MATH1010F University Mathematics

Review:

Preliminary knowledge, limits of sequences, limits of functions, continuity, and differentiation

Gary Choi

October 17, 2023
https://www.math.cuhk.edu.hk/course/2324/math1010f

Quiz 1 reminder

- Date: October 19 (this Thursday)
- Time: 5:35PM - 6:20PM
- Venue for MATH1010F: TYW LT
(T. Y. Wong Hall, 5/F, Ho Sin Hang Engineering Building)
- Closed book, closed notes
- List of approved calculators:
http://www.res.cuhk.edu.hk/images/content/ examinations/
use-of-calculators-during-course-examination/ Use-of-Calculators-during-Course-Examinations.pdf

Basic notations

Set: a collection of elements

- $\{a, b, c\}=a$ set containing three elements a, b, c
- $x \in A$ means " x is an element of the set A "
- $A \subset B$ (also written as $A \subseteq B$) means " A is a subset of B "
(i.e. for any element $x \in A$, we have $x \in B$)
- $\{x: \cdots\}=\{x \mid \cdots\}=\{x$ such that $\cdots\}$
- $\mathbb{R}=$ the set of all real numbers
- $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}=$ the set of all integers
- $\mathbb{N}=\mathbb{Z}^{+}=\{x \in \mathbb{Z}: x>0\}=\{1,2,3, \ldots\}$
$=$ the set of all positive integers
- $\mathbb{Q}=\left\{x \in \mathbb{R}: x=\frac{p}{q}\right.$ for some $p, q \in \mathbb{Z}$ with $\left.q \neq 0\right\}$
$=$ the set of all rational numbers
- $\emptyset=\{ \}=$ empty set

Examples:

- $2 \in \mathbb{Z}$ (since 2 is an integer)
- $\pi \notin \mathbb{Q}$ (since π is an irrational number)
- $\{0,2,4,6, \ldots\} \subset \mathbb{Z}$

Basic notations

- Union: $A \cup B=\{x: x \in A$ or $x \in B\}$
- Intersection: $A \cap B=\{x: x \in A$ and $x \in B\}$
- Union of multiple sets $A_{1}, A_{2}, \ldots, A_{n}$:

$$
\bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \cdots \cup A_{n}
$$

- Intersection of multiple sets $A_{1}, A_{2}, \ldots, A_{n}$:

$$
\bigcap_{i=1}^{n} A_{i}=A_{1} \cap A_{2} \cap \cdots \cap A_{n}
$$

- Set difference: $A \backslash B=\{x: x \in A$ and $x \notin B\}$

Examples:

- $\{1,2,3\} \cup\{1,3,4,7\}=\{1,2,3,4,7\}$
- $\{1,2,3\} \cap\{1,3,4,7\}=\{1,3\}$
- $\{1,2,3\} \backslash\{1,3,4,7\}=\{2\}$

Basic notations

Intervals:

- $(a, b)=\{x \in \mathbb{R}: a<x<b\}$ (open interval)
- $[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\}$ (closed interval)
- $(a, b]=\{x \in \mathbb{R}: a<x \leq b\}$
- $[a, b)=\{x \in \mathbb{R}: a \leq x<b\}$
- $(a, \infty)=\{x \in \mathbb{R}: x>a\}$
- $[a, \infty)=\{x \in \mathbb{R}: x \geq a\}$
- $(-\infty, b)=\{x \in \mathbb{R}: x<b\}$
- $(-\infty, b]=\{x \in \mathbb{R}: x \leq b\}$

Examples:

- $(-1,3) \cup(0,4]=(-1,4]$
- $[0,5] \cap(1, \infty)=(1,5]$
- $(0,5) \backslash(1,2)=(0,1] \cup[2,5)$
- $\bigcup_{n \in \mathbb{Z}}[2 n \pi,(2 n+1) \pi)=\cdots \cup[-2 \pi,-\pi) \cup[0, \pi) \cup[2 \pi, 3 \pi) \cup \cdots$

