MATH1010F University Mathematics

Review:
 Differentiation and Applications of Differentiation

Gary Choi

November 14, 2023
https://www.math.cuhk.edu.hk/course/2324/math1010f

Quiz 2 reminder

- Date: November 16 (this Thursday)
- Time: 5:35PM - 6:20PM
- Venue for MATH1010F: YIA LT2
- Closed book, closed notes
- Bring student ID card, black/blue pen
- List of approved calculators:
http://www.res.cuhk.edu.hk/images/content/examinations/
use-of-calculators-during-course-examination/ Use-of-Calculators-during-Course-Examinations.pdf

Scope (see Blackboard announcement)

1. Differentiation:

- Differentiability of functions
- Derivatives of exponential, logarithmic, and trigonometric functions
- Differentiation rules (sum, difference, product, quotient, chain rules)
- Derivatives of piecewise-defined functions, continuous but not differentiable functions, functions with discontinuous derivatives
- Implicit differentiation, logarithmic differentiation
- Derivatives of inverse functions
- Higher order derivatives

2. Applications of differentiation:

- Extremum values of functions
- Increasing and decreasing functions, proving inequalities
- Concavity, points of inflection, asymptotes (horizontal, vertical, oblique)
- Curve sketching
- Rolle's theorem, Lagrange's mean value theorem, Cauchy's MVT
- L'Hopital's rule
- Taylor polynomials and Taylor series

(Lecture 8) Differentiability of functions

f is said to be differentiable at $x=a$ if the following limit (called the derivative of f at $x=a$) exists:

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Another form:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Remark: For piecewise functions, we need to check both
$\lim _{x \rightarrow a^{-}} \frac{f(x)-f(a)}{x-a}$ and $\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a}$
Example of finding derivative by definition (i.e. first principle):

- If $f(x)=x^{2}$, then

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h}=2 x .
\end{aligned}
$$

(Lecture 8-9) Derivatives of polynomial, exponential, logarithmic, and trigonometric functions

- $\left(x^{n}\right)^{\prime}=n x^{n-1}$
- $\left(e^{x}\right)^{\prime}=e^{x}$
- $(\ln x)^{\prime}=\frac{1}{x}$
- $\left(a^{x}\right)^{\prime}=a^{x} \ln a$
- $(\sin x)^{\prime}=\cos x$
- $(\cos x)^{\prime}=-\sin x$
- $(\tan x)^{\prime}=\sec ^{2} x=\frac{1}{\cos ^{2} x}$
- $(c)^{\prime}=0$ (where c is a constant)
- $(\sinh x)^{\prime}=\cosh x\left(\right.$ where $\left.\sinh x=\frac{e^{x}-e^{-x}}{2}, \cosh x=\frac{e^{x}+e^{-x}}{2}\right)$
- $(\cosh x)^{\prime}=\sinh x$
- $(\tanh x)^{\prime}=\operatorname{sech}^{2} x=\frac{1}{\cosh ^{2} x}$

(Lecture 8-9) Differentiation rules (sum, difference,

 product, and quotient rules)If f and g are differentiable at a point, then the following functions are also differentiable at that point:

- $(f(x) \pm g(x))^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)$
- $(c f(x))^{\prime}=c f^{\prime}(x)$ (where c is a constant)
- Product rule:

$$
(f g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

- Quotient rule:

$$
\left(\frac{f}{g}\right)^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}} \quad(\text { if } g(x) \neq 0)
$$

Examples:

- $\left(x^{3} \sin x\right)^{\prime}=\left(x^{3}\right)^{\prime} \sin x+x^{3}(\sin x)^{\prime}=3 x^{2} \sin x+x^{3} \cos x$
- $\left(\frac{\sin x}{x^{2}+1}\right)^{\prime}=\frac{(\sin x)^{\prime}\left(x^{2}+1\right)+(\sin x)\left(x^{2}+1\right)^{\prime}}{\left(x^{2}+1\right)^{2}}=\frac{\left(x^{2}+1\right) \cos x+2 x \sin x}{\left(x^{2}+1\right)^{2}}$

(Lecture 8-9) Differentiation rules (chain rule)

Chain rule:

If $f(x)$ is differentiable at $x=a$ and $g(u)$ is differentiable at $u=f(a)$, then $(g \circ f)$ is differentiable at $x=a$ and we have

$$
(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) f^{\prime}(a)
$$

In other words, we have

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

Examples:

- $\left(\sin x^{2}\right)^{\prime}=\frac{d(\sin u)}{d u} \frac{d u}{d x}\left(\right.$ let $\left.u=x^{2}\right)=(\cos u)(2 x)=2 x \cos x^{2}$
- $\left(e^{\sin x}\right)^{\prime}=e^{\sin x} \cos x$

A more complicated version: $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d v} \cdot \frac{d v}{d x}$
Example:

- $\left(\ln \left(\cos \left(x^{3}\right)\right)\right)^{\prime}=\frac{1}{\cos x^{3}} \cdot\left(-\sin \left(x^{3}\right)\right) \cdot\left(3 x^{2}\right)=-3 x^{2} \tan x^{3}$

(Lecture 8-9) Continuity and differentiability

Property:
If f is differentiable at $x=a$, then f is continuous at $x=a$
The converse is NOT true: if f is continuous at $x=a$, it may or may not be differentiable at $x=a$
Example: $f(x)=|x|= \begin{cases}-x & \text { if } x<0 \\ x & \text { if } x \geq 0\end{cases}$

- $f(x)$ is continuous on \mathbb{R} (i.e. at every point $x \in \mathbb{R}$):
- For any $a<0, \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a}(-x)=-a=f(a)$
- For any $a>0, \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} x=a=f(a)$
- For $a=0$, we have $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(-x)=0=f(0)$ and

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x=0=f(0), \text { and hence } \lim _{x \rightarrow 0} f(x)=f(0)
$$

- $f(x)$ is not differentiable at $x=0$:

Note that $f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{|h|-0}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}$ but
$\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=1$ and $\lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{-h}{h}=-1$

(Lecture 8-9) Continuity and differentiability

Another example of continuous but not differentiable functions:

$$
\begin{aligned}
f(x) & =|x+1|-|x|+|x-1| \\
& =\left\{\begin{array}{lll}
-(x+1)-(-x)-(x-1) & =-x & \text { if } x<-1 \\
(x+1)-(-x)-(x-1) & =x+2 & \text { if }-1 \leq x<0 \\
(x+1)-(x)-(x-1) & =-x+2 & \text { if } 0 \leq x<1 \\
(x+1)-(x)+(x-1) & =x & \text { if } x \geq 1
\end{array}\right.
\end{aligned}
$$

- $f(x)$ is continuous on \mathbb{R}
- $f(x)$ is not differentiable at $x=-1,0,1$

(Lecture 10-11) Implicit differentiation

Idea: Find y^{\prime} without having to explicitly write $y=f(x)$.
Example:
If $x \sin y+y^{2}=x+3 y$, find the slope of tangent at $(0,0)$.

$$
\begin{aligned}
\left(x \sin y+y^{2}\right)^{\prime} & =(x+3 y)^{\prime} \\
\left(\sin y+x(\cos y) y^{\prime}\right)+2 y y^{\prime} & =1+3 y^{\prime} \\
(x \cos y+2 y-3) y^{\prime} & =1-\sin y \\
y^{\prime} & =\frac{1-\sin y}{x \cos y+2 y-3}
\end{aligned}
$$

The slope of tangent at $(0,0)$ is $\frac{1-\sin 0}{0 \cdot \cos 0+2 \cdot 0-3}=-\frac{1}{3}$

(Lecture 10-11) Logarithmic differentiation

Idea: Find the derivative of some complicated functions using logarithms.

Example: If $y=x^{x}$, find y^{\prime}.

$$
\begin{aligned}
y & =x^{x} \\
\ln y & =\ln \left(x^{x}\right) \\
\ln y & =x \ln x \\
(\ln y)^{\prime} & =(x \ln x)^{\prime} \\
\frac{1}{y} y^{\prime} & =1 \cdot \ln x+x \cdot \frac{1}{x} \\
y^{\prime} & =y(\ln x+1)=x^{x}(\ln x+1)
\end{aligned}
$$

(Lecture 10-11) Derivatives of inverse functions

Inverse functions:

If $f(y)$ is a bijective and differentiable function with $f^{\prime}(y) \neq 0$ for any y, then the inverse function $y=f^{-1}(x)$ is differentiable:

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Examples:

$$
\begin{gathered}
y=\sin ^{-1} x \Rightarrow \sin y=x \Rightarrow(\cos y) y^{\prime}=1 \Rightarrow\left(\sin ^{-1} x\right)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} \\
y=\cos ^{-1} x \Rightarrow \cos y=x \Rightarrow(-\sin y) y^{\prime}=1 \Rightarrow\left(\cos ^{-1} x\right)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \\
y=\tan ^{-1} x \Rightarrow \tan y=x \Rightarrow\left(\sec ^{2} y\right) y^{\prime}=1 \Rightarrow\left(\tan ^{-1} x\right)^{\prime}=\frac{1}{1+x^{2}}
\end{gathered}
$$

(Lecture 11-12) Higher order derivatives

- Second derivative:

$$
y^{\prime \prime}=f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)
$$

- n-th derivative:

$$
y^{(n)}=f^{(n)}(x)=\frac{d^{n} y}{d x^{n}}=\frac{d}{d x}\left(\frac{d}{d x}\left(\frac{d}{d x}\left(\cdots \frac{d y}{d x}\right)\right)\right)
$$

- 0-th derivative:

$$
y^{(0)}=f^{(0)}(x)=f(x)
$$

Examples:

- $\left(\sin x^{2}\right)^{\prime \prime}=\left(\left(\sin x^{2}\right)^{\prime}\right)^{\prime}=\left(\left(\cos x^{2}\right)(2 x)\right)^{\prime}$

$$
=\left(-\sin x^{2}\right)(2 x)(2 x)+2 \cos x^{2}=-4 x^{2} \sin x^{2}+2 \cos x^{2}
$$

- Find $y^{\prime \prime}$ if $x y+\sin y=1$:

$$
\begin{aligned}
& (x y+\sin y)^{\prime}=1^{\prime} \Rightarrow\left(y+x y^{\prime}+y^{\prime} \cos y\right)=0 \Rightarrow y^{\prime}=\frac{-y}{x+\cos y} \\
\Rightarrow & y^{\prime \prime}=-\frac{y^{\prime}(x+\cos y)-y\left(1-y^{\prime} \sin y\right)}{(x+\cos y)^{2}}=\frac{2 y(x+\cos y)+y^{2} \sin y}{(x+\cos y)^{3}}
\end{aligned}
$$

(Lecture 11-12) Higher order differentiation rules

If f and g are n-times differentiable (i.e. $f^{(n)}$ and $g^{(n)}$ exist), then:

- $(f \pm g)^{(n)}=f^{(n)} \pm g^{(n)}$
- $(c f)^{(n)}=c f^{(n)}$ (where c is a constant)
- Leibniz's rule (product rule for higher order derivatives):

$$
(f g)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} f^{(n-k)} g^{(k)}
$$

$$
\text { where }\binom{n}{k}=\frac{n!}{(n-k)!k!} \text { is the binomial coefficient. }
$$

Example: $\left(x^{3} \sin x\right)^{(4)}$
$=1 \cdot\left(x^{3}\right)^{\prime \prime \prime \prime} \sin x+4 \cdot\left(x^{3}\right)^{\prime \prime \prime}(\sin x)^{\prime}+6 \cdot\left(x^{3}\right)^{\prime \prime}(\sin x)^{\prime \prime}+4\left(x^{3}\right)^{\prime}(\sin x)^{\prime \prime \prime}$ $+1 \cdot x^{3}(\sin x)^{\prime \prime \prime \prime}$
$=0+24 \cos x-36 x \sin x-12 x^{2} \cos x+x^{3} \sin x$
$=\left(x^{3}-36 x\right) \sin x+\left(24-12 x^{2}\right) \cos x$

(Lecture 12-13) n-times differentiability and continuity

If f is n-times differentiable at $x=a$
$\left(f^{(n)}(a)\right.$ exists, i.e. $f^{(n-1)}$ is differentiable at $\left.x=a\right)$, then $f^{(n-1)}$ is continuous at $x=a$.
f is n-times differentiable at $x=a$ (i.e. $f^{(n)}(a)$ exists)
$f^{(n-1)}(a)$ exists and $f^{(n-1)}$ is continuous at $x=a$
\Downarrow
\Downarrow
$f^{\prime}(a)$ exists and f^{\prime} is continuous at $x=a$
\Downarrow
f is continuous at $x=a$
However, the converse is NOT true!
Example: Let $f(x)=|x| x$, then:

- f is differentiable at $x=0$
- f^{\prime} is continuous at $x=0$
- but f^{\prime} is not differentiable at $x=0$ (i.e. $f^{\prime \prime}(0)$ does not exist)
(Lecture 14) Local extrema, critical points, turning points
Local maximum:
$f(x)$ has a local maximum at $x=a$ if $f(x) \leq f(a)$ for all x near a (more precisely, for all $x \in D \cap(a-\delta, a+\delta)$ where D is the domain and $\delta>0$ is some small number).

Local minimum:

$f(x)$ has a local minimum at $x=a$ if $f(x) \geq f(a)$ for all x near a.
Note:
Local extremum points can be either interior points or endpoints!
Example: For $f:[-\pi, \pi] \rightarrow \mathbb{R}$ with $f(x)=\sin x$,
local maximum points $=(-\pi, 0),\left(\frac{\pi}{2}, 1\right)$
local minimum points $=\left(-\frac{\pi}{2},-1\right),(\pi, 0)$.
Critical points:
f has a critical point at $x=a$ if $f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist.

Turning points:

f has a turning point at $x=a$ if f^{\prime} changes sign at a.
Note: $\{$ Turning points $\} \subset\{$ Critical points $\}$
Example: $x=0$ is a critical point of $f(x)=x^{3}$, but it is not a turning point.

(Lecture 14) First and second derivative tests

Theorem:

Let $f(x)$ be a continuous function. If $f(x)$ has a local maximum/ minimum at $x=a$, then $x=a$ must be a critical point of $f(x)$.
First derivative test:
Let $f(x)$ be a continuous function and $x=a$ be a critical point.
(i) If f^{\prime} changes sign from + to - at a, then $f(x)$ has a local maximum at $x=a$.
(ii) If f^{\prime} changes sign from - to + at a, then $f(x)$ has a local minimum at $x=a$.

Second derivative test:

Let $f(x)$ be a continuous function.
(i) If $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$, then $f(x)$ has a local maximum at $x=a$.
(ii) If $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)>0$, then $f(x)$ has a local minimum at $x=a$.

(Lecture 15) Finding global extrema

Extreme value theorem (EVT) for closed and bounded intervals:
Let f be a continuous function on $[a, b]$. Then there exists $\alpha, \beta \in[a, b]$ such that $f(\alpha) \leq f(x) \leq f(\beta)$ for any $x \in[a, b]$ (i.e. f has a global maximum and a global minimum in $[a, b]$).

Note: For f on $(a, b),(a, b]$, or $[a, b), f$ may NOT have any global extrema in some cases!

Finding global extrema for functions on general intervals:

1. Check all critical points (including endpoints if applicable) to find all local extrema.
2. Compare the values of $f(x)$ at all such points as well as the limit of f as x approaches the open endpoints (if applicable) to determine the existence of global extrema.
Examples:
$f(x)=x^{2}$ on $[-2,1]$: global min. point $=(0,0)$; global max. $=(-2,4)$
$f(x)=x^{2}$ on \mathbb{R} : global minimum point $=(0,0)$; no global max.
$f(x)=x^{2}$ on (0,1): no global min; no global max

(Lecture 15) Concavity and points of inflection

Concavity:

We say that $f(x)$ is

- concave upward on (a, b) if $f^{\prime \prime}(x)>0$ on (a, b)
- concave downward on (a, b) if $f^{\prime \prime}(x)<0$ on (a, b)

Example: $f(x)=x^{3} \Longrightarrow f^{\prime \prime}(x)=6 x$
f is concave upward on $(0, \infty)$ and concave downward on $(-\infty, 0)$

Point of inflection:

We say that $x=a$ is an inflection point of $f(x)$ if $f^{\prime \prime}(x)$ changes sign at $x=a$.
Example: $f(x)=x^{3} \Longrightarrow f^{\prime \prime}(x)=6 x$
As $f^{\prime \prime}$ changes sign from - to + at $x=0, f$ has an inflection point at $x=0$.

