natural) domain
- x-intercept
- y-intercept
- Asymptotes (vertical, horizontal, oblique)
- Critical points (and check whether they are local max/min)
- Inflection points (and check concavity)
- 2. Sketch the curve based on the information above.

Examples: See the main MATH1010 lecture notes.

(Lecture 15) Curve sketching Example: $f(x) = \sqrt{x^2 - 2x + 3}$

• Domain: \mathbb{R} (as $\sqrt{x^2 - 2x + 3} = \sqrt{(x - 1)^2 + 2}$ is defined everywhere)

- x-intercept: None (as $f(x) = \sqrt{(x-1)^2 + 2} \neq 0$)
- y-intercept: $f(0) = \sqrt{3}$
- Asymptotes: y = x 1 and y = -x + 1 (see the previous slide)
- Critical points: $f'(x) = \frac{x-1}{\sqrt{x^2-2x+3}}$, so the only critical point is at x = 1. By first derivative test, it is a local minimum.
- Inflection point: None (as $f''(x) = \frac{2}{\sqrt{x^2 2x + 3}} > 0$)

(Lecture 15–17) Mean value theorem (MVT)

Rolle's theorem:

If f is continuous on [a, b], differentiable on (a, b), and f(a) = f(b), then there exists $c \in (a, b)$ such that f'(c) = 0.

Lagrange's mean value theorem:

If f is continuous on [a, b] and differentiable on (a, b), then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Cauchy's mean value theorem:

If f, g are continuous on [a, b], differentiable on (a, b), with $g(a) \neq g(b)$ and $g'(x) \neq 0$ on (a, b), then there exists $c \in (a, b)$ such that $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$.

(Lecture 16) Inequalities

Using MVTs to prove inequalities:

Example: Prove that $|\cos(x) - \cos(y)| \le |x - y|$ for all $x, y \in \mathbb{R}$. Solution:

- If x = y, we have $|\cos(x) \cos(y)| = 0 = |x y|$.
- ▶ If $x \neq y$, by Lagrange's MVT, there exists *c* between *x* and *y* such that

$$\frac{\cos(x) - \cos(y)}{x - y} = -\sin(c).$$

Therefore, we have

$$rac{|\cos(x)-\cos(y)|}{|x-y|} = |-\sin(c)| \leq 1 \Longleftrightarrow |\cos(x)-\cos(y)| \leq |x-y|$$

for all $x, y \in \mathbb{R}$.

(Lecture 16) Derivatives and inequalities

Increasing/decreasing functions and derivatives:

- ▶ f is (monotonic) increasing on (a, b) (i.e. $f(x) \le f(y)$ for all $x, y \in (a, b)$ with x < y) if and only if $f'(x) \ge 0$ on (a, b).
- f is (monotonic) decreasing on (a, b) (i.e. f(x) ≥ f(y) for all x, y ∈ (a, b) with x < y) if and only if f'(x) ≤ 0 on (a, b).</p>
- f is constant on (a, b) if and only if f'(x) = 0 on (a, b).
- *f* is strictly increasing on (*a*, *b*) (i.e. *f*(*x*) < *f*(*y*) for all *x*, *y* ∈ (*a*, *b*) with *x* < *y*) if *f*′(*x*) > 0 on (*a*, *b*).
- *f* is strictly decreasing on (*a*, *b*) (i.e. *f*(*x*) > *f*(*y*) for all *x*, *y* ∈ (*a*, *b*) with *x* < *y*) if *f*'(*x*) < 0 on (*a*, *b*).

Using derivatives to prove inequalities:

Example: Let p > 1. Prove that $(1 + x)^p > 1 + px$ for all x > 0.

<u>Solution</u>: Let $f(x) = (1 + x)^p - (1 + px)$. Then

$$f'(x) = p(1+x)^{p-1} - p > 0$$

for all x > 0. Therefore, f is strictly increasing on $(0, \infty)$. We have $f(x) > f(0) = 0 \implies (1+x)^p > 1 + px.$

(Lecture 17) L'Hopital's rule

L'Hopital's rule:

Let a ∈ ℝ or a = ±∞. If f and g are differentiable near a and all of the following conditions are satisfied:
1. Both lim f(x) = 0 and lim g(x) = 0 or both lim f(x) = ±∞ and lim g(x) = ±∞.
2. g'(x) ≠ 0 near a.
3. lim f'(x) = t∞ ists or = ±∞.
Then we have lim f(x) = f(x) = lim f'(x) g'(x)

Remarks:

- Similar results hold for one-sided limit $(\lim_{x \to a^{-}} \text{ and } \lim_{x \to a^{+}})$
- Sometimes may need to apply the rule more than once
- Not always applicable! Check if the requirements are satisfied.

