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Quiz 2 reminder

▶ Date: November 16 (this Thursday)

▶ Time: 5:35PM - 6:20PM

▶ Venue for MATH1010F: YIA LT2

▶ Closed book, closed notes

▶ Bring student ID card, black/blue pen

▶ List of approved calculators:
http://www.res.cuhk.edu.hk/images/content/examinations/

use-of-calculators-during-course-examination/

Use-of-Calculators-during-Course-Examinations.pdf
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Scope (see Blackboard announcement)
1. Differentiation:

▶ Differentiability of functions
▶ Derivatives of exponential, logarithmic, and trigonometric functions
▶ Differentiation rules (sum, difference, product, quotient, chain rules)
▶ Derivatives of piecewise-defined functions, continuous but not

differentiable functions, functions with discontinuous derivatives
▶ Implicit differentiation, logarithmic differentiation
▶ Derivatives of inverse functions
▶ Higher order derivatives

2. Applications of differentiation:

▶ Extremum values of functions
▶ Increasing and decreasing functions, proving inequalities
▶ Concavity, points of inflection, asymptotes (horizontal, vertical,

oblique)
▶ Curve sketching
▶ Rolle’s theorem, Lagrange’s mean value theorem, Cauchy’s MVT
▶ L’Hopital’s rule
▶ Taylor polynomials and Taylor series
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(Lecture 8) Differentiability of functions
f is said to be differentiable at x = a if the following limit (called
the derivative of f at x = a) exists:

f ′(a) = lim
x→a

f (x)− f (a)

x − a

Another form:

f ′(a) = lim
h→0

f (a+ h)− f (a)

h
Remark: For piecewise functions, we need to check both

lim
x→a−

f (x)− f (a)

x − a
and lim

x→a+

f (x)− f (a)

x − a

Example of finding derivative by definition (i.e. first principle):
▶ If f (x) = x2, then

f ′(x) = lim
h→0

f (x + h)− f (x)

h

= lim
h→0

(x + h)2 − x2

h
= lim

h→0

2xh + h2

h
= 2x .
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(Lecture 8–9) Derivatives of polynomial, exponential,
logarithmic, and trigonometric functions

▶ (xn)′ = nxn−1

▶ (ex)′ = ex

▶ (ln x)′ =
1

x
▶ (ax)′ = ax ln a

▶ (sin x)′ = cos x

▶ (cos x)′ = − sin x

▶ (tan x)′ = sec2 x =
1

cos2 x
▶ (c)′ = 0 (where c is a constant)

▶ (sinh x)′ = cosh x (where sinh x =
ex − e−x

2
, cosh x =

ex + e−x

2
)

▶ (cosh x)′ = sinh x

▶ (tanh x)′ = sech2x =
1

cosh2 x
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(Lecture 8–9) Differentiation rules (sum, difference,
product, and quotient rules)

If f and g are differentiable at a point, then the following functions
are also differentiable at that point:

▶ (f (x)± g(x))′ = f ′(x)± g ′(x)

▶ (cf (x))′ = cf ′(x) (where c is a constant)

▶ Product rule:

(fg)′(x) = f ′(x)g(x) + f (x)g ′(x)

▶ Quotient rule:(
f

g

)′
(x) =

f ′(x)g(x)− f (x)g ′(x)

(g(x))2
(if g(x) ̸= 0)

Examples:

▶ (x3 sin x)′ = (x3)′ sin x + x3(sin x)′ = 3x2 sin x + x3 cos x

▶
(

sin x
x2+1

)′
= (sin x)′(x2+1)+(sin x)(x2+1)′

(x2+1)2
= (x2+1) cos x+2x sin x

(x2+1)2

6 / 36



(Lecture 8–9) Differentiation rules (chain rule)
Chain rule:
If f (x) is differentiable at x = a and g(u) is differentiable at
u = f (a), then (g ◦ f ) is differentiable at x = a and we have

(g ◦ f )′(a) = g ′(f (a))f ′(a)

