MATH1010F University Mathematics

Review: Differentiation and Applications of Differentiation

Gary Choi

November 14, 2023

https://www.math.cuhk.edu.hk/course/2324/math1010f

Quiz 2 reminder

- Date: November 16 (this Thursday)
- Time: 5:35PM 6:20PM
- Venue for MATH1010F: YIA LT2
- Closed book, closed notes
- Bring student ID card, black/blue pen

```
List of approved calculators:
http://www.res.cuhk.edu.hk/images/content/examinations/
use-of-calculators-during-course-examination/
Use-of-Calculators-during-Course-Examinations.pdf
```

Scope (see Blackboard announcement)

1. Differentiation:

- Differentiability of functions
- Derivatives of exponential, logarithmic, and trigonometric functions
- Differentiation rules (sum, difference, product, quotient, chain rules)
- Derivatives of piecewise-defined functions, continuous but not differentiable functions, functions with discontinuous derivatives
- Implicit differentiation, logarithmic differentiation
- Derivatives of inverse functions
- Higher order derivatives

2. Applications of differentiation:

- Extremum values of functions
- Increasing and decreasing functions, proving inequalities
- Concavity, points of inflection, asymptotes (horizontal, vertical, oblique)
- Curve sketching
- Rolle's theorem, Lagrange's mean value theorem, Cauchy's MVT
- L'Hopital's rule
- Taylor polynomials and Taylor series

(Lecture 8) Differentiability of functions

f is said to be differentiable at x = a if the following limit (called the derivative of f at x = a) exists:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Another form:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Remark: For piecewise functions, we need to check both $\lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} \text{ and } \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a}$

Example of finding derivative by definition (i.e. first principle): If $f(x) = x^2$, then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

=
$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = 2x.$$

(Lecture 8–9) Derivatives of polynomial, exponential, logarithmic, and trigonometric functions

•
$$(x^n)' = nx^{n-1}$$

• $(e^x)' = e^x$
• $(\ln x)' = \frac{1}{x}$
• $(a^x)' = a^x \ln a$
• $(\sin x)' = \cos x$
• $(\cos x)' = -\sin x$
• $(\tan x)' = \sec^2 x = \frac{1}{\cos^2 x}$
• $(c)' = 0$ (where c is a constant)
• $(\sinh x)' = \cosh x$ (where $\sinh x = \frac{e^x - e^{-x}}{2}$, $\cosh x = \frac{e^x + e^{-x}}{2}$)
• $(\cosh x)' = \sinh x$
• $(\tanh x)' = \operatorname{sech}^2 x = \frac{1}{\cosh^2 x}$

(Lecture 8–9) Differentiation rules (sum, difference, product, and quotient rules)

If f and g are differentiable at a point, then the following functions are also differentiable at that point:

•
$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

• (cf(x))' = cf'(x) (where c is a constant)

Product rule:

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

Quotient rule:

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \quad (\text{if } g(x) \neq 0)$$

Examples:

•
$$(x^3 \sin x)' = (x^3)' \sin x + x^3 (\sin x)' = 3x^2 \sin x + x^3 \cos x$$

• $\left(\frac{\sin x}{x^2+1}\right)' = \frac{(\sin x)'(x^2+1)+(\sin x)(x^2+1)'}{(x^2+1)^2} = \frac{(x^2+1)\cos x+2x\sin x}{(x^2+1)^2}$

(Lecture 8–9) Differentiation rules (chain rule) Chain rule:

If f(x) is differentiable at x = a and g(u) is differentiable at u = f(a), then $(g \circ f)$ is differentiable at x = a and we have

$$(g \circ f)'(a) = g'(f(a))f'(a)$$

In other words, we have

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Examples:

•
$$(\sin x^2)' = \frac{d(\sin u)}{du} \frac{du}{dx}$$
 (let $u = x^2$) $= (\cos u)(2x) = 2x \cos x^2$
• $(e^{\sin x})' = e^{\sin x} \cos x$

A more complicated version: $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx}$ Example:

•
$$(\ln(\cos(x^3)))' = \frac{1}{\cos x^3} \cdot (-\sin(x^3)) \cdot (3x^2) = -3x^2 \tan x^3$$

(Lecture 8–9) Continuity and differentiability Property:

