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Quiz 2 reminder
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Date: November 16 (this Thursday)
Time: 5:35PM - 6:20PM

Venue for MATH1010F: YIA LT2
Closed book, closed notes

Bring student ID card, black/blue pen

List of approved calculators:
http://www.res.cuhk.edu.hk/images/content/examinations/
use-of-calculators-during-course-examination/

Use-of-Calculators-during-Course-Examinations.pdf
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Scope (see Blackboard announcement)
1. Differentiation:

vvyyvyy

vy

>

Differentiability of functions

Derivatives of exponential, logarithmic, and trigonometric functions
Differentiation rules (sum, difference, product, quotient, chain rules)
Derivatives of piecewise-defined functions, continuous but not
differentiable functions, functions with discontinuous derivatives
Implicit differentiation, logarithmic differentiation

Derivatives of inverse functions

Higher order derivatives

2. Applications of differentiation:

>

vy

vvyyvyy

Extremum values of functions

Increasing and decreasing functions, proving inequalities
Concavity, points of inflection, asymptotes (horizontal, vertical,
oblique)

Curve sketching

Rolle’'s theorem, Lagrange's mean value theorem, Cauchy's MVT
L'Hopital’s rule

Taylor polynomials and Taylor series 336



(Lecture 8) Differentiability of functions

f is said to be differentiable at x = a if the following limit (called
the derivative of f at x = a) exists:

f'(a) = lim 7)[()() —f(a)

Another form:
f(a+ h)—f(a)

f'(a) = li
(a) hlno h
Remark: For piecewise functions, we need to check both
f(x)—f~ f(x)—f
lim 7()() (2) and lim (x) (2)
x—a~ X —a x—at X —a

Example of finding derivative by definition (i.e. first principle):
> If f(x) = x?, then

. f(x+h)—f(x)
Fi(x) = |
(x) h[PO h
2 2 2
i XA xE L 2xh bt
h—0 h h—0 h
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(Lecture 8-9) Derivatives of polynomial, exponential,
logarithmic, and trigonometric functions

> (Xn)l — anfl
» (eX)/ — eX
1
> (Inx) ==
(inx) = *
> (3¥) =a"Ina
> (sinx)’ = cosx
» (cosx) = —sinx
1
> (tanx) =sec’x =
(tanx) ¥ T cos?x
» (c) =0 (where c is a constant)
X —X X _|_ e—X
» (sinhx)" = cosh x (where sinh x = , coshx = 5 )
» (coshx)" = sinhx
1
> (tanhx)’ = sech®x = 5
cosh” x
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(Lecture 8-9) Differentiation rules (sum, difference,

product, and quotient rules)
If f and g are differentiable at a point, then the following functions
are also differentiable at that point:

> (f(x) £8(x)) = f'(x) £ &'(x)
» (cf(x)) = cf’(x) (where c is a constant)
» Product rule:

(fg)'(x) = f'(x)g(x) + f(x)g'(x)
» Quotient rule:

g (g(x))?

(if g(x) # 0)

Examples:
> (x3sinx) = (x3)'sin x + x3(sin x)’ = 3x?sin x + x3 cos x

p ([ sinx /_ (sin x)"(x®>+1)+(sin x)(x>+1)" __ (x?+1) cos x+2x sin x
x2+1) — (x2+1)2 - (x2+1)2
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(Lecture 8-9) Differentiation rules (chain rule)
Chain rule:
If f(x) is differentiable at x = a and g(v) is differentiable at
u = f(a), then (g o f) is differentiable at x = a and we have

(gof)(a) =g'(f(2))f'(a)

In other words, we have

dy dy du

dx  du dx

Examples:
> (sinx?) = d(zz”)% (let u = x2) = (cos u)(2x) = 2x cos x>
> (esinx)/ — eSi"Xcosx

A more complicated version: Q = Q @ ﬂ
P “dx du dv dx
Example:
1
3/ . 3 2\ 2 3
> (In(cos(x))) = p— -(=sin(x?)) - (3x°) = —3x“ tanx
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(Lecture 8-9) Continuity and differentiability
Property:

‘ If fis differentiable at x = a, then f is continuous at x = a

The converse is NOT true: if f is continuous at x = a, it may or

may not be differentiable at x = a

—x ifx<0
Example: f(x) = |x| = { N x>0

> f(x) is continuous on R (i.e. at every point x € R):
» For any a <0, )I(ﬂ\a f(x)= XIi_nga(—x) =—a="f(a)
» For any a > 0, Iim f(x)= Iimx:a:f(a)
» Fora=0, we have I|m f(X )= Xlirgi(fx) =0=1(0) and
lim f(x) = I|m X = O = f(0), and hence XIi_r>n0 f(x) = f(0)

x—0T
> f(x) is not differentlable at x = 0:
f(h)—f h| — h
Note that f'(0) = lim f(h) —1(0) _ lim Al =0 _ lim U but
n hh—>0 n h—0  h A h—0
T R A
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(Lecture 8-9) Continuity and differentiability

Another example of continuous but not differentiable functions:

FOx) = Ix + 1] = |x[ + [x = 1]

—(x+1)—(—x)—(x—-1) =-—x if x < —1

) x+)—(—=x)—(x—1) =x+2 if —1<x<0
(x+1)—(x)—(x—-1) =—x+2 if0<x<1
(x+1)—(x)+(x—-1) =X if x>1

» f(x) is continuous on R

» f(x) is not differentiable at x = —1,0,1
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(Lecture 10-11) Implicit differentiation

Idea: Find y’ without having to explicitly write y = f(x).

Example:
If xsiny + y? = x + 3y, find the slope of tangent at (0, 0).

(xsiny +y?) = (x+3y)’
(siny + x(cosy)y') +2yy" = 1+ 3y
(xcosy +2y —3)y' =1—siny
, 1—siny

xcosy +2y —3

1—sin0 1

0-cos0+2-0—-3 3

The slope of tangent at (0,0) is
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(Lecture 10-11) Logarithmic differentiation

Idea: Find the derivative of some complicated functions
using logarithms.

Example: If y = x*, find y'.
y=x5

Iny = In(x¥)

Iny = xInx

(Iny) = (xInx)’

1 1
Yy ' =1-Inx+x--
y X

Yy =y(lnx+1)=x"(Inx +1)
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(Lecture 10-11) Derivatives of inverse functions

Inverse functions:
If f(y) is a bijective and differentiable function with f'(y) # 0 for
any y, then the inverse function y = f~1(x) is differentiable:

1
FY(x) =
RN GIE)
Examples:
y=sin"tx=siny=x=(cosy)y’ =1= (sin"'x) = !
V1—x?
y=cos 'x=cosy =x=(—siny)y =1= (cos 'x) = — !
V1—x?
1
=tan 'x=tany = x = (sec’y)y' =1 = (tan ' x) =
y =tan " x = tany = x = (sec” y)y (tan™" x) 52
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(Lecture 11-12) Higher order derivatives
> Second derivative:
d?y d (dy
"no__ gn ¢y _ 9 [%
y' =10 = dx?  dx (dx)
» n-th derivative:

dn d (d [(d d
(n) — gy = &Y _ B A
Y () dx"  dx <dx (dx < dx>)>

» 0-th derivative:

y @ = fO(x) = f(x)

Examples:
> (sinx?)" = ((sinx?)")" = ((cos x?)(2x))’
= (—sin x?)(2x)(2x) + 2 cos x> = —4x? sin x> + 2 cos x?

» Find y" if xy +siny = 1:

(xy +siny) =1 = (y+xy'+y'cosy)=0=y' = -y
X + cosy
o _Yxdcosy) —y(1—y'siny) 2y(x +cosy) + ysiny
Y= (x + cos y)? B (x + cosy)3
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(Lecture 11-12) Higher order differentiation rules
If f and g are n-times differentiable (i.e. f(" and g(" exist), then:

> (f+g)"M =) £ g
> (cf)("M = cf(" (where ¢ is a constant)
>

Leibniz's rule (product rule for higher order derivatives):

n

()" =3 (:) Fn—K) g (K)

k=0

|

where <Z> = m is the binomial coefficient.