(Lecture 17) L'Hopital's rule

Handling different indeterminate forms:

•
$$\frac{0}{0}, \frac{\pm\infty}{\pm\infty}$$
: May try to apply the L'Hopital's rule directly

$$\frac{Example:}{\lim_{x\to 0} \frac{\tan x - x}{x^3}} \left(\frac{0}{0}\right) = \lim_{x\to 0} \frac{\sec^2 x - 1}{3x^2} \left(\frac{0}{0}\right)$$

$$= \lim_{x\to 0} \frac{2\sec x \sec x \tan x}{6x} = \lim_{x\to 0} \frac{\sin x}{3x \cos^3 x} = \frac{1}{3}$$
• $0 \cdot (\pm\infty), \ \infty - \infty$: May try to convert them into $\frac{0}{0}$ or $\frac{\pm\infty}{\pm\infty}$, then apply the L'Hopital's rule

$$\frac{Example:}{\lim_{x\to 1} (x^2 - 1) \tan \frac{\pi x}{2}} (0 \cdot \infty) = \lim_{x\to 1} \frac{x^2 - 1}{\cot \frac{\pi x}{2}} \left(\frac{0}{0}\right)$$

$$= \lim_{x\to 1} \frac{2x}{\frac{\pi}{2} \cdot \csc^2 \frac{\pi x}{2}} = \lim_{x\to 1} \frac{2x \sin^2 \frac{\pi x}{2}}{\frac{\pi}{2}} = \frac{2 \cdot 1 \cdot 1^2}{\frac{\pi}{2}} = \frac{4}{\pi}$$

(Lecture 17) L'Hopital's rule

Handling different indeterminate forms:

 \triangleright 1^{∞}, ∞^0 , 0⁰: May use logarithm and apply the L'Hopital's rule to the logged expression, then use $\lim_{x\to a} y = e^{\lim_{x\to a} \ln y}$ Example: Find $\lim_{x\to 0^+} (x + \sin x)^x$ (0⁰) Solution: Let $y = (x + \sin x)^x$, then $\ln y = x \ln(x + \sin x)$ and $\lim_{x \to 0^+} x \ln(x + \sin x) \quad (0 \cdot (\pm \infty)) = \lim_{x \to 0^+} \frac{\ln(x + \sin x)}{\frac{1}{2}} \quad (\frac{\infty}{\infty})$ $= \lim_{x \to 0^+} \frac{\frac{1}{x + \sin x} (1 + \cos x)}{-\frac{1}{x^2}}$ $=\lim_{x\to 0^+}\frac{-x(1+\cos x)}{1+\frac{\sin x}{2}}$ $=\frac{-0(1+1)}{1+1}=0$ So $\lim_{x \to 0^+} (x + \sin x)^x = \lim_{y \to 0^+} y = \lim_{y \to 0^+} e^{\ln y} = e^0 = 1$

(Lecture 18) Taylor polynomial

Taylor polynomial:

The *n*-th order Taylor polynomial of f(x) about a point x = a is $p_n(x) = f(a) + f'(a)(x-a) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x-a)^k$

Property: We have $f^{(k)}(a) = p_n^{(k)}(a)$ for all $k = 0, 1, \dots, n$.

Example:

The 2nd order Taylor polynomial of $f(x) = \sqrt{1+x}$ about x = 0 is $p_2(x) = f(0) + f'(0)(x-0) + \frac{f''(0)}{2}(x-0)^2 = 1 + \frac{x}{2} - \frac{x^2}{8}$

Taylor's theorem:

Let
$$x \neq a$$
 (i.e. $x > a$ or $x < a$).
Suppose $f^{(n)}$ exists and is continuous on $[a, x]$ (or $[x, a]$),
and $f^{(n+1)}$ exists on (a, x) (or (x, a)).
Then there exists $c \in (a, x)$ (or (x, a)) such that
 $f(x) = p_n(x) + R_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x - a)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x - a)^{n+1}$

(Lecture 19-20) Taylor series

Taylor series:

The Taylor series of
$$f(x)$$
 about a point $x = a$ is the infinite series

$$T(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x - a)^k$$

Property: If the remainder term in Taylor's theorem $R_n(x) \to 0$ as $n \to \infty$ on an interval *I*, then the Taylor series is equal to the function (i.e. f(x) = T(x)) on *I*.

Examples:
$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$
 for all $x \in \mathbb{R}$
 $\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k+1)!} x^{2k+1}$ for all $x \in \mathbb{R}$
 $\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k)!} x^{2k}$ for all $x \in \mathbb{R}$
 $\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^{k}$ for $|x| < 1$

55 / 83

(Lecture 19-20) Taylor series

Properties:

If T(x) is the Taylor series of f(x) about x = 0, then T(x^k) is the Taylor series of f(x^k) about x = 0 for all positive integer k

Example: The Taylor series of $\frac{\sin x^2}{x^2}$ about 0 is $\frac{1}{x^2}\left(x^2 - \frac{(x^2)^3}{3!} + \frac{(x^2)^5}{5!} - \cdots\right) = 1 - \frac{x^4}{3!} + \frac{x^8}{5!} - \cdots$