(Lecture 15) Asymptotes (vertical, horizontal, oblique)

Vertical asymptotes:

- $x=a$ is a vertical asymptote of $f(x)$ if

$$
\lim _{x \rightarrow a^{-}} f(x)= \pm \infty \text { or } \lim _{x \rightarrow a^{+}} f(x)= \pm \infty
$$

Example: For $f(x)=x^{2}+\frac{1}{x-1}$,
$x=1$ is a vertical asymptote since $\lim _{x \rightarrow 1^{+}} f(x)=\infty$.

Horizontal asymptotes:

- $y=b$ is a horizontal asymptote of $f(x)$ if

$$
\lim _{x \rightarrow-\infty} f(x)=b \text { or } \lim _{x \rightarrow \infty} f(x)=b
$$

Note: $f(x)$ can have at most two different horizontal asymptotes (one for $\lim _{x \rightarrow-\infty}$ and one for $\lim _{x \rightarrow \infty}$)
Example: For $f(x)=e^{x}$,
$y=0$ is a horizontal asymptote since $\lim _{x \rightarrow-\infty} f(x)=0$.

(Lecture 15) Asymptotes (vertical, horizontal, oblique)

Oblique asymptotes:

- $y=a x+b$ is an oblique asymptote of $f(x)$ if

$$
\lim _{x \rightarrow-\infty}(f(x)-(a x+b))=0 \text { or } \lim _{x \rightarrow \infty}(f(x)-(a x+b))=0
$$

- Note: $f(x)$ can have at most two different oblique asymptotes (one for $\lim _{x \rightarrow-\infty}$ and one for $\lim _{x \rightarrow \infty}$)
Example: For $f(x)=x+3+\frac{2}{x}, \quad y=x+3$ is an oblique asymptote since $\lim _{x \rightarrow \infty}(f(x)-(x+3))=\lim _{x \rightarrow \infty} \frac{2}{x}=0$.
- Finding oblique asymptotes:

Method 1: Directly work on $f(x)-(a x+b)$, then check the coefficients of different terms and see what a, b have to be such that the limit $=0$ as $x \rightarrow \infty$ or $-\infty$.
Method 2: Find a such that $a=\lim _{x \rightarrow \infty} \frac{f(x)}{x}$ (or $\lim _{x \rightarrow-\infty}$), then find $b=\lim _{x \rightarrow \infty}(f(x)-a x)$ (or $\lim _{x \rightarrow-\infty}$).

(Lecture 15) Asymptotes (vertical, horizontal, oblique)

Example: $f(x)=\sqrt{x^{2}-2 x+3}$

- No vertical asymptote (as $f(x)$ is defined everywhere on \mathbb{R})
- No horizontal asymptote $\left(\lim _{x \rightarrow \infty} f(x)=\infty, \lim _{x \rightarrow-\infty} f(x)=\infty\right)$
- Oblique asymptotes:

For $x \rightarrow \infty$, we have
$a=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}-2 x+3}}{x}=\lim _{x \rightarrow \infty} \sqrt{1-\frac{2}{x}+\frac{3}{x^{2}}}=1$, and
$b=\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-2 x+3}-x\right)=\lim _{x \rightarrow \infty} \frac{\left(x^{2}-2 x+3\right)-x^{2}}{\sqrt{x^{2}-2 x+3}+x}=-1$

For $x \rightarrow-\infty$, we have
$a=\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}-2 x+3}}{x}=\lim _{x \rightarrow-\infty}-\sqrt{1+\frac{2}{x}+\frac{3}{x^{2}}}=-1$, and
$b=\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}-2 x+3}+x\right)=\lim _{x \rightarrow-\infty} \frac{\left(x^{2}-2 x+3\right)-x^{2}}{\sqrt{x^{2}-2 x+3}-x}=1$
So the oblique asymptotes are $y=x-1$ and $y=-x+1$.

(Lecture 15) Curve sketching

To sketch a given function, do the following:

1. Find:

- (Natural) domain
- x-intercept
- y-intercept
- Asymptotes (vertical, horizontal, oblique)
- Critical points (and check whether they are local max/min)
- Inflection points (and check concavity)

2. Sketch the curve based on the information above.

Examples: See the main MATH1010 lecture notes.