If f is differentiable at x = a, then f is continuous at x = a

The converse is **NOT** true: if f is continuous at x = a, it may or may not be differentiable at x = aExample: $f(x) = |x| = \begin{cases} -x & \text{if } x < 0 \\ x & \text{if } x > 0 \end{cases}$ • f(x) is continuous on \mathbb{R} (i.e. at every point $x \in \mathbb{R}$): For any a < 0, $\lim_{x \to a} f(x) = \lim_{x \to a} (-x) = -a = f(a)$ For any a > 0, $\lim_{x \to a} f(x) = \lim_{x \to a} x = a = f(a)$ For a = 0, we have $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (-x) = 0 = f(0)$ and $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x = 0 = f(0), \text{ and hence } \lim_{x \to 0^-} f(x) = f(0)$ • f(x) is not differentiable at x = 0: Note that $f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{|h| - 0}{h} = \lim_{h \to 0} \frac{|h|}{h}$ but $\lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = 1 \text{ and } \lim_{h \to 0^-} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{-h}{h} = -1$

(Lecture 8–9) Continuity and differentiability Another example of continuous but not differentiable functions:

$$f(x) = |x+1| - |x| + |x-1|$$

=
$$\begin{cases} -(x+1) - (-x) - (x-1) &= -x & \text{if } x < -1 \\ (x+1) - (-x) - (x-1) &= x+2 & \text{if } -1 \le x < 0 \\ (x+1) - (x) - (x-1) &= -x+2 & \text{if } 0 \le x < 1 \\ (x+1) - (x) + (x-1) &= x & \text{if } x \ge 1 \end{cases}$$

- f(x) is continuous on \mathbb{R}
- f(x) is not differentiable at x = -1, 0, 1

(Lecture 10–11) Implicit differentiation

Idea: Find y' without having to explicitly write y = f(x).

Example: If $x \sin y + y^2 = x + 3y$, find the slope of tangent at (0, 0). $(x \sin y + y^2)' = (x + 3y)'$ $(\sin v + x(\cos v)v') + 2vv' = 1 + 3v'$ $(x \cos v + 2v - 3)v' = 1 - \sin v$ $y' = \frac{1 - \sin y}{x \cos y + 2y - 3}$ The slope of tangent at (0,0) is $\frac{1-\sin 0}{0+\cos 0+2+0-3} = -\frac{1}{3}$

(Lecture 10–11) Logarithmic differentiation

Idea: Find the derivative of some complicated functions using logarithms.

Example: If $y = x^x$, find y'. $y = x^x$ $\ln y = \ln(x^x)$ $\ln y = x \ln x$ $(\ln y)' = (x \ln x)'$ $\frac{1}{y}y' = 1 \cdot \ln x + x \cdot \frac{1}{x}$ $y' = y(\ln x + 1) = x^x(\ln x + 1)$

(Lecture 10-11) Derivatives of inverse functions

Inverse functions:

If f(y) is a bijective and differentiable function with $f'(y) \neq 0$ for any y, then the inverse function $y = f^{-1}(x)$ is differentiable:

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Examples:

$$y = \sin^{-1} x \Rightarrow \sin y = x \Rightarrow (\cos y)y' = 1 \Rightarrow (\sin^{-1} x)' = \frac{1}{\sqrt{1 - x^2}}$$

$$y = \cos^{-1} x \Rightarrow \cos y = x \Rightarrow (-\sin y)y' = 1 \Rightarrow (\cos^{-1} x)' = -\frac{1}{\sqrt{1 - x^2}}$$
$$y = \tan^{-1} x \Rightarrow \tan y = x \Rightarrow (\sec^2 y)y' = 1 \Rightarrow (\tan^{-1} x)' = \frac{1}{1 + x^2}$$

(Lecture 11-12) Higher order derivatives

Second derivative:

$$y'' = f''(x) = \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right)$$

n-th derivative:

$$y^{(n)} = f^{(n)}(x) = \frac{d^n y}{dx^n} = \frac{d}{dx} \left(\frac{d}{dx} \left(\frac{d}{dx} \left(\cdots \frac{dy}{dx} \right) \right) \right)$$

0-th derivative:

$$y^{(0)} = f^{(0)}(x) = f(x)$$

Examples:

$$(\sin x^2)'' = ((\sin x^2)')' = ((\cos x^2)(2x))' = (-\sin x^2)(2x)(2x) + 2\cos x^2 = -4x^2 \sin x^2 + 2\cos x^2$$