- Addition and subtraction of Taylor series $\frac{\text{Example:}}{\left(1 - \frac{x^4}{3!} + \frac{x^8}{5!} - \cdots\right) + \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots\right) = 2 - \frac{x^2}{2} - \frac{x^4}{8} + \cdots$
- ► Multiplication and division of Taylor series <u>Example</u>: The Taylor series of $\frac{\sin x^2}{x^2} \cos^3 x$ about 0 is $\left(1 - \frac{x^4}{3!} + \frac{x^8}{5!} - \cdots\right) \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots\right)^3 = 1 - \frac{3x^2}{2} + \frac{17x^4}{24} + \cdots$

(Lecture 19-20) Taylor series

Properties:

• Composition of Taylor series Example: The Taylor series of cos (sin x) about 0 is $1 - \frac{1}{2!} \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots \right)^2 + \frac{1}{4!} \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots \right)^4 - \cdots$ $= 1 - \frac{x^2}{2} + \frac{5x^4}{24} + \cdots$

 Differentiation of Taylor series Example:

The Taylor series of
$$-\frac{x}{(1+x)^2} = x \left(\frac{1}{1+x}\right)'$$
 is
 $x \left(1 - x + x^2 - x^3 - \cdots\right)'$
 $= x(-1 + 2x - 3x^2 + \cdots)$
 $= -x + 2x^2 - 3x^3 + \cdots$

(Lecture 20) Using Taylor series to find limits

Idea: To find $\lim_{x\to c} f(x)$, replace certain components in f(x) with their Taylor series (if those components are equal to their Taylor series for x near c)

Example:

$$\lim_{x \to 0} \frac{\ln(1+x) - x\sqrt{1-x}}{x - \sin x}$$

$$= \lim_{x \to 0} \frac{\left(x - \frac{x^2}{2} + \frac{x^3}{3} + \mathcal{O}(x^4)\right) - x\left(1 - \frac{x}{2} - \frac{x^2}{8} + \mathcal{O}(x^3)\right)}{x - \left(x - \frac{x^3}{6} + \mathcal{O}(x^5)\right)}$$

$$= \lim_{x \to 0} \frac{\frac{11}{24}x^3 + \mathcal{O}(x^4)}{\frac{1}{6}x^3 + \mathcal{O}(x^5)}$$

$$= \lim_{x \to 0} \frac{\frac{11}{24} + \mathcal{O}(x)}{\frac{1}{6} + \mathcal{O}(x^2)} = \frac{\frac{11}{24} + 0}{\frac{1}{6} + 0} = \frac{11}{4}$$

(Lecture 20) Indefinite integration

Indefinite integral:

Let f(x) be continuous. An antiderivative (or primitive function) of f(x) is a function F(x) such that F'(x) = f(x). The collection of all antiderivatives of f(x) is called the indefinite integral of f(x) and is denoted by $\int f(x)dx$. We have $\int f(x)dx = F(x) + C$, where C is a constant.

Example: x^2 , $x^2 + 3$, $x^2 - 1$ are antiderivatives of 2x. More generally, we have $\int 2x \ dx = x^2 + C$.

Properties:

$$\int (f(x) \pm g(x))dx = \int f(x)dx \pm \int g(x)dx$$

$$\int kf(x)dx = k \int f(x)dx$$
Example: $\int (x^3 + 2x - 1) dx = \frac{x^4}{4} + x^2 - x + C$

(Lecture 20) Some basic integrals

$$\int k \, dx = kx + C$$

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$$
(where $n \neq -1$)
$$\int e^x \, dx = e^x + C$$

$$\int \frac{1}{x} \, dx = \ln |x| + C$$

$$\int a^x \, dx = \frac{1}{\ln a} a^x + C$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \cos x \, dx = \sin x + C$$

$$\int \tan x \, dx = -\ln|\cos x| + C$$

$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$

$$\int \sec^2 x \, dx = \tan x + C$$

$$\int \sec x \tan x \, dx = \sec x + C$$

$$\int \csc x \cot x \, dx = -\csc x + C$$

$$\int \frac{1}{\sqrt{1 - x^2}} \, dx = \sin^{-1} x + C$$

$$\int \frac{1}{1 + x^2} \, dx = \tan^{-1} x + C$$

(Lecture 20) Integration by substitution

$$\int f(u(x))\frac{du}{dx}dx = \int f(u)du$$

$$\frac{\text{Example:}}{\text{Solution:}} \int \sqrt{3x+4} dx =?$$

$$\frac{\text{Solution:}}{\text{Let } u = 3x+4, \text{ then } \frac{du}{dx} = 3 \Rightarrow du = 3dx. \text{ We have}}{\int \sqrt{3x+4} dx = \int \sqrt{u} \cdot \frac{1}{3}du = \frac{2}{9}u^{3/2} + C = \frac{2}{9}(3x+4)^{3/2} + C$$

$$\frac{\text{Example:}}{\text{Solution:}} \int e^{2x^2+1}x dx =?$$

$$\frac{\text{Solution:}}{\text{Let } u = 2x^2+1, \text{ then } \frac{du}{dx} = 4x \Rightarrow du = 4xdx. \text{ We have}}{\int e^{2x^2+1}x dx = \frac{1}{4}\int e^u du = \frac{1}{4}e^u + C = \frac{1}{4}e^{2x^2+1} + C$$

$$\frac{\text{Example:}}{2}\int \cos x \sin x dx = \int \sin x d(\sin x) = \frac{\sin^2 x}{2} + C$$