(Lecture 15) Curve sketching

Example: $f(x)=\sqrt{x^{2}-2 x+3}$

- Domain: \mathbb{R} (as $\sqrt{x^{2}-2 x+3}=\sqrt{(x-1)^{2}+2}$ is defined everywhere)
- x-intercept: None (as $\left.f(x)=\sqrt{(x-1)^{2}+2} \neq 0\right)$
- y-intercept: $f(0)=\sqrt{3}$
- Asymptotes: $y=x-1$ and $y=-x+1$ (see the previous slide)
- Critical points: $f^{\prime}(x)=\frac{x-1}{\sqrt{x^{2}-2 x+3}}$, so the only critical point is at $x=1$. By first derivative test, it is a local minimum.
- Inflection point: None (as $f^{\prime \prime}(x)=\frac{2}{\sqrt{x^{2}-2 x+3}}>0$)

(Lecture 15-17) Mean value theorem (MVT)

Rolle's theorem:

If f is continuous on $[a, b]$, differentiable on (a, b), and $f(a)=f(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Lagrange's mean value theorem:
If f is continuous on $[a, b]$ and differentiable on (a, b),
then there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
Cauchy's mean value theorem:
If f, g are continuous on $[a, b]$, differentiable on (a, b), with $g(a) \neq g(b)$ and $g^{\prime}(x) \neq 0$ on (a, b), then there exists $c \in(a, b)$ such that $\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$.

(Lecture 16) Inequalities

Using MVTs to prove inequalities:

Example: Prove that $|\cos (x)-\cos (y)| \leq|x-y|$ for all $x, y \in \mathbb{R}$.
Solution:

- If $x=y$, we have $|\cos (x)-\cos (y)|=0=|x-y|$.
- If $x \neq y$, by Lagrange's MVT, there exists c between x and y such that

$$
\frac{\cos (x)-\cos (y)}{x-y}=-\sin (c)
$$

Therefore, we have

$$
\frac{|\cos (x)-\cos (y)|}{|x-y|}=|-\sin (c)| \leq 1 \Longleftrightarrow|\cos (x)-\cos (y)| \leq|x-y|
$$

for all $x, y \in \mathbb{R}$.

(Lecture 16) Derivatives and inequalities

Increasing/decreasing functions and derivatives:

- f is (monotonic) increasing on (a, b) (i.e. $f(x) \leq f(y)$ for all $x, y \in(a, b)$ with $x<y)$ if and only if $f^{\prime}(x) \geq 0$ on (a, b).
- f is (monotonic) decreasing on (a, b) (i.e. $f(x) \geq f(y)$ for all $x, y \in(a, b)$ with $x<y)$ if and only if $f^{\prime}(x) \leq 0$ on (a, b).
- f is constant on (a, b) if and only if $f^{\prime}(x)=0$ on (a, b).
- f is strictly increasing on (a, b) (i.e. $f(x)<f(y)$ for all $x, y \in(a, b)$ with $x<y)$ if $f^{\prime}(x)>0$ on (a, b).
- f is strictly decreasing on (a, b) (i.e. $f(x)>f(y)$ for all $x, y \in(a, b)$ with $x<y)$ if $f^{\prime}(x)<0$ on (a, b).

Using derivatives to prove inequalities:

Example: Let $p>1$. Prove that $(1+x)^{p}>1+p x$ for all $x>0$.
Solution: Let $f(x)=(1+x)^{p}-(1+p x)$. Then

$$
f^{\prime}(x)=p(1+x)^{p-1}-p>0
$$

for all $x>0$. Therefore, f is strictly increasing on $(0, \infty)$. We have

$$
f(x)>f(0)=0 \Longrightarrow(1+x)^{p}>1+p x
$$

(Lecture 17) L'Hopital's rule

L'Hopital's rule:

Let $a \in \mathbb{R}$ or $a= \pm \infty$. If f and g are differentiable near a and all of the following conditions are satisfied:

1. Both $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$ or both $\lim _{x \rightarrow a} f(x)= \pm \infty$ and $\lim _{x \rightarrow a} g(x)= \pm \infty$.
2. $g^{\prime}(x) \neq 0$ near a.
3. $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists or $= \pm \infty$.