Find y'' if $xy + \sin y = 1$:

$$(xy + \sin y)' = 1' \Rightarrow (y + xy' + y' \cos y) = 0 \Rightarrow y' = \frac{-y}{x + \cos y}$$
$$\Rightarrow y'' = -\frac{y'(x + \cos y) - y(1 - y' \sin y)}{(x + \cos y)^2} = \frac{2y(x + \cos y) + y^2 \sin y}{(x + \cos y)^3}_{13/36}$$

(Lecture 11-12) Higher order differentiation rules

If f and g are n-times differentiable (i.e. $f^{(n)}$ and $g^{(n)}$ exist), then:

Leibniz's rule (product rule for higher order derivatives):

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)} g^{(k)}$$

where
$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$
 is the binomial coefficient.

Example: $(x^3 \sin x)^{(4)}$ = $1 \cdot (x^3)^{'''} \sin x + 4 \cdot (x^3)^{'''} (\sin x)' + 6 \cdot (x^3)^{''} (\sin x)'' + 4(x^3)' (\sin x)^{'''}$ + $1 \cdot x^3 (\sin x)^{''''}$ = $0 + 24 \cos x - 36x \sin x - 12x^2 \cos x + x^3 \sin x$ = $(x^3 - 36x) \sin x + (24 - 12x^2) \cos x$

(Lecture 12–13) n-times differentiability and continuity

If f is n-times differentiable at x = a $(f^{(n)}(a)$ exists, i.e. $f^{(n-1)}$ is differentiable at x = a), then $f^{(n-1)}$ is continuous at x = a.

f is n-times differentiable at x = a (i.e. $f^{(n)}(a)$ exists) $f^{(n-1)}(a)$ exists and $f^{(n-1)}$ is continuous at x = a $\downarrow \downarrow$ f'(a) exists and f' is continuous at x = a $\downarrow \downarrow$ f is continuous at x = a

However, the converse is **NOT** true! Example: Let f(x) = |x|x, then:

- f is differentiable at x = 0
- f' is continuous at x = 0

• but f' is not differentiable at x = 0 (i.e. f''(0) does not exist)

(Lecture 14) Local extrema, critical points, turning points

Local maximum:

f(x) has a local maximum at x = a if $f(x) \le f(a)$ for all x near a (more precisely, for all $x \in D \cap (a - \delta, a + \delta)$ where D is the domain and $\delta > 0$ is some small number).

Local minimum:

f(x) has a local minimum at x = a if $f(x) \ge f(a)$ for all x near a. Note:

Local extremum points can be either interior points or endpoints! Example: For $f : [-\pi, \pi] \to \mathbb{R}$ with $f(x) = \sin x$, local maximum points = $(-\pi, 0)$, $(\frac{\pi}{2}, 1)$ local minimum points = $(-\frac{\pi}{2}, -1)$, $(\pi, 0)$.

Critical points:

f has a critical point at x = a if f'(a) = 0 or f'(a) does not exist. Turning points:

f has a turning point at x = a if f' changes sign at a. Note: {Turning points} \subset {Critical points} Example: x = 0 is a critical point of $f(x) = x^3$, but it is not a turning point.

(Lecture 14) First and second derivative tests

Theorem:

Let f(x) be a continuous function. If f(x) has a local maximum/ minimum at x = a, then x = a must be a critical point of f(x). **First derivative test**:

Let f(x) be a continuous function and x = a be a critical point.
(i) If f' changes sign from + to - at a, then f(x) has a local maximum at x = a.
(ii) If f' changes sign from - to + at a, then f(x) has a local minimum at x = a.

Second derivative test:

Let f(x) be a continuous function.
(i) If f'(a) = 0 and f''(a) < 0, then f(x) has a local maximum at x = a.
(ii) If f'(a) = 0 and f''(a) > 0, then f(x) has a local minimum at x = a.

(Lecture 15) Finding global extrema

Extreme value theorem (EVT) for closed and bounded intervals:

Let f be a continuous function on [a, b]. Then there exists $\alpha, \beta \in [a, b]$ such that $f(\alpha) \leq f(x) \leq f(\beta)$ for any $x \in [a, b]$ (i.e. f has a global maximum and a global minimum in [a, b]).