In other words, we have

dy

dx
=

dy

du
· du
dx

Examples:

▶ (sin x2)′ = d(sin u)
du

du
dx (let u = x2) = (cos u)(2x) = 2x cos x2

▶ (esin x)′ = esin x cos x

A more complicated version:
dy

dx
=

dy

du
· du
dv

· dv
dx

Example:

▶
(
ln(cos(x3))

)′
=

1

cos x3
· (− sin(x3)) · (3x2) = −3x2 tan x3
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(Lecture 8–9) Continuity and differentiability
Property:

If f is differentiable at x = a, then f is continuous at x = a

The converse is NOT true: if f is continuous at x = a, it may or
may not be differentiable at x = a

Example: f (x) = |x | =
{

−x if x < 0
x if x ≥ 0

▶ f (x) is continuous on R (i.e. at every point x ∈ R):
▶ For any a < 0, lim

x→a
f (x) = lim

x→a
(−x) = −a = f (a)

▶ For any a > 0, lim
x→a

f (x) = lim
x→a

x = a = f (a)

▶ For a = 0, we have lim
x→0−

f (x) = lim
x→0−

(−x) = 0 = f (0) and

lim
x→0+

f (x) = lim
x→0+

x = 0 = f (0), and hence lim
x→0

f (x) = f (0)

▶ f (x) is not differentiable at x = 0:

Note that f ′(0) = lim
h→0

f (h)− f (0)

h
= lim

h→0

|h| − 0

h
= lim

h→0

|h|
h

but

lim
h→0+

|h|
h

= lim
h→0+

h

h
= 1 and lim

h→0−

|h|
h

= lim
h→0+

−h

h
= −1
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(Lecture 8–9) Continuity and differentiability
Another example of continuous but not differentiable functions:

f (x) = |x + 1| − |x |+ |x − 1|

=


−(x + 1)− (−x)− (x − 1) = −x if x < −1
(x + 1)− (−x)− (x − 1) = x + 2 if − 1 ≤ x < 0
(x + 1)− (x)− (x − 1) = −x + 2 if 0 ≤ x < 1
(x + 1)− (x) + (x − 1) = x if x ≥ 1

▶ f (x) is continuous on R
▶ f (x) is not differentiable at x = −1, 0, 1
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(Lecture 10–11) Implicit differentiation

Idea: Find y ′ without having to explicitly write y = f (x).

Example:
If x sin y + y2 = x + 3y , find the slope of tangent at (0, 0).

(x sin y + y2)′ = (x + 3y)′

(sin y + x(cos y)y ′) + 2yy ′ = 1 + 3y ′

(x cos y + 2y − 3)y ′ = 1− sin y

y ′ =
1− sin y

x cos y + 2y − 3

The slope of tangent at (0, 0) is
1− sin 0

0 · cos 0 + 2 · 0− 3
= −1

3
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(Lecture 10–11) Logarithmic differentiation

Idea: Find the derivative of some complicated functions
using logarithms.

Example: If y = xx , find y ′.

y = xx

ln y = ln(xx)

ln y = x ln x

(ln y)′ = (x ln x)′

1

y
y ′ = 1 · ln x + x · 1

x

y ′ = y(ln x + 1) = xx(ln x + 1)
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(Lecture 10–11) Derivatives of inverse functions

Inverse functions:
If f (y) is a bijective and differentiable function with f ′(y) ̸= 0 for
any y , then the inverse function y = f −1(x) is differentiable:

(f −1)′(x) =
1

f ′(f −1(x))

Examples:

y = sin−1 x ⇒ sin y = x ⇒ (cos y)y ′ = 1 ⇒ (sin−1 x)′ =
1√

1− x2

y = cos−1 x ⇒ cos y = x ⇒ (− sin y)y ′ = 1 ⇒ (cos−1 x)′ = − 1√
1− x2

y = tan−1 x ⇒ tan y = x ⇒ (sec2 y)y ′ = 1 ⇒ (tan−1 x)′ =
1

1 + x2
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(Lecture 11–12) Higher order derivatives
▶ Second derivative:

y ′′ = f ′′(x) =
d2y

dx2
=

d

dx

(
dy

dx

)
▶ n-th derivative:

y (n) = f (n)(x) =
dny

dxn
=

d

dx

(
d

dx

(
d

dx

(
· · · dy

dx

)))
▶ 0-th derivative:

y (0) = f (0)(x) = f (x)