(Lecture 21) Trigonometric integrals

Useful trigonometric identities for handling trigonometric integrals:

$$\sin^{2} x + \cos^{2} x = 1$$

$$\sin^{2} x + \cos^{2} x = 1$$

$$\sin^{2} x + \cos^{2} x = 1$$

$$\sin^{2} x + \cos^{2} x = \sec^{2} x$$

$$\sin^{2} x = 2 \sin x \cos x$$

$$\sin^{2} x = 2 \sin x \cos x$$

$$\sin^{2} x = 2 \sin x \cos x$$

$$\sin^{2} x = \frac{1}{2} (\cos(x + y) + \cos(x - y))$$

$$\cos^{2} x = 2 \cos^{2} x - 1 = \frac{1}{2} (\cos(x + y) + \cos(x - y))$$

$$\cos^{2} x = 2 \cos^{2} x - 1 = \frac{1}{2} (\sin(x + y) - \sin(x - y))$$

$$\cos^{2} x = \frac{2 \tan x}{1 - \tan^{2} x}$$

$$\sin^{2} x = \frac{2 \tan x}{1 - \tan^{2} x}$$

$$\sin^{2} x \cos^{2} x = \frac{1}{2} (\sin(x + y) - \sin(x - y))$$

$$\sin^{2} x \cos^{2} x \sin^{2} x = \frac{1}{2} (\cos(x - y) - \cos(x + y))$$

$$\frac{1}{2} (\cos(x - y) - \cos(x + y))$$

$$\frac{1}{2} (\sin^{2} x dx) = \int \frac{1 - \cos^{2} x}{2} dx = \frac{x}{2} - \frac{\sin^{2} x}{4} + C$$

$$\frac{1}{2} (\sin^{2} x \cos^{2} x + \sin^{2} x) dx = -\frac{\cos^{2} x}{16} - \frac{\cos^{2} x}{4} + C$$

(Lecture 21) Trigonometric integrals
For
$$\int \cos^m x \sin^n x \, dx$$
:
If *m* is odd, let $u = \sin x$
Example: $\int \cos^3 x \sin^4 x \, dx = \int \cos^2 x \sin^4 x \cos x \, dx$
 $= \int (1 - u^2) u^4 \, du = \frac{u^5}{5} - \frac{u^7}{7} + C = \frac{\sin^5 x}{5} - \frac{\sin^7 x}{7} + C$
If *n* is odd, let $u = \cos x$
Example: $\int \sin^5 x \, dx = \int \sin^4 x \sin x \, dx = -\int (1 - u^2)^2 \, du$
 $= -\int (1 - 2u^2 + u^4) \, du = -u + \frac{2u^3}{3} - \frac{u^5}{5} + C =$
 $-\cos x + \frac{2\cos^3 x}{3} - \frac{\cos^5 x}{5} + C$
If both *m*, *n* are even, use double angle formulas to reduce the power and then use the above methods (if applicable)
Example: $\int \sin^4 x \cos^2 x \, dx = \int (\frac{1 - \cos 2x}{2})^2 \cdot \frac{1 + \cos 2x}{2} \, dx = \cdots$
For $\int \sec^m x \tan^n x \, dx$:
If *m* is even, let $u = \tan x$
If *n* is odd, let $u = \sec x$
If *m* is odd and *n* is even, use $\tan^2 x = \sec^2 x - 1$ to write everything in terms of sec x and use reduction formula

(Lecture 21-22) Trigonometric substitution

Idea: Simplify some integrals (without any trigonometric functions) by substituting x = some trigonometric functions

For
$$\sqrt{a^2 - x^2}$$
, substitute $x = a \sin \theta$
For $\sqrt{a^2 + x^2}$, substitute $x = a \tan \theta$
For $\sqrt{x^2 - a^2}$, substitute $x = a \sec \theta$
Example: $\int \frac{1}{\sqrt{9 - x^2}} dx =$?
Solution: Let $x = 3 \sin \theta$, then $dx = 3 \cos \theta \ d\theta$. We have

$$\int \frac{1}{\sqrt{9 - x^2}} \, dx = \int \frac{3\cos\theta}{\sqrt{9 - 9\sin^2\theta}} \, d\theta = \int 1 \, d\theta = \theta + C = \sin^{-1}\frac{x}{3} + C$$

Example:
$$\int \frac{x^3}{\sqrt{1+x^2}} dx =?$$
Solution: Let $x = \tan \theta$, then $dx = \sec^2 \theta \ d\theta$. We have $\int \frac{x^3}{\sqrt{1+x^2}} dx$

$$= \int \frac{\tan^3 \theta \sec^2 \theta}{\sqrt{1+\tan^2 \theta}} d\theta = \int \tan^3 \theta \sec \theta \ d\theta = \int (\sec^2 \theta - 1) \ d(\sec \theta)$$

$$= \frac{\sec^3 \theta}{3} - \sec \theta + C = \frac{(\sqrt{1+x^2})^3}{3} - \sqrt{1+x^2} + C$$