Example: (x3sin x)(*)

=1-(3)"sinx+4-(x3)"(sinx)" + 6 (x3)"(sinx)" + 4(x>)'(sin x)"’
+1 - x3(sinx)""

=0+ 24 cos x — 36xsin x — 12x% cos x + x> sin x

= (x3 — 36x) sin x + (24 — 12x?) cos x
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(Lecture 12-13) n-times differentiability and continuity

If fis n-times differentiable at x = a
(F(")(a) exists, i.e. £("=1) is differentiable at x = a),
then f("=1) is continuous at x = a.

f is n-times differentiable at x = a (i.e. f(")(a) exists)

3
f("=1(a) exists and ("~ is continuous at x = a
4
I
f'(a) exists and f’ is continuous at x = a
4

f is continuous at x = a

However, the converse is NOT true!
Example: Let f(x) = |x|x, then:

» f is differentiable at x =0

» f’is continuous at x =0

» but f’ is not differentiable at x =0 (i.e. f/(0) does not exist)
15/36



(Lecture 14) Local extrema, critical points, turning points

Local maximum:

f(x) has a local maximum at x = a if f(x) < f(a) for all x near a
(more precisely, for all x € DN (a—d,a+ d) where D is the
domain and § > 0 is some small number).

Local minimum:

f(x) has a local minimum at x = a if f(x) > f(a) for all x near a.
Note:

Local extremum points can be either interior points or endpoints!
Example: For f: [—m, 7] — R with f(x) = sinx,

local maximum points = (—,0), (5,1)

local minimum points = (—7%, —1), (7,0).

Critical points:

f has a critical point at x = a if f/(a) = 0 or f’(a) does not exist.
Turning points:

f has a turning point at x = a if ' changes sign at a.

Note: {Turning points} C {Critical points}

Example: x = 0 is a critical point of f(x) = x3, but it is not a
turning point. 1636



(Lecture 14) First and second derivative tests
Theorem:
Let f(x) be a continuous function. If f(x) has a local maximum/

minimum at x = a, then x = a must be a critical point of f(x).
First derivative test:

Let f(x) be a continuous function and x = a be a critical point.
(i) If f changes sign from + to — at a, then f(x) has a

local maximum at x = a.
(i) If £’ changes sign from — to + at a,then f(x) has a

local minimum at x = a.

Second derivative test:

Let f(x) be a continuous function.
(i) If f’(a) = 0 and f"(a) < 0, then f(x) has a local maximum

at x = a.
(ii) If f/(a) =0 and ”(a) > 0, then f(x) has a local minimum
at x = a.
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(Lecture 15) Finding global extrema

Extreme value theorem (EVT) for closed and bounded intervals:

Let f be a continuous function on [a, b]. Then there exists
a, B € [a, b] such that f(a) < f(x) < f(B) for any x € [a, b]
(i.e. f has a global maximum and a global minimum in [a, b]).

Note: For f on (a, b), (a, b], or [a, b), f may NOT have any global
extrema in some cases!

Finding global extrema for functions on general intervals:

1. Check all critical points (including endpoints if applicable) to
find all local extrema.

2. Compare the values of f(x) at all such points as well as the
limit of f as x approaches the open endpoints (if applicable)
to determine the existence of global extrema.

Examples:
f(x) = x? on [—2,1]: global min. point = (0,0); global max. = (—2,4)
f(x) = x? on R: global minimum point = (0,0); no global max.
f(x) = x? on (0,1): no global min; no global max
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(Lecture 15) Concavity and points of inflection

Concavity:
We say that f(x) is
» concave upward on (a, b) if f’(x) > 0 on (a, b)
» concave downward on (a, b) if f”(x) < 0 on (a, b)
Example: f(x) = x3 = f"(x) = 6x
f is concave upward on (0, c0) and concave downward on (—oc, 0)

Point of inflection:

We say that x = a is an inflection point of f(x) if f”(x) changes
sign at x = a.