Note: For f on (a, b), (a, b], or [a, b), f may NOT have any global extrema in some cases!

Finding global extrema for functions on general intervals:

- 1. Check all critical points (including endpoints if applicable) to find all local extrema.
- Compare the values of f(x) at all such points as well as the limit of f as x approaches the open endpoints (if applicable) to determine the existence of global extrema.

Examples:

 $f(x) = x^2$ on [-2, 1]: global min. point = (0, 0); global max. = (-2, 4) $f(x) = x^2$ on \mathbb{R} : global minimum point = (0, 0); no global max. $f(x) = x^2$ on (0, 1): no global min; no global max (Lecture 15) Concavity and points of inflection

Concavity:

We say that f(x) is

- concave upward on (a, b) if f''(x) > 0 on (a, b)
- concave downward on (a, b) if f''(x) < 0 on (a, b)

Example: $f(x) = x^3 \Longrightarrow f''(x) = 6x$ f is concave upward on $(0, \infty)$ and concave downward on $(-\infty, 0)$

Point of inflection:

We say that x = a is an inflection point of f(x) if f''(x) changes sign at x = a. Example: $f(x) = x^3 \implies f''(x) = 6x$ As f'' changes sign from - to + at x = 0, f has an inflection point at x = 0. (Lecture 15) Asymptotes (vertical, horizontal, oblique) Vertical asymptotes:

• x = a is a vertical asymptote of f(x) if

$$\lim_{x \to a^-} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^+} f(x) = \pm \infty$$

Example: For $f(x) = x^2 + \frac{1}{x-1}$, x = 1 is a vertical asymptote since $\lim_{x \to 1^+} f(x) = \infty$.

Horizontal asymptotes:

• y = b is a horizontal asymptote of f(x) if

$$\lim_{x \to -\infty} f(x) = b \text{ or } \lim_{x \to \infty} f(x) = b$$

Note: f(x) can have at most two different horizontal asymptotes (one for $\lim_{x \to -\infty}$ and one for $\lim_{x \to \infty}$) Example: For $f(x) = e^x$, y = 0 is a horizontal asymptote since $\lim_{x \to -\infty} f(x) = 0$.

(Lecture 15) Asymptotes (vertical, horizontal, oblique) Oblique asymptotes:

• y = ax + b is an oblique asymptote of f(x) if

 $\lim_{x \to -\infty} (f(x) - (ax + b)) = 0 \text{ or } \lim_{x \to \infty} (f(x) - (ax + b)) = 0$

Note: f(x) can have at most two different oblique asymptotes (one for lim _{x→-∞} and one for lim _{x→∞})

- Example: For $f(x) = x + 3 + \frac{2}{x}$, y = x + 3 is an oblique asymptote since $\lim_{x \to \infty} (f(x) - (x + 3)) = \lim_{x \to \infty} \frac{2}{x} = 0$.
 - Finding oblique asymptotes: <u>Method 1</u>: Directly work on f(x) – (ax + b), then check the coefficients of different terms and see what a, b have to be such that the limit = 0 as x → ∞ or -∞. <u>Method 2</u>: Find a such that a = lim_{x→∞} f(x)/x (or lim_{x→-∞}), then find b = lim_{x→∞} (f(x) – ax) (or lim_{x→-∞}).

(Lecture 15) Asymptotes (vertical, horizontal, oblique) Example: $f(x) = \sqrt{x^2 - 2x + 3}$

- ▶ No vertical asymptote (as f(x) is defined everywhere on \mathbb{R})
- ▶ No horizontal asymptote $(\lim_{x \to \infty} f(x) = \infty, \lim_{x \to -\infty} f(x) = \infty)$
- Oblique asymptotes:

For
$$x \to \infty$$
, we have
 $a = \lim_{x \to \infty} \frac{\sqrt{x^2 - 2x + 3}}{x} = \lim_{x \to \infty} \sqrt{1 - \frac{2}{x} + \frac{3}{x^2}} = 1$, and
 $b = \lim_{x \to \infty} (\sqrt{x^2 - 2x + 3} - x) = \lim_{x \to \infty} \frac{(x^2 - 2x + 3) - x^2}{\sqrt{x^2 - 2x + 3} + x} = -1$

For
$$x \to -\infty$$
, we have
 $a = \lim_{x \to -\infty} \frac{\sqrt{x^2 - 2x + 3}}{x} = \lim_{x \to -\infty} -\sqrt{1 + \frac{2}{x} + \frac{3}{x^2}} = -1$, and
 $b = \lim_{x \to -\infty} (\sqrt{x^2 - 2x + 3} + x) = \lim_{x \to -\infty} \frac{(x^2 - 2x + 3) - x^2}{\sqrt{x^2 - 2x + 3} - x} = 1$

So the oblique asymptotes are y = x - 1 and y = -x + 1.