Example with different possible substitutions <u>Example:</u> $\int \frac{x^3}{(x^2+1)^3} dx = ?$

<u>Method 1</u>: Let $u = x^2 + 1$. We have du = 2x dx and so

$$\int \frac{x^3}{(x^2+1)^3} dx = \frac{1}{2} \int \frac{x^2}{(x^2+1)^3} 2x \, dx = \frac{1}{2} \int \frac{u-1}{u^3} \, du$$
$$= \frac{1}{2} \left(-\frac{1}{u} + \frac{1}{2u^2} \right) + C = -\frac{1}{2(x^2+1)} + \frac{1}{4(x^2+1)^2} + C = -\frac{2x^2+1}{4(x^2+1)^2} + C$$

<u>Method 2</u>: Let $x = \tan \theta$. We have $dx = \sec^2 \theta \ d\theta$ and so

$$\int \frac{x^3}{(x^2+1)^3} dx = \int \frac{\tan^3 \theta}{(\tan^2 \theta + 1)^3} \sec^2 \theta \, d\theta = \int \frac{\tan^3 \theta}{\sec^6 \theta} \sec^2 \theta \, d\theta$$
$$= \int \sin^3 \theta \cos \theta \, d\theta = \int \sin^3 \theta \, d(\sin \theta) = \frac{\sin^4 \theta}{4} + C = \frac{1}{4 \csc^4 \theta} + C$$
$$= \frac{1}{4(1+\cot^2 \theta)^2} + C = \frac{1}{4(1+\frac{1}{x^2})^2} + C = \frac{x^4}{4(x^2+1)^2} + C$$

Note: The results are consistent as $\frac{x^4}{4(x^2+1)^2} - \left(-\frac{2x^2+1}{4(x^2+1)^2}\right) = \frac{1}{4}$, which is just a constant.

(Lecture 22) Integration by parts

$$\int u \, dv = uv - \int v \, du$$

Example:

$$\overline{\int \ln x \, dx} = x \ln x - \int x \, d(\ln x) = x \ln x - \int x \cdot \frac{1}{x} \, dx = x \ln x - x + C$$

Example:
$$\int xe^x dx = \int x de^x = xe^x - \int e^x dx = xe^x - e^x + C$$

More generally, for $\int x^n f(x) dx$:

• If
$$f(x) = \sin x, \cos x, e^x$$
 etc. (easy to integrate), try

$$\int x^n f(x) \, dx = \int x^n d(F(x)) = x^n F(x) - \int F(x) d(x^n)$$

• If
$$f(x) = \sin^{-1} x$$
, $\cos^{-1} x$, $\ln x$ etc. (hard to integrate), try

$$\int x^n f(x) \, dx = \int f(x) d(\frac{x^{n+1}}{n+1}) = \frac{x^{n+1} f(x)}{n+1} - \int \frac{x^{n+1}}{n+1} d(f(x))$$

(Lecture 22) Integration by parts

Other common techniques:

Integration by parts + solving equation

Example: $\int e^x \cos x \, dx = ?$ Solution: We have

$$I = \int e^{x} \cos x \, dx = \int e^{x} \, d(\sin x) = e^{x} \sin x - \int \sin x de^{x}$$
$$= e^{x} \sin x - \int e^{x} \sin x \, dx = e^{x} \sin x + \int e^{x} \, d \cos x$$
$$= e^{x} \sin x + e^{x} \cos x - \int \cos x \, de^{x}$$
$$= e^{x} \sin x + e^{x} \cos x - \int e^{x} \cos x \, dx$$

Therefore, we have $I = e^x \sin x + e^x \cos x - I + C$ (as the two indefinite integrals may differ by a constant) and hence

$$I = \frac{e^x \sin x + e^x \cos x}{2} + C$$

(Lecture 22) Integration by parts

Other common techniques:

Substitution + integration by parts

Example: $\int \cos(\ln x) dx = ?$

Solution: Let $u = \ln x$, then

$$du = \frac{1}{x} dx \Longrightarrow dx = x \ du = e^u du.$$

Therefore,

$$\int \cos(\ln x) dx = \int \cos u \cdot e^u du$$
$$= \frac{e^u \sin u + e^u \cos u}{2} + C$$
$$= \frac{x \sin(\ln x) + x \cos(\ln x)}{2} + C$$

(Lecture 22) Reduction formula

For integrals of the form

$$\begin{split} &I_n = \int \cos^n x \ dx, \ \int \sin^n x \ dx, \int x^n \cos x \ dx, \ \int x^n \sin x \ dx, \\ &\int x^n e^x \ dx, \int (\ln x)^n \ dx, \ \int e^x \cos^n x \ dx, \ \int e^x \sin^n x \ dx, \\ &\int \frac{1}{(x^2 + a^2)^n} \ dx, \ \int \frac{1}{(a^2 - x^2)^n} \ dx \ \text{etc.}, \end{split}$$

use integration by parts to write I_n in terms of some I_k with k < n. Example:

$$I_{n} = \int x^{n} e^{x} dx = \int x^{n} d(e^{x}) = x^{n} e^{x} - \int e^{x} d(x^{n})$$
$$= x^{n} e^{x} - \int n x^{n-1} e^{x} dx = x^{n} e^{x} - n I_{n-1}$$