Then we have $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
Remarks:

- Similar results hold for one-sided limit ($\lim _{x \rightarrow a^{-}}$and $\lim _{x \rightarrow a^{+}}$)
- Sometimes may need to apply the rule more than once
- Not always applicable! Check if the requirements are satisfied.

(Lecture 17) L'Hopital's rule

Handling different indeterminate forms:
$-\frac{0}{0}, \frac{ \pm \infty}{ \pm \infty}$: May try to apply the L'Hopital's rule directly
Example:

$$
\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}\left(\frac{0}{0}\right)=\lim _{x \rightarrow 0} \frac{\sec ^{2} x-1}{3 x^{2}}\left(\frac{0}{0}\right)
$$

$$
=\lim _{x \rightarrow 0} \frac{2 \sec x \sec x \tan x}{6 x}=\lim _{x \rightarrow 0} \frac{\sin x}{3 x \cos ^{3} x}=\frac{1}{3}
$$

$-0 \cdot(\pm \infty), \infty-\infty$: May try to convert them into $\frac{0}{0}$ or $\frac{ \pm \infty}{ \pm \infty}$, then apply the L'Hopital's rule
Example:

$$
\begin{aligned}
& \lim _{x \rightarrow 1}\left(x^{2}-1\right) \tan \frac{\pi x}{2} \quad(0 \cdot \infty)=\lim _{x \rightarrow 1} \frac{x^{2}-1}{\cot \frac{\pi x}{2}}\left(\frac{0}{0}\right) \\
& \quad=\lim _{x \rightarrow 1} \frac{2 x}{\frac{\pi}{2} \cdot \csc ^{2} \frac{\pi x}{2}}=\lim _{x \rightarrow 1} \frac{2 x \sin ^{2} \frac{\pi x}{2}}{\frac{\pi}{2}}=\frac{2 \cdot 1 \cdot 1^{2}}{\frac{\pi}{2}}=\frac{4}{\pi}
\end{aligned}
$$

(Lecture 17) L'Hopital's rule

Handling different indeterminate forms:

- $1^{\infty}, \infty^{0}, 0^{0}$: May use logarithm and apply the L'Hopital's rule to the logged expression, then use $\lim _{x \rightarrow a} y=e^{\lim _{x \rightarrow a} \ln y}$
Example: Find $\lim _{x \rightarrow 0^{+}}(x+\sin x)^{x} \quad\left(0^{0}\right)$
Solution: Let $y=(x+\sin x)^{x}$, then $\ln y=x \ln (x+\sin x)$ and

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x \ln (x+\sin x)(0 \cdot(\pm \infty)) & =\lim _{x \rightarrow 0^{+}} \frac{\ln (x+\sin x)}{\frac{1}{x}}\left(\frac{\infty}{\infty}\right) \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x+\sin x}(1+\cos x)}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{-x(1+\cos x)}{1+\frac{\sin x}{x}} \\
& =\frac{-0(1+1)}{1+1}=0
\end{aligned}
$$

So $\lim _{x \rightarrow 0^{+}}(x+\sin x)^{x}=\lim _{x \rightarrow 0^{+}} y=\lim _{x \rightarrow 0^{+}} e^{\ln y}=e^{0}=1$

(Lecture 18) Taylor polynomial

Taylor polynomial:
The n-th order Taylor polynomial of $f(x)$ about a point $x=a$ is

$$
p_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Property: We have $f^{(k)}(a)=p_{n}^{(k)}(a)$ for all $k=0,1, \ldots, n$.

Example:

The 2 nd order Taylor polynomial of $f(x)=\sqrt{1+x}$ about $x=0$ is $p_{2}(x)=f(0)+f^{\prime}(0)(x-0)+\frac{f^{\prime \prime}(0)}{2}(x-0)^{2}=1+\frac{x}{2}-\frac{x^{2}}{8}$

Taylor's theorem:

Let $x \neq a$ (i.e. $x>a$ or $x<a$).
Suppose $f^{(n)}$ exists and is continuous on $[a, x]$ (or $[x, a]$), and $f^{(n+1)}$ exists on $(a, x)($ or $(x, a))$.
Then there exists $c \in(a, x)$ (or $(x, a))$ such that
$f(x)=p_{n}(x)+R_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}+\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$