Examples:

▶ (sin x2)′′ = ((sin x2)′)′ = ((cos x2)(2x))′

= (− sin x2)(2x)(2x) + 2 cos x2 = −4x2 sin x2 + 2 cos x2

▶ Find y ′′ if xy + sin y = 1:

(xy + sin y)′ = 1′ ⇒ (y + xy ′ + y ′ cos y) = 0 ⇒ y ′ =
−y

x + cos y

⇒ y ′′ = −y ′(x + cos y)− y(1− y ′ sin y)

(x + cos y)2
=

2y(x + cos y) + y2 sin y

(x + cos y)3
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(Lecture 11–12) Higher order differentiation rules
If f and g are n-times differentiable (i.e. f (n) and g (n) exist), then:

▶ (f ± g)(n) = f (n) ± g (n)

▶ (cf )(n) = cf (n) (where c is a constant)

▶ Leibniz’s rule (product rule for higher order derivatives):

(fg)(n) =
n∑

k=0

(
n
k

)
f (n−k)g (k)

where

(
n
k

)
=

n!

(n − k)!k!
is the binomial coefficient.

Example: (x3 sin x)(4)

= 1 · (x3)′′′′ sin x + 4 · (x3)′′′(sin x)′ + 6 · (x3)′′(sin x)′′ + 4(x3)′(sin x)′′′

+1 · x3(sin x)′′′′
= 0 + 24 cos x − 36x sin x − 12x2 cos x + x3 sin x
= (x3 − 36x) sin x + (24− 12x2) cos x
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(Lecture 12–13) n-times differentiability and continuity

If f is n-times differentiable at x = a

(f (n)(a) exists, i.e. f (n−1) is differentiable at x = a),

then f (n−1) is continuous at x = a.

f is n-times differentiable at x = a (i.e. f (n)(a) exists)
⇓

f (n−1)(a) exists and f (n−1) is continuous at x = a
⇓
...
⇓

f ′(a) exists and f ′ is continuous at x = a
⇓

f is continuous at x = a

However, the converse is NOT true!
Example: Let f (x) = |x |x , then:
▶ f is differentiable at x = 0

▶ f ′ is continuous at x = 0

▶ but f ′ is not differentiable at x = 0 (i.e. f ′′(0) does not exist)
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(Lecture 14) Local extrema, critical points, turning points
Local maximum:
f (x) has a local maximum at x = a if f (x) ≤ f (a) for all x near a
(more precisely, for all x ∈ D ∩ (a− δ, a+ δ) where D is the
domain and δ > 0 is some small number).
Local minimum:
f (x) has a local minimum at x = a if f (x) ≥ f (a) for all x near a.
Note:
Local extremum points can be either interior points or endpoints!
Example: For f : [−π, π] → R with f (x) = sin x ,
local maximum points = (−π, 0), (π2 , 1)
local minimum points = (−π

2 ,−1), (π, 0).
Critical points:
f has a critical point at x = a if f ′(a) = 0 or f ′(a) does not exist.
Turning points:
f has a turning point at x = a if f ′ changes sign at a.
Note: {Turning points} ⊂ {Critical points}
Example: x = 0 is a critical point of f (x) = x3, but it is not a
turning point. 16 / 36



(Lecture 14) First and second derivative tests
Theorem:
Let f (x) be a continuous function. If f (x) has a local maximum/
minimum at x = a, then x = a must be a critical point of f (x).
First derivative test:

Let f (x) be a continuous function and x = a be a critical point.
(i) If f ′ changes sign from + to − at a, then f (x) has a

local maximum at x = a.
(ii) If f ′ changes sign from − to + at a,then f (x) has a

local minimum at x = a.