So $\int x^{10}e^x dx = I_{10} = x^{10}e^x - 10I_9 = x^{10}e^x - 10(x^9e^x - 9I_8) = \cdots$ (We can continue the process and eventually get some simple integral)

(Lecture 22) Partial fraction

Rational function: $R(x) = \frac{f(x)}{g(x)}$ where f(x), g(x) are polynomials <u>Examples</u>: $\frac{x^4}{x^2+1}, \frac{2x+1}{3x^2+4x+1}, \dots$

Partial fraction decomposition:

Goal: Express R(x) = q(x) +(some simple fractions)

- 1. Extract q(x) first (if deg $(f(x)) \ge deg(g(x))$).
- 2. Factorize g(x) into a product of linear polynomials (in the form of ax + b) and irreducible quadratic polynomials (in the form of $ax^2 + bx + c$ with $b^2 4ac < 0$).
- 3. Write down the general terms in the partial fraction:

Factors of $g(x)$	Terms in partial fraction
ax + b	$\frac{A}{ax+b}$
$(ax+b)^k$	$\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \dots + \frac{A_k}{(ax+b)^k}$
$ax^2 + bx + c$	$\frac{Bx+C}{ax^2+bx+c}$
$(ax^2+bx+c)^k$	$\frac{B_1x+C_1}{ax^2+bx+c}+\frac{B_2x+C_2}{(ax^2+bx+c)^2}+\cdots+\frac{B_kx+C_k}{(ax^2+bx+c)^k}$
4. Determine the coefficients A_i, B_i, C_i	

(Lecture 22) Partial fraction <u>Example:</u> Note that $\frac{9x-13}{x^2+x-12} = \frac{9x-13}{(x+4)(x-3)}$. Therefore, we have $\frac{9x-13}{(x+4)(x-3)} = \frac{A}{x+4} + \frac{B}{x-3} = \frac{(A+B)x + (-3A+4B)}{(x+4)(x-3)}$. Comparing coefficients, $\begin{cases} A+B &= 9\\ -3A+4B &= -13 \end{cases} \implies A = 7, B = 2$. Therefore, $\frac{9x-13}{x^2+x-12} = \frac{7}{x+4} + \frac{2}{x-3}$.

Example: Note that $\frac{x^2 + 20x + 11}{(x+1)^2(x-3)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x-3}$. Therefore, we have

$$x^{2} + 20x + 11 = A(x + 1)(x - 3) + B(x - 3) + C(x + 1)^{2}$$

Putting
$$x = 3$$
, we get $C = 5$.
Putting $x = -1$, we get $B = 2$.
Putting $x = 0$, we get $11 = -3A + 2(-3) + 5(1)^2 \Longrightarrow A = -4$
Therefore, $\frac{x^2 + 20x + 11}{(x+1)^2(x-3)} = -\frac{4}{x+1} + \frac{2}{(x+1)^2} + \frac{5}{x-3}$.

(Lecture 22) Partial fraction

Example:

$$\frac{4x^6 + x^4 - 1}{x^4 - 1} = \frac{4x^6 - 4x^2 + x^4 - 1 + 4x^2}{x^4 - 1}$$
$$= 4x^2 + 1 + \frac{4x^2}{x^4 - 1} = 4x^2 + 1 + \frac{4x^2}{(x - 1)(x + 1)(x^2 + 1)}$$

Therefore, we have

$$\frac{4x^2}{(x-1)(x+1)(x^2+1)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{Cx+D}{x^2+1}$$
$$= \frac{A(x+1)(x^2+1) + B(x-1)(x^2+1) + (Cx+D)(x-1)(x+1)}{(x-1)(x+1)(x^2+1)}$$
$$= \frac{(A+B+C)x^3 + (A-B+D)x^2 + (A+B-C)x + (A-B-D)}{(x-1)(x+1)(x^2+1)}$$

Comparing coefficients,

$$\begin{cases}
A+B+C = 0 \\
A-B+D = 4 \\
A+B-C = 0 \\
A-B-D = 0
\end{cases} \Rightarrow A = 1, B = -1, C = 0, D = 2.$$
Therefore, $\frac{4x^6 + x^4 - 1}{x^4 - 1} = 4x^2 + 1 + \frac{1}{x - 1} - \frac{1}{x + 1} + \frac{2}{x^2 + 1}.$
(Lecture 22) Integration of partial fractions