(Lecture 19-20) Taylor series

Taylor series:
The Taylor series of $f(x)$ about a point $x=a$ is the infinite series

$$
T(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Property: If the remainder term in Taylor's theorem $R_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ on an interval I, then the Taylor series is equal to the function (i.e. $f(x)=T(x)$) on I.
Examples: $e^{x}=1+x+\frac{x^{2}}{2!}+\cdots=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$
for all $x \in \mathbb{R}$
$\begin{array}{ll}\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1} & \text { for all } x \in \mathbb{R} \\ \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k} & \text { for all } x \in \mathbb{R} \\ \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^{k} & \text { for }|x|<1\end{array}$

(Lecture 19-20) Taylor series

Properties:

- If $T(x)$ is the Taylor series of $f(x)$ about $x=0$, then $T\left(x^{k}\right)$ is the Taylor series of $f\left(x^{k}\right)$ about $x=0$ for all positive integer k
Example: The Taylor series of $\frac{\sin x^{2}}{x^{2}}$ about 0 is

$$
\frac{1}{x^{2}}\left(x^{2}-\frac{\left(x^{2}\right)^{3}}{3!}+\frac{\left(x^{2}\right)^{5}}{5!}-\cdots\right)=1-\frac{x^{4}}{3!}+\frac{x^{8}}{5!}-\cdots
$$

- Addition and subtraction of Taylor series

Example: The Taylor series of $\frac{\sin x^{2}}{x^{2}}+\cos x$ about 0 is
$\left(1-\frac{x^{4}}{3!}+\frac{x^{8}}{5!}-\cdots\right)+\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots\right)=2-\frac{x^{2}}{2}-\frac{x^{4}}{8}+\cdots$

- Multiplication and division of Taylor series

Example: The Taylor series of $\frac{\sin x^{2}}{x^{2}} \cos ^{3} x$ about 0 is
$\left(1-\frac{x^{4}}{3!}+\frac{x^{8}}{5!}-\cdots\right)\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots\right)^{3}=1-\frac{3 x^{2}}{2}+\frac{17 x^{4}}{24}+\cdots$

(Lecture 19-20) Taylor series

Properties:

- Composition of Taylor series

Example:
The Taylor series of $\cos (\sin x)$ about 0 is

$$
\begin{aligned}
& 1-\frac{1}{2!}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)^{2}+\frac{1}{4!}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)^{4}-\cdots \\
& =1-\frac{x^{2}}{2}+\frac{5 x^{4}}{24}+\cdots
\end{aligned}
$$

- Differentiation of Taylor series

Example:
The Taylor series of $-\frac{x}{(1+x)^{2}}=x\left(\frac{1}{1+x}\right)^{\prime}$ is
$x\left(1-x+x^{2}-x^{3}-\cdots\right)^{\prime}$
$=x\left(-1+2 x-3 x^{2}+\cdots\right)$
$=-x+2 x^{2}-3 x^{3}+\cdots$

(Lecture 20) Using Taylor series to find limits

Idea: To find $\lim _{x \rightarrow c} f(x)$, replace certain components in $f(x)$ with their Taylor series (if those components are equal to their Taylor series for \times near c)

Example:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\ln (1+x)-x \sqrt{1-x}}{x-\sin x} \\
= & \lim _{x \rightarrow 0} \frac{\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\mathcal{O}\left(x^{4}\right)\right)-x\left(1-\frac{x}{2}-\frac{x^{2}}{8}+\mathcal{O}\left(x^{3}\right)\right)}{x-\left(x-\frac{x^{3}}{6}+\mathcal{O}\left(x^{5}\right)\right)} \\
= & \lim _{x \rightarrow 0} \frac{\frac{11}{24} x^{3}+\mathcal{O}\left(x^{4}\right)}{\frac{1}{6} x^{3}+\mathcal{O}\left(x^{5}\right)} \\
= & \lim _{x \rightarrow 0} \frac{\frac{11}{24}+\mathcal{O}(x)}{\frac{1}{6}+\mathcal{O}\left(x^{2}\right)}=\frac{\frac{11}{24}+0}{\frac{1}{6}+0}=\frac{11}{4}
\end{aligned}
$$

Good luck!