Second derivative test:

Let f (x) be a continuous function.
(i) If f ′(a) = 0 and f ′′(a) < 0, then f (x) has a local maximum

at x = a.
(ii) If f ′(a) = 0 and f ′′(a) > 0, then f (x) has a local minimum

at x = a.

17 / 36



(Lecture 15) Finding global extrema
Extreme value theorem (EVT) for closed and bounded intervals:

Let f be a continuous function on [a, b]. Then there exists
α, β ∈ [a, b] such that f (α) ≤ f (x) ≤ f (β) for any x ∈ [a, b]
(i.e. f has a global maximum and a global minimum in [a, b]).

Note: For f on (a, b), (a, b], or [a, b), f may NOT have any global
extrema in some cases!

Finding global extrema for functions on general intervals:

1. Check all critical points (including endpoints if applicable) to
find all local extrema.

2. Compare the values of f (x) at all such points as well as the
limit of f as x approaches the open endpoints (if applicable)
to determine the existence of global extrema.

Examples:
f (x) = x2 on [−2, 1]: global min. point = (0, 0); global max. = (−2, 4)
f (x) = x2 on R: global minimum point = (0, 0); no global max.

f (x) = x2 on (0, 1): no global min; no global max
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(Lecture 15) Concavity and points of inflection

Concavity:
We say that f (x) is

▶ concave upward on (a, b) if f ′′(x) > 0 on (a, b)

▶ concave downward on (a, b) if f ′′(x) < 0 on (a, b)

Example: f (x) = x3 =⇒ f ′′(x) = 6x
f is concave upward on (0,∞) and concave downward on (−∞, 0)

Point of inflection:
We say that x = a is an inflection point of f (x) if f ′′(x) changes
sign at x = a.
Example: f (x) = x3 =⇒ f ′′(x) = 6x
As f ′′ changes sign from − to + at x = 0, f has an inflection
point at x = 0.
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(Lecture 15) Asymptotes (vertical, horizontal, oblique)
Vertical asymptotes:
▶ x = a is a vertical asymptote of f (x) if

lim
x→a−

f (x) = ±∞ or lim
x→a+

f (x) = ±∞

Example: For f (x) = x2 +
1

x − 1
,

x = 1 is a vertical asymptote since lim
x→1+

f (x) = ∞.

Horizontal asymptotes:
▶ y = b is a horizontal asymptote of f (x) if

lim
x→−∞

f (x) = b or lim
x→∞

f (x) = b

Note: f (x) can have at most two different horizontal
asymptotes (one for lim

x→−∞
and one for lim

x→∞
)

Example: For f (x) = ex ,
y = 0 is a horizontal asymptote since lim

x→−∞
f (x) = 0.
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(Lecture 15) Asymptotes (vertical, horizontal, oblique)
Oblique asymptotes:
▶ y = ax + b is an oblique asymptote of f (x) if

lim
x→−∞

(f (x)− (ax + b)) = 0 or lim
x→∞

(f (x)− (ax + b)) = 0

▶ Note: f (x) can have at most two different oblique asymptotes
(one for lim

x→−∞
and one for lim

x→∞
)

Example: For f (x) = x + 3 +
2

x
, y = x + 3 is an oblique asymptote

since lim
x→∞

(f (x)− (x + 3)) = lim
x→∞

2

x
= 0.

▶ Finding oblique asymptotes:
Method 1: Directly work on f (x)− (ax + b), then check the
coefficients of different terms and see what a, b have to be
such that the limit = 0 as x → ∞ or −∞.