(Lecture 15) Curve sketching

To sketch a given function, do the following:

1. Find:

- (Natural) domain
- x-intercept
- y-intercept
- Asymptotes (vertical, horizontal, oblique)
- Critical points (and check whether they are local max/min)
- Inflection points (and check concavity)
- 2. Sketch the curve based on the information above.

Examples: See the main MATH1010 lecture notes.

(Lecture 15) Curve sketching

Example: $f(x) = \sqrt{x^2 - 2x + 3}$

• Domain: \mathbb{R} (as $\sqrt{x^2 - 2x + 3} = \sqrt{(x - 1)^2 + 2}$ is defined everywhere)

- x-intercept: None (as $f(x) = \sqrt{(x-1)^2 + 2} \neq 0$)
- y-intercept: $f(0) = \sqrt{3}$
- Asymptotes: y = x 1 and y = -x + 1 (see the previous slide)
- Critical points: $f'(x) = \frac{x-1}{\sqrt{x^2-2x+3}}$, so the only critical point is at x = 1. By first derivative test, it is a local minimum.
- Inflection point: None (as $f''(x) = \frac{2}{\sqrt{x^2 2x + 3}} > 0$)

(Lecture 15–17) Mean value theorem (MVT)

Rolle's theorem:

If f is continuous on [a, b], differentiable on (a, b), and f(a) = f(b), then there exists $c \in (a, b)$ such that f'(c) = 0.

Lagrange's mean value theorem:

If f is continuous on [a, b] and differentiable on (a, b), then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Cauchy's mean value theorem:

If f, g are continuous on [a, b], differentiable on (a, b), with $g(a) \neq g(b)$ and $g'(x) \neq 0$ on (a, b), then there exists $c \in (a, b)$ such that $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$.

(Lecture 16) Inequalities

Using MVTs to prove inequalities:

Example: Prove that $|\cos(x) - \cos(y)| \le |x - y|$ for all $x, y \in \mathbb{R}$. Solution:

- If x = y, we have $|\cos(x) \cos(y)| = 0 = |x y|$.
- ▶ If $x \neq y$, by Lagrange's MVT, there exists *c* between *x* and *y* such that

$$\frac{\cos(x) - \cos(y)}{x - y} = -\sin(c).$$

Therefore, we have

$$rac{|\cos(x)-\cos(y)|}{|x-y|} = |-\sin(c)| \leq 1 \Longleftrightarrow |\cos(x)-\cos(y)| \leq |x-y|$$

for all $x, y \in \mathbb{R}$.

(Lecture 16) Derivatives and inequalities

Increasing/decreasing functions and derivatives:

- ▶ f is (monotonic) increasing on (a, b) (i.e. $f(x) \le f(y)$ for all $x, y \in (a, b)$ with x < y) if and only if $f'(x) \ge 0$ on (a, b).
- f is (monotonic) decreasing on (a, b) (i.e. f(x) ≥ f(y) for all x, y ∈ (a, b) with x < y) if and only if f'(x) ≤ 0 on (a, b).</p>
- f is constant on (a, b) if and only if f'(x) = 0 on (a, b).
- F is strictly increasing on (a, b) (i.e. f(x) < f(y) for all x, y ∈ (a, b) with x < y) if f'(x) > 0 on (a, b).
- *f* is strictly decreasing on (*a*, *b*) (i.e. *f*(*x*) > *f*(*y*) for all *x*, *y* ∈ (*a*, *b*) with *x* < *y*) if *f*'(*x*) < 0 on (*a*, *b*).

Using derivatives to prove inequalities:

Example: Let p > 1. Prove that $(1 + x)^p > 1 + px$ for all x > 0.