Useful results for integrating partial fractions:

$$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln |ax+b| + C$$

$$\int \frac{1}{(ax+b)^k} dx \quad (\text{where } k > 1) = \frac{(ax+b)^{-k+1}}{a(-k+1)} + C$$

$$\int \frac{1}{(x^2+a^2)^k} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$$

$$\int \frac{1}{(x^2+a^2)^k} dx: \text{ use reduction formula/integration by parts}$$

$$\int \frac{1}{ax^2+bx+c} dx, \quad \int \frac{1}{(ax^2+bx+c)^k} dx: \text{ write}$$

$$ax^2+bx+c = a \left(x+\frac{b}{2a}\right)^2 + \left(c-\frac{b^2}{4a}\right), \text{ then use the above results}$$

$$\int \frac{Ax+B}{ax^2+bx+c} dx = \frac{A}{2a} \ln |ax^2+bx+c| + \left(B-\frac{Ab}{2a}\right) \int \frac{1}{ax^2+bx+c} dx$$

(Lecture 22) Integration of rational functions

Example:
$$\int \frac{4x^6 + x^4 - 1}{x^4 - 1} \, dx = ?$$

Solution: By partial fraction decomposition, we have

$$\frac{4x^6 + x^4 - 1}{x^4 - 1} = 4x^2 + 1 + \frac{1}{x - 1} - \frac{1}{x + 1} + \frac{2}{x^2 + 1}$$

and hence

$$\int \frac{4x^6 + x^4 - 1}{x^4 - 1} dx$$

= $\int \left(4x^2 + 1 + \frac{1}{x - 1} - \frac{1}{x + 1} + \frac{2}{x^2 + 1} \right) dx$
= $\frac{4x^3}{3} + x + \ln|x - 1| - \ln|x + 1| + 2\tan^{-1}x + C$

(Lecture 23) t-substitution

For $\int f(x) dx$ where f(x) is a rational function in terms of $\cos x, \sin x, \tan x$, we can substitute $t = \tan \frac{x}{2}$. Then we have $\sin x = \frac{2t}{1+t^2}, \ \cos x = \frac{1-t^2}{1+t^2}, \ \tan x = \frac{2t}{1-t^2}, \ dx = \frac{2}{1+t^2}dt$ and so $\int f(x) dx$ becomes an integral of rational function in t. Example: $\int \frac{1}{2 + \cos x} dx = ?$ Solution: Let $t = \tan \frac{x}{2}$. We have $\int \frac{1}{2 + \cos x} \, dx = \int \frac{1}{2 + \frac{1 - t^2}{1 + t^2}} \cdot \frac{2}{1 + t^2} dt$ $=\int \frac{2}{2(1+t^2)+(1-t^2)} dt$ $=\int \frac{2}{t^2+3} dt$

 $=2\tan^{-1}\frac{t}{\sqrt{3}}+C=2\tan^{-1}\frac{\tan\frac{x}{2}}{\sqrt{3}}+C$

(Lecture 23–24) Definite integration

Definite integral:

Let $a \le b$ and f(x) be a continuous function on [a, b]. The definite integral $\int_{a}^{b} f(x) dx$ is defined as the signed area under the graph of y = f(x) between x = a and x = b.

Theorem (definite integral = limit of Riemann sum):

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_{k}) \Delta x_{k}$$

where $a = x_{0} < x_{1} < x_{2} < \dots < x_{n} = b$ and $\Delta x_{k} = x_{k} - x_{k-1}$.
In particular, if all x_{k} are equally spaced, we have
$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{k=1}^{n} f\left(a + \frac{k}{n}(b-a)\right) \cdot \frac{b-a}{n}$$

Example:

$$\int_{0}^{1} x^{2} dx = \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{2} \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n^{3}} \sum_{k=1}^{n} k^{2} = \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{6n^{3}} = \frac{1}{3}$$
76/83

(Lecture 23-24) Definite integration

Properties of definite integrals:

•
$$\int_{a}^{a} f(x) dx = 0$$

•
$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$

•
$$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

•
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx \quad \text{if } c \in (a, b)$$

• For consistency, we also define
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

(Lecture 24) Fundamental theorem of calculus (FTC)

First fundamental theorem of calculus:

Let
$$f(t)$$
 be a continuous function. Then

$$\frac{d}{dx}\left(\int_{a}^{x} f(t) dt\right) = f(x).$$

Example: If $g(x) = \int_{1}^{x} \sin(t^2 + 5) dt$, find g'(1). Solution: By 1st FTC, $g'(x) = \sin(x^2 + 5) \Longrightarrow g'(1) = \sin 6$.

Example: If $g(x) = \int_0^{\sin x} e^{t^3} dt$, find g'(x). Solution: By 1st FTC,

$$g'(x) = \frac{d}{du} \left(\int_0^u e^{t^3} dt \right) \cdot \frac{du}{dx} (\text{let } u = \sin x)$$
$$= e^{u^3} \cdot \cos x = e^{\sin^3 x} \cos x.$$

(Lecture 24) Fundamental theorem of calculus (FTC)

Second fundamental theorem of calculus:

Suppose
$$F'(x) = f(x)$$
 on $[a, b]$. Then $\int_a^b f(x) dx = F(b) - F(a)$.