Method 2: Find a such that a = lim
x→∞

f (x)

x
(or lim

x→−∞
),

then find b = lim
x→∞

(f (x)− ax) (or lim
x→−∞

).
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(Lecture 15) Asymptotes (vertical, horizontal, oblique)

Example: f (x) =
√
x2 − 2x + 3

▶ No vertical asymptote (as f (x) is defined everywhere on R)
▶ No horizontal asymptote ( lim

x→∞
f (x) = ∞, lim

x→−∞
f (x) = ∞)

▶ Oblique asymptotes:

For x → ∞, we have

a = lim
x→∞

√
x2 − 2x + 3

x
= lim

x→∞

√
1− 2

x
+

3

x2
= 1, and

b = lim
x→∞

(
√

x2 − 2x + 3− x) = lim
x→∞

(x2 − 2x + 3)− x2

√
x2 − 2x + 3 + x

= −1

For x → −∞, we have

a = lim
x→−∞

√
x2 − 2x + 3

x
= lim

x→−∞
−
√

1 +
2

x
+

3

x2
= −1, and

b = lim
x→−∞

(
√

x2 − 2x + 3 + x) = lim
x→−∞

(x2 − 2x + 3)− x2

√
x2 − 2x + 3− x

= 1

So the oblique asymptotes are y = x − 1 and y = −x + 1.
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(Lecture 15) Curve sketching

To sketch a given function, do the following:

1. Find:
▶ (Natural) domain
▶ x-intercept
▶ y -intercept
▶ Asymptotes (vertical, horizontal, oblique)
▶ Critical points (and check whether they are local max/min)
▶ Inflection points (and check concavity)

2. Sketch the curve based on the information above.

Examples: See the main MATH1010 lecture notes.
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(Lecture 15) Curve sketching
Example: f (x) =

√
x2 − 2x + 3

▶ Domain: R (as
√
x2 − 2x + 3 =

√
(x − 1)2 + 2 is defined everywhere)

▶ x-intercept: None (as f (x) =
√

(x − 1)2 + 2 ̸= 0)

▶ y-intercept: f (0) =
√
3

▶ Asymptotes: y = x − 1 and y = −x + 1 (see the previous slide)

▶ Critical points: f ′(x) = x−1√
x2−2x+3

, so the only critical point is at x = 1.

By first derivative test, it is a local minimum.

▶ Inflection point: None (as f ′′(x) = 2√
x2−2x+3

> 0)
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(Lecture 15–17) Mean value theorem (MVT)

Rolle’s theorem:

If f is continuous on [a, b], differentiable on (a, b), and
f (a) = f (b), then there exists c ∈ (a, b) such that f ′(c) = 0.

Lagrange’s mean value theorem:

If f is continuous on [a, b] and differentiable on (a, b),

then there exists c ∈ (a, b) such that f ′(c) =
f (b)− f (a)

b − a
.

Cauchy’s mean value theorem:

If f , g are continuous on [a, b], differentiable on (a, b),
with g(a) ̸= g(b) and g ′(x) ̸= 0 on (a, b), then there

exists c ∈ (a, b) such that
f ′(c)

g ′(c)
=

f (b)− f (a)

g(b)− g(a)
.
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(Lecture 16) Inequalities

Using MVTs to prove inequalities:

Example: Prove that | cos(x)− cos(y)| ≤ |x − y | for all x , y ∈ R.

Solution:

▶ If x = y , we have | cos(x)− cos(y)| = 0 = |x − y |.
▶ If x ̸= y , by Lagrange’s MVT, there exists c between x and y

such that
cos(x)− cos(y)

x − y
= − sin(c).

Therefore, we have

| cos(x)− cos(y)|
|x − y |

= |−sin(c)| ≤ 1 ⇐⇒ | cos(x)−cos(y)| ≤ |x−y |

for all x , y ∈ R.
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(Lecture 16) Derivatives and inequalities
Increasing/decreasing functions and derivatives:
▶ f is (monotonic) increasing on (a, b) (i.e. f (x) ≤ f (y) for all

x , y ∈ (a, b) with x < y) if and only if f ′(x) ≥ 0 on (a, b).
▶ f is (monotonic) decreasing on (a, b) (i.e. f (x) ≥ f (y) for all

x , y ∈ (a, b) with x < y) if and only if f ′(x) ≤ 0 on (a, b).
▶ f is constant on (a, b) if and only if f ′(x) = 0 on (a, b).
▶ f is strictly increasing on (a, b) (i.e. f (x) < f (y) for all

x , y ∈ (a, b) with x < y) if f ′(x) > 0 on (a, b).
▶ f is strictly decreasing on (a, b) (i.e. f (x) > f (y) for all

x , y ∈ (a, b) with x < y) if f ′(x) < 0 on (a, b).