Example: f(x) = x3 = f"(x) = 6x

As f” changes sign from — to + at x =0, f has an inflection
point at x = 0.
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(Lecture 15) Asymptotes (vertical, horizontal, oblique)
Vertical asymptotes:
» x = ais a vertical asymptote of f(x) if

lim f(x) =200 or lim f(x)=+oc0

X—ra— x—at
5 1
Example: For f(x) = x~ + Pl
X —
x = 1 is a vertical asymptote since lim f(x) = oc.

x—1*
Horizontal asymptotes:
» y = bis a horizontal asymptote of f(x) if
Xgrfoo f(x)=0b or Xll—>m:>o f(x)=»b
Note: f(x) can have at most two different horizontal
asymptotes (one for Iir11Oo and one for lim)

X—r X—00
X

Example: For f(x) = €,

y = 0 is a horizontal asymptote since lim f(x)=0.
X——00
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(Lecture 15) Asymptotes (vertical, horizontal, oblique)
Oblique asymptotes:
» y = ax + bis an oblique asymptote of f(x) if
lim (f(x) —(ax+ b)) =0 or ILm (f(x) = (ax+ b)) =0

X—r—00

» Note: f(x) can have at most two different oblique asymptotes

(one for lim and one for lim )
X—>—00 X—>00

2
Example: For f(x) =x+ 34 —, y = x+ 3 is an oblique asymptote
X

since lim (f(x) —(x+3)) = lim —=0.
X—>00 X—00 X
» Finding oblique asymptotes:
Method 1: Directly work on f(x) — (ax + b), then check the
coefficients of different terms and see what a, b have to be

such that the limit = 0 as x — 0o or —o0.

f
Method 2: Find a such that a = lim fx) (or lim ),
X—o0 X X——00

then find b= XI|_>rr;o(f(x) — ax) (or XETOO).
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(Lecture 15) Asymptotes (vertical, horizontal, oblique)
Example: f(x) = Vx> —2x+3
» No vertical asymptote (as f(x) is defined everywhere on R)
» No horizontal asymptote ( lim f(x) =00, lim f(x)=00)
X—00 X—r—00
» Oblique asymptotes:
For x — oo, we have

. 2_
Az fim VX2 HE3 1—7+f_1 and
X—> 00 X X-)OO

b= lim(vVx?—2x+3—x) = I|m 2X+3 ) =X =1
x—roeo \/ —2x+3+x

For x — —o0, we have

. 2_
a= lim 7”2’(”_ 1+ +7 —1, and
X——00 X—> 00

= lim (Vx2—2x+3+x)= I|m 2X+3 _X =1
x——o00 \/ 2—2x+3—x

So the oblique asymptotes are y = x —1 and y = —x + 1.

22/36



(Lecture 15) Curve sketching

To sketch a given function, do the following:
1. Find:

» (Natural) domain

> x-intercept

P y-intercept

> Asymptotes (vertical, horizontal, oblique)

» Critical points (and check whether they are local max/min)
» Inflection points (and check concavity)

2. Sketch the curve based on the information above.

Examples: See the main MATH1010 lecture notes.
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(Lecture 15) Curve sketching
Example: f(x) = Vx> —2x+3
P Domain: R (as v/x2 — 2x + 3 = /(x — 1)2 + 2 is defined everywhere)

x-intercept: None (as f(x) = /(x = 1)2+2 #0)
y-intercept: f(0) = /3
Asymptotes: y = x —1 and y = —x + 1 (see the previous slide)

>
>
>
P Critical points: f'(x) = \/ﬁ, so the only critical point is at x = 1.
By first derivative test, it is a local minimum.

P Inflection point: None (as f’(x) = ——2— > 0)

v/ x2—2x+3
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(Lecture 15-17) Mean value theorem (MVT)

Rolle’s theorem:

If f is continuous on [a, b], differentiable on (a, b), and
f(a) = f(b), then there exists ¢ € (a, b) such that f'(c) = 0.