Solution: Let $f(x) = (1 + x)^{p} - (1 + px)$. Then

$$f'(x) = p(1+x)^{p-1} - p > 0$$

for all x > 0. Therefore, f is strictly increasing on $(0, \infty)$. We have $f(x) > f(0) = 0 \Longrightarrow (1+x)^p > 1 + px.$

(Lecture 17) L'Hopital's rule

L'Hopital's rule:

Let a ∈ ℝ or a = ±∞. If f and g are differentiable near a and all of the following conditions are satisfied:
1. Both lim f(x) = 0 and lim g(x) = 0 or both lim f(x) = ±∞ and lim g(x) = ±∞.
2. g'(x) ≠ 0 near a.
3. lim f'(x) = t∞ ists or = ±∞.
Then we have lim f(x) = f(x) = lim f'(x) g'(x)

Remarks:

- Similar results hold for one-sided limit $(\lim_{x \to a^{-}} \text{ and } \lim_{x \to a^{+}})$
- Sometimes may need to apply the rule more than once
- Not always applicable! Check if the requirements are satisfied.

(Lecture 17) L'Hopital's rule

Handling different indeterminate forms:

 $\triangleright \frac{0}{0}, \frac{\pm \infty}{\pm \infty}$: May try to apply the L'Hopital's rule directly Example: $\lim_{x \to 0} \frac{\tan x - x}{x^3} \left(\frac{0}{0} \right) = \lim_{x \to 0} \frac{\sec^2 x - 1}{3x^2} \left(\frac{0}{0} \right)$ $= \lim_{x \to 0} \frac{2 \sec x \sec x \tan x}{6x} = \lim_{x \to 0} \frac{\sin x}{3x \cos^3 x} = \frac{1}{3}$ ▶ $0 \cdot (\pm \infty)$, $\infty - \infty$: May try to convert them into $\frac{0}{0}$ or $\frac{\pm \infty}{\pm \infty}$, then apply the L'Hopital's rule Example: $\lim_{x \to 1} (x^2 - 1) \tan \frac{\pi x}{2} \quad (0 \cdot \infty) = \lim_{x \to 1} \frac{x^2 - 1}{\cot \frac{\pi x}{2}} \quad (\frac{0}{0})$ $= \lim_{x \to 1} \frac{2x}{\frac{\pi}{2} \cdot \csc^2 \frac{\pi x}{2}} = \lim_{x \to 1} \frac{2x \sin^2 \frac{\pi x}{2}}{\frac{\pi}{2}} = \frac{2 \cdot 1 \cdot 1^2}{\frac{\pi}{2}} = \frac{4}{\pi}$

(Lecture 17) L'Hopital's rule

Handling different indeterminate forms:

 \triangleright 1^{∞}, ∞^0 , 0⁰: May use logarithm and apply the L'Hopital's rule to the logged expression, then use $\lim_{x\to a} y = e^{\lim_{x\to a} \ln y}$ Example: Find $\lim_{x\to 0^+} (x + \sin x)^x$ (0⁰) Solution: Let $y = (x + \sin x)^x$, then $\ln y = x \ln(x + \sin x)$ and $\lim_{x \to 0^+} x \ln(x + \sin x) \quad (0 \cdot (\pm \infty)) = \lim_{x \to 0^+} \frac{\ln(x + \sin x)}{\frac{1}{2}} \quad (\frac{\infty}{\infty})$ $= \lim_{x \to 0^+} \frac{\frac{1}{x + \sin x} (1 + \cos x)}{-\frac{1}{x^2}}$ $=\lim_{x\to 0^+}\frac{-x(1+\cos x)}{1+\frac{\sin x}{x}}$ $=\frac{-0(1+1)}{1+1}=0$ So $\lim_{x \to 0^+} (x + \sin x)^x = \lim_{y \to 0^+} y = \lim_{y \to 0^+} e^{\ln y} = e^0 = 1$

(Lecture 18) Taylor polynomial

Taylor polynomial:

The *n*-th order Taylor polynomial of f(x) about a point x = a is $p_n(x) = f(a) + f'(a)(x-a) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x-a)^k$

Property: We have $f^{(k)}(a) = p_n^{(k)}(a)$ for all $k = 0, 1, \dots, n$.