Example:
$$\int_{1}^{2} x^{2} dx = \left[\frac{x^{3}}{3}\right]_{1}^{2} = \frac{2^{3}}{3} - \frac{1^{3}}{3} = \frac{7}{3}$$

Definite integral by substitution:

$$\int_{a}^{b} f(u(x))u'(x) \, dx = \int_{u(a)}^{u(b)} f(u) \, du$$
Example:
$$\int_{0}^{1} \sqrt{2x+1} \, dx = ?$$
Solution:
Let $u = 2x + 1$, then $\frac{du}{dx} = 2 \Rightarrow du = 2 \, dx$. Also, when $x = 0$ we have $u = 1$, and when $x = 1$ we have $u = 3$. Therefore,
$$\int_{0}^{1} \sqrt{2x+1} \, dx = \int_{1}^{3} \sqrt{u} \, \frac{1}{2} \, du = \left[\frac{u^{\frac{3}{2}}}{3}\right]_{1}^{3} = \frac{3\sqrt{3}}{3} - \frac{1}{3} = \sqrt{3} - \frac{1}{3}$$

(Lecture 24) Fundamental theorem of calculus (FTC)

Integration by parts for definite integral:

$$\int_{a}^{b} uv' \, dx = [uv]_{a}^{b} - \int_{a}^{b} vu' \, dx$$

Derivative of functions defined by definite integrals:

$$\frac{d}{dx} \left(\int_{u(x)}^{v(x)} f(t) \, dt \right) = f(v(x))v'(x) - f(u(x))u'(x)$$

Example: $\frac{d}{dx} \left(\int_{-\sin x}^{x^3} e^{t^2} \, dt \right) =$
 $e^{(x^3)^2} \cdot 3x^2 - e^{(-\sin x)^2} \cdot (-\cos x) = 3x^2 e^{x^6} + e^{\sin^2 x} \cos x$

80 / 83

(Lecture 24) Evaluating limits by integrals

By treating the limit below as the limit of a Riemann sum, we have:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \int_{0}^{1} f(x) \, dx$$

$$\frac{\text{Example:}}{n \to \infty} \left(\frac{1}{\sqrt{n^{2} + 1^{2}}} + \frac{1}{\sqrt{n^{2} + 2^{2}}} + \dots + \frac{1}{\sqrt{n^{2} + n^{2}}}\right) = ?$$
Solution: Note that $\frac{1}{\sqrt{n^{2} + k^{2}}} = \frac{1}{n} \cdot \frac{1}{\sqrt{1 + \left(\frac{k}{n}\right)^{2}}}$. We have
$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^{2} + 1^{2}}} + \frac{1}{\sqrt{n^{2} + 2^{2}}} + \dots + \frac{1}{\sqrt{n^{2} + n^{2}}}\right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sqrt{1 + \left(\frac{k}{n}\right)^{2}}} = \int_{0}^{1} \frac{1}{\sqrt{1 + x^{2}}} \, dx$$

$$= \left[\ln\left|\sqrt{1 + x^{2}} + x\right|\right]_{0}^{1} \text{ (using trigonometric substitution } x = \tan \theta)$$

$$= \ln(\sqrt{2} + 1)$$

(Lecture 24–25) Other definite integration techniques • If f is an odd function, then $\int_{a}^{a} f(x) dx = 0$. Example: $\int_{-\infty}^{\infty} x^4 \sin x \sin 2x \sin 3x \, dx = 0$ • If f is an even function, then $\int_{a}^{a} f(x) dx = 2 \int_{a}^{a} f(x) dx$. Example: $\int_{-1}^{1} x^2 \cos x \, dx = 2 \int_{0}^{1} x^2 \cos x \, dx$ Other symmetry arguments Example: $\int_{1}^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin^3 x + \cos^3 x} dx = ?$ Solution: Let $u = \frac{\pi}{2} - x$, then du = -dx and so $\int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin^3 x + \cos^3 x} dx$ $=\int_{\frac{\pi}{2}}^{0}\frac{\sin^{3}\left(\frac{\pi}{2}-u\right)}{\sin^{3}\left(\frac{\pi}{2}-u\right)+\cos^{3}\left(\frac{\pi}{2}-u\right)}\ (-1)du=\int_{0}^{\frac{\pi}{2}}\frac{\cos^{3}u}{\sin^{3}u+\cos^{3}u}du.$ Therefore, $\int_{0}^{\frac{\pi}{2}} \frac{\sin^{3} x}{\sin^{3} x + \cos^{3} x} dx + \int_{0}^{\frac{\pi}{2}} \frac{\cos^{3} u}{\sin^{3} u + \cos^{3} u} du = \int_{0}^{\frac{\pi}{2}} \frac{\sin^{3} x + \cos^{3} x}{\sin^{3} x + \cos^{3} x} dx$ $= \int_{0}^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2} \Longrightarrow \int_{0}^{\frac{\pi}{2}} \frac{\sin^{3} x}{\sin^{3} x + \cos^{3} x} \, dx = \frac{\pi}{4}.$

82 / 83

Good luck on your final exam!