Lagrange’s mean value theorem:

If f is continuous on [a, b] and differentiable on (a, b),
f(b) - f(a)

then there exists ¢ € (a, b) such that f'(c) = —

Cauchy’s mean value theorem:

If f,g are continuous on [a, b], differentiable on (a, b),
with g(a) # g(b) and g’(x) # 0 on (a, b), then there
Flc) _ F(b)~ f(a)
g'(c) g(b)—g(a)

exists ¢ € (a, b) such that
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(Lecture 16) Inequalities

Using MVTs to prove inequalities:

Example: Prove that | cos(x) — cos(y)| < |x — y| for all x,y € R.

Solution:
» If x =y, we have |cos(x) — cos(y)| =0 = |x — y|.

> If x £ y, by Lagrange’s MVT, there exists ¢ between x and y

such that
cos(x) — cos(y) — _sin(o).
X—=Yy
Therefore, we have

\cos(T)B:)c/Ts(Y) = |=sin(c)| < 1 <= | cos(x)—cos(y)| < [x—y]

for all x,y € R.
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(Lecture 16) Derivatives and inequalities
Increasing/decreasing functions and derivatives:

» f is (monotonic) increasing on (a, b) (i.e. f(x) < f(y) for all
x,y € (a, b) with x < y) if and only if f’(x) > 0 on (a, b).

» f is (monotonic) decreasing on (a, b) (i.e. f(x) > f(y) for all
x,y € (a,b) with x < y) if and only if f'(x) < 0 on (a, b).

> f is constant on (a, b) if and only if f'(x) =0 on (a, b).

» f is strictly increasing on (a, b) (i.e. f(x) < f(y) for all
x,y € (a,b) with x < y) if f'(x) > 0 on (a, b).

» f is strictly decreasing on (a, b) (i.e. f(x) > f(y) for all
x,y € (a,b) with x < y) if f'(x) <0 on (a,b).

Using derivatives to prove inequalities:

Example: Let p > 1. Prove that (1 + x)P > 1+ px for all x > 0.

Solution: Let f(x) = (1 + x)P — (1 + px). Then
f'(x)=p(l+x)Pt=p>0

for all x > 0. Therefore, f is strictly increasing on (0, 00). We have

f(x)>f(0)=0= (1+x)”>1+px.
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(Lecture 17) L'Hopital’s rule
L’Hopital’s rule:

Let a € R or a= £o0. If f and g are differentiable near a
and all of the following conditions are satisfied:
1. Both lim f(x) =0 and lim g(x) =0 or
X—a X—a
both lim f(x) = +o0 and lim g(x) = +oc.
X—a

X—a
2. g'(x) # 0 near a.
f/
3. lim (x) exists or = to0.
x—a g'(x)
!
Then we have lim @ = lim f/(X)
x—a g(x) x—ag/(x)
Remarks:
» Similar results hold for one-sided limit ( lim and lim)

x—a~ x—at
» Sometimes may need to apply the rule more than once

» Not always applicable! Check if the requirements are satisfied.
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(Lecture 17) L'Hopital’s rule

Handling different indeterminate forms:

9, i¥.O: May try to apply the L'Hopital's rule directly
0" *+o0
Example: ,
. tanx—x 0 . seccx—1 0
i@o x3 (6) - llno 3x2 (6)
~im 2sec x sec x tan x ~im sin x :1
x—0 6x x—03xcos3x 3

.. 0 =+
» 0 (+c0), 0o — oo: May try to convert them into 0o iﬁ
. e]
then apply the L'Hopital’s rule

Example: > 1 o
X X= —
lim (x> —1)tan — (0-00) = li -
x@l(x )tan 2 (0-00) Jai} cot 5 (0)
_ 2x _ 2xsin?®X 0 2.1.12 4
=lim ———_—— = lim - = - = —
x—1 5 - CSC 7 x—1 5 5 T
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(Lecture 17) L'Hopital’s rule

Handling different indeterminate forms:
> 1, o0, 0% May use logarithm and apply the L'Hopital's
rule to the logged expression, then use IiLn y = elimx—alny
X—a
Example: Find lim (x +sinx)* (0°)
x—07F
Solution: Let y = (x + sinx)*, then Iny = xIn(x + sin x) and