Example:

The 2nd order Taylor polynomial of $f(x) = \sqrt{1+x}$ about x = 0 is $p_2(x) = f(0) + f'(0)(x-0) + \frac{f''(0)}{2}(x-0)^2 = 1 + \frac{x}{2} - \frac{x^2}{8}$

Taylor's theorem:

Let $x \neq a$ (i.e. x > a or x < a). Suppose $f^{(n)}$ exists and is continuous on [a, x] (or [x, a]), and $f^{(n+1)}$ exists on (a, x) (or (x, a)). Then there exists $c \in (a, x)$ (or (x, a)) such that $f(x) = p_n(x) + R_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x - a)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x - a)^{n+1}$

(Lecture 19-20) Taylor series

Taylor series:

The Taylor series of
$$f(x)$$
 about a point $x = a$ is the infinite series

$$T(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x - a)^k$$

Property: If the remainder term in Taylor's theorem $R_n(x) \to 0$ as $n \to \infty$ on an interval *I*, then the Taylor series is equal to the function (i.e. f(x) = T(x)) on *I*.

Examples:
$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$
 for all $x \in \mathbb{R}$
 $\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k+1)!} x^{2k+1}$ for all $x \in \mathbb{R}$
 $\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k)!} x^{2k}$ for all $x \in \mathbb{R}$
 $\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^{k}$ for $|x| < 1$

32 / 36

(Lecture 19-20) Taylor series

Properties:

▶ If T(x) is the Taylor series of f(x) about x = 0, then $T(x^k)$ is the Taylor series of $f(x^k)$ about x = 0 for all positive integer k

Example: The Taylor series of $\frac{\sin x^2}{x^2}$ about 0 is $\frac{1}{x^2} \left(x^2 - \frac{(x^2)^3}{3!} + \frac{(x^2)^5}{5!} - \cdots \right) = 1 - \frac{x^4}{3!} + \frac{x^8}{5!} - \cdots$

- Addition and subtraction of Taylor series Example: The Taylor series of $\frac{\sin x^2}{x^2} + \cos x$ about 0 is $\left(1 - \frac{x^4}{3!} + \frac{x^8}{5!} - \cdots\right) + \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots\right) = 2 - \frac{x^2}{2} - \frac{x^4}{8} + \cdots$
- ► Multiplication and division of Taylor series Example: The Taylor series of $\frac{\sin x^2}{x^2} \cos^3 x$ about 0 is $\left(1 - \frac{x^4}{3!} + \frac{x^8}{5!} - \cdots\right) \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots\right)^3 = 1 - \frac{3x^2}{2} + \frac{17x^4}{24} + \cdots$

(Lecture 19-20) Taylor series

Properties:

• Composition of Taylor series Example: The Taylor series of cos (sin x) about 0 is $1 - \frac{1}{2!} \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots \right)^2 + \frac{1}{4!} \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots \right)^4 - \cdots$ $= 1 - \frac{x^2}{2} + \frac{5x^4}{24} + \cdots$

 Differentiation of Taylor series Example:

The Taylor series of
$$-\frac{x}{(1+x)^2} = x \left(\frac{1}{1+x}\right)'$$
 is
 $x \left(1 - x + x^2 - x^3 - \cdots\right)'$
 $= x(-1 + 2x - 3x^2 + \cdots)$
 $= -x + 2x^2 - 3x^3 + \cdots$

(Lecture 20) Using Taylor series to find limits

Idea: To find $\lim_{x\to c} f(x)$, replace certain components in f(x) with their Taylor series (if those components are equal to their Taylor series for x near c)

Example:

$$\lim_{x \to 0} \frac{\ln(1+x) - x\sqrt{1-x}}{x - \sin x}$$

$$= \lim_{x \to 0} \frac{\left(x - \frac{x^2}{2} + \frac{x^3}{3} + \mathcal{O}(x^4)\right) - x\left(1 - \frac{x}{2} - \frac{x^2}{8} + \mathcal{O}(x^3)\right)}{x - \left(x - \frac{x^3}{6} + \mathcal{O}(x^5)\right)}$$

$$= \lim_{x \to 0} \frac{\frac{11}{24}x^3 + \mathcal{O}(x^4)}{\frac{1}{6}x^3 + \mathcal{O}(x^5)}$$

$$= \lim_{x \to 0} \frac{\frac{11}{24} + \mathcal{O}(x)}{\frac{1}{6} + \mathcal{O}(x^2)} = \frac{\frac{11}{24} + 0}{\frac{1}{6} + 0} = \frac{11}{4}$$

Good luck!