Using derivatives to prove inequalities:

Example: Let p > 1. Prove that (1 + x)p > 1 + px for all x > 0.

Solution: Let f (x) = (1 + x)p − (1 + px). Then

f ′(x) = p(1 + x)p−1 − p > 0

for all x > 0. Therefore, f is strictly increasing on (0,∞). We have

f (x) > f (0) = 0 =⇒ (1 + x)p > 1 + px .
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(Lecture 17) L’Hopital’s rule
L’Hopital’s rule:

Let a ∈ R or a = ±∞. If f and g are differentiable near a
and all of the following conditions are satisfied:
1. Both lim

x→a
f (x) = 0 and lim

x→a
g(x) = 0 or

both lim
x→a

f (x) = ±∞ and lim
x→a

g(x) = ±∞.

2. g ′(x) ̸= 0 near a.

3. lim
x→a

f ′(x)

g ′(x)
exists or = ±∞.

Then we have lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g ′(x)

Remarks:

▶ Similar results hold for one-sided limit ( lim
x→a−

and lim
x→a+

)

▶ Sometimes may need to apply the rule more than once

▶ Not always applicable! Check if the requirements are satisfied.
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(Lecture 17) L’Hopital’s rule
Handling different indeterminate forms:

▶
0

0
,
±∞
±∞

: May try to apply the L’Hopital’s rule directly

Example:

lim
x→0

tan x − x

x3
(
0

0
) = lim

x→0

sec2 x − 1

3x2
(
0

0
)

= lim
x→0

2 sec x sec x tan x

6x
= lim

x→0

sin x

3x cos3 x
=

1

3

▶ 0 · (±∞), ∞−∞: May try to convert them into
0

0
or

±∞
±∞

,

then apply the L’Hopital’s rule
Example:

lim
x→1

(x2 − 1) tan
πx

2
(0 · ∞) = lim

x→1

x2 − 1

cot πx
2

(
0

0
)

= lim
x→1

2x
π
2 · csc2 πx

2

= lim
x→1

2x sin2 πx
2

π
2

=
2 · 1 · 12

π
2

=
4

π
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(Lecture 17) L’Hopital’s rule
Handling different indeterminate forms:

▶ 1∞, ∞0, 00: May use logarithm and apply the L’Hopital’s
rule to the logged expression, then use lim

x→a
y = e limx→a ln y

Example: Find lim
x→0+

(x + sin x)x (00)

Solution: Let y = (x + sin x)x , then ln y = x ln(x + sin x) and

lim
x→0+

x ln(x + sin x) (0 · (±∞)) = lim
x→0+

ln(x + sin x)
1
x

(
∞
∞

)

= lim
x→0+

1
x+sin x (1 + cos x)

− 1
x2

= lim
x→0+

−x(1 + cos x)

1 + sin x
x

=
−0(1 + 1)

1 + 1
= 0

So lim
x→0+

(x + sin x)x = lim
x→0+

y = lim
x→0+

e ln y = e0 = 1
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(Lecture 18) Taylor polynomial
Taylor polynomial:

The n-th order Taylor polynomial of f (x) about a point x = a is

pn(x) = f (a) + f ′(a)(x − a) + · · ·+ f (n)(a)

n!
(x − a)n =

n∑
k=0

f (k)(a)

k!
(x − a)k

Property: We have f (k)(a) = p
(k)
n (a) for all k = 0, 1, . . . , n.