In(x +sinx) oo

1 (7)

lim xIn(x +sinx) (0-(£o0)) = lim

x—0*t x—0*t X o0
1
b sy (1 + cos x)
x—07F —%
X
B —x(1 + cosx)
T 0r 1 - sinx
X
_—0(+1)
- 1+1
So lim (x +sinx)* = lim y= lim " =& =1
x—0t x—0*t x—0t
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(Lecture 18) Taylor polynomial

Taylor polynomial:

The n-th order Taylor polynomial of f(x ) about a point x=ais
f(a) + F'(a)(x ("" —a)" = Z k, —a)

palx) = —a ]

Property: We have f(k)( )= p,(, )( ) forall k=0,1,...,n.

Example:

The 2nd order Taylor polynomial of f(x) = /1 + x about x =0 is
(0 2

pa(x) = F(0) + F/(0)(x — 0) + #(X 0P =1+ % - %

Taylor’s theorem:

Let x # a (i.e. x > aor x < a).

Suppose f(") exists and is continuous on [a, x] (or [, a]),
and f("*1) exists on (a, x) (or (x, a)).

Then there exists ¢ € (a, x) (or (x, a)) such that

n (k)
Z k!(a) (X -

k=0

f(X) = pn(X) + Ra(x) =

a)* (n+1)

Fn+1) () (x— 2y
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(Lecture 19-20) Taylor series

Taylor series:

The Taylor series of f(x) about a point x = a is the infinite series

, '(a 2. Fk)(a B
T(x)="f(a)+'(a)(x—a)+ 2(!)(x—a)2—0—-~~=kz0 '()(X—a)

k!

Property: If the remainder term in Taylor's theorem R,(x) — 0 as
n — oo on an interval /, then the Taylor series is equal to the
function (i.e. f(x) = T(x )) on /.

Examples: e~ —1—|—x+——|— Zkl forall x e R
x3 X5 o (—1)k 2k
e N ) 2kt

sinx = x — al + —;(2k+1)!x forall x e R
x*  x o (=1 o

cosx—1—2|—|——---:kzo(2k)!x forall x e R

2 3 0 _1k+1

In(1+x):x—);+);+-":;(zxk for |x| <1
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(Lecture 19-20) Taylor series
Properties:

> If T(x) is the Taylor series of f(x) about x = 0, then T(x*) is
the Taylor series of f(x*) about x = 0 for all positive integer k

Example: The Taylor series of > n2 about 0 is

X
1/, (@ (2P B W8

» Addition and subtraction of Taylor series
2

. sin .
Example: The Taylor series of —— + cosx about 0 is

X
X4 X8 X2 X4 X2 X4
12 X 1o % o
( 31 )+( 21 4 ) 2 8 "

» Multiplication and division of Taylor series

cos® x about 0 is

2

sin x

Example: The Taylor series of —
X

1 x4 n x8 1 X2 n x4 3 3x2 17x*
3! 51 2! 41 2 24
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(Lecture 19-20) Taylor series

Properties:
» Composition of Taylor series
Example:
The Taylor series of cos (sin x) about 0 is
1 x> x° S x3 x° N
_2|<X_3!+5!_...> +4!< 3!+5'_...> L
e
B 2 24

Differentiation of Taylor series
Example:
The Taylor series of ————— = Ly

€ laylor series o 7(1—|—X)2 _X(1+X) IS

!

X(l—x+x2—x3—---
=x(—1+2x—3x*+--+)
x4+2x%2 =33 ...
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(Lecture 20) Using Taylor series to find limits

Idea: To find Ii_rp f(x), replace certain components in f(x)
X—C

with their Taylor series (if those components are equal to
their Taylor series for x near c)

Example:
i In(1 4 x) — xv/1—x
x—0 X —sin x
. (x—%2+%3+(’)(x4)) —x<1—§—%2+(’)(x3))
x—0 X — (X - %3 + O(X5))
11 X3+ 0G4
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Good luck!
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