Example:
The 2nd order Taylor polynomial of f (x) =

√
1 + x about x = 0 is

p2(x) = f (0) + f ′(0)(x − 0) +
f ′′(0)

2
(x − 0)2 = 1 +

x

2
− x2

8
Taylor’s theorem:

Let x ̸= a (i.e. x > a or x < a).

Suppose f (n) exists and is continuous on [a, x ] (or [x , a]),

and f (n+1) exists on (a, x) (or (x , a)).
Then there exists c ∈ (a, x) (or (x , a)) such that

f (x) = pn(x) + Rn(x) =
n∑

k=0

f (k)(a)

k!
(x − a)k +

f (n+1)(c)

(n + 1)!
(x − a)n+1
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(Lecture 19–20) Taylor series
Taylor series:

The Taylor series of f (x) about a point x = a is the infinite series

T (x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · · =

∞∑
k=0

f (k)(a)

k!
(x − a)k

Property: If the remainder term in Taylor’s theorem Rn(x) → 0 as
n → ∞ on an interval I , then the Taylor series is equal to the
function (i.e. f (x) = T (x)) on I .

Examples: ex = 1 + x +
x2

2!
+ · · · =

∞∑
k=0

xk

k!
for all x ∈ R

sin x = x − x3

3!
+

x5

5!
− · · · =

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1 for all x ∈ R

cos x = 1− x2

2!
+

x4

4!
− · · · =

∞∑
k=0

(−1)k

(2k)!
x2k for all x ∈ R

ln(1 + x) = x − x2

2
+

x3

3
+ · · · =

∞∑
k=1

(−1)k+1

k
xk for |x | < 1
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(Lecture 19–20) Taylor series
Properties:

▶ If T (x) is the Taylor series of f (x) about x = 0, then T (xk) is
the Taylor series of f (xk) about x = 0 for all positive integer k

Example: The Taylor series of
sin x2

x2
about 0 is

1

x2

(
x2 − (x2)3

3!
+

(x2)5

5!
− · · ·

)
= 1− x4

3!
+

x8

5!
− · · ·

▶ Addition and subtraction of Taylor series

Example: The Taylor series of
sin x2

x2
+ cos x about 0 is(

1− x4

3!
+

x8

5!
− · · ·

)
+

(
1− x2

2!
+

x4

4!
− · · ·

)
= 2− x2

2
− x4

8
+ · · ·

▶ Multiplication and division of Taylor series

Example: The Taylor series of
sin x2

x2
cos3 x about 0 is(

1− x4

3!
+

x8

5!
− · · ·

)(
1− x2

2!
+

x4

4!
− · · ·

)3

= 1− 3x2

2
+

17x4

24
+ · · ·
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(Lecture 19–20) Taylor series

Properties:

▶ Composition of Taylor series
Example:
The Taylor series of cos (sin x) about 0 is

1− 1

2!

(
x − x3

3!
+

x5

5!
− · · ·

)2

+
1

4!

(
x − x3

3!
+

x5

5!
− · · ·

)4

− · · ·

= 1− x2

2
+

5x4

24
+ · · ·

▶ Differentiation of Taylor series
Example:

The Taylor series of − x

(1 + x)2
= x

(
1

1 + x

)′

is

x
(
1− x + x2 − x3 − · · ·

)′
= x(−1 + 2x − 3x2 + · · · )
= −x + 2x2 − 3x3 + · · ·
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(Lecture 20) Using Taylor series to find limits

Idea: To find lim
x→c

f (x), replace certain components in f (x)

with their Taylor series (if those components are equal to
their Taylor series for x near c)

Example:

lim
x→0

ln(1 + x)− x
√
1− x

x − sin x

= lim
x→0

(
x − x2

2 + x3

3 +O(x4)
)
− x

(
1− x

2 − x2

8 +O(x3)
)

x −
(
x − x3

6 +O(x5)
)

= lim
x→0

11
24x

3 +O(x4)
1
6x

3 +O(x5)

= lim
x→0

11
24 +O(x)
1
6 +O(x2)

=
11
24 + 0
1
6 + 0

=
11

4
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Good luck!
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