(Lecture 1-2) Sequences

Examples:
$>a_{n}=\frac{1}{n}=1, \frac{1}{2}, \frac{1}{3}, \ldots$

- $b_{n}=2^{n-1}=1,2,4,8, \ldots$
- $c_{n}=(-1)^{n}=-1,1,-1,1, \ldots$
- Arithmetic sequences: $a_{n+1}-a_{n}=d$ for some constant d
- Geometric sequences: $a_{n+1}=r a_{n}$ for some constant r

Definitions:

- Monotonic increasing (or "increasing"): $a_{n} \leq a_{n+1}$ for all n
- Monotonic decreasing (or "decreasing"): $a_{n} \geq a_{n+1}$ for all n
- Monotonic: Either monotonic increasing or decreasing
- Strictly increasing: $a_{n}<a_{n+1}$ for all n
- Strictly decreasing: $a_{n}>a_{n+1}$ for all n
- Bounded below: there exists $M \in \mathbb{R}$ s.t. $a_{n}>M$ for all n
- Bounded above: there exists $M \in \mathbb{R}$ s.t. $a_{n}<M$ for all n
- Bounded: there exists $M \in \mathbb{R}$ s.t. $\left|a_{n}\right|<M$ for all n (i.e. both bounded below and bounded above)

(Lecture 1-2) Limits of sequences

Definitions:

- (Convergent sequence) If $\left\{a_{n}\right\}$ approaches a number L as n approaches infinity, we say $\lim _{n \rightarrow \infty} a_{n}=L$.
- (Divergent sequence) If no such L exists, we say that $\left\{a_{n}\right\}$ is divergent.
Note: If $\lim _{n \rightarrow \infty} a_{n}=\infty$ or $-\infty$, it is also divergent.
Uniqueness of limit: If a_{n} is convergent, then the limit is unique.
Basic arithmetic rules: If $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$, then
- $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=a \pm b$
- $\lim _{n \rightarrow \infty}\left(c a_{n}\right)=c a$ (where c is a constant)
- $\lim _{n \rightarrow \infty} a_{n} b_{n}=a b$
- $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{a}{b}$ (if $b \neq 0$)

Example: $\lim _{n \rightarrow \infty}\left(\cos \frac{1}{n}-2\left(\frac{3}{4}\right)^{n}+\frac{1}{n^{2}}\right)=1-2 \cdot 0+0=1$

(Lecture 1-2) Limits of sequences

Limits involving $\pm \infty$:

- $\infty \pm L=\infty$
- $-\infty \pm L=-\infty$
- $\infty+\infty=\infty$
- $-\infty-\infty=-\infty$
- $L \cdot \infty=\left\{\begin{array}{cc}\infty & \text { if } L>0 \\ -\infty & \text { if } L<0\end{array}\right.$
- $\frac{L}{ \pm \infty}=0$
- (Indeterminate forms) $\infty-\infty, \frac{ \pm \infty}{ \pm \infty}, \frac{0}{0}, 0 \cdot \infty$: try further simplifying

Convergence \Rightarrow Boundedness:

$$
\text { If }\left\{a_{n}\right\} \text { is convergent, then }\left\{a_{n}\right\} \text { is bounded. }
$$

Remark: The converse is NOT true, i.e. bounded \nRightarrow convergent! Example: $\left\{(-1)^{n}\right\}=-1,1,-1,1, \ldots$ is bounded but divergent.

(Lecture 2) Monotone convergence theorem

$$
\text { If }\left\{a_{n}\right\} \text { is monotonic and bounded, then }\left\{a_{n}\right\} \text { is convergent. }
$$

Other versions:

- If $\left\{a_{n}\right\}$ is monotonic increasing and bounded above, then $\left\{a_{n}\right\}$ is convergent.
- If $\left\{a_{n}\right\}$ is monotonic decreasing and bounded below, then $\left\{a_{n}\right\}$ is convergent.
Example: To prove that $\left\{a_{n}\right\}$ with $\left\{\begin{array}{l}a_{n+1}=\sqrt{a_{n}+1} \\ a_{1}=1\end{array}\right.$ is
convergent, we prove that (i) $\left\{a_{n}\right\}$ is bounded by 2 (by MI) and (ii) $\left\{a_{n}\right\}$ is monotonic increasing.

Remark:
The converse is NOT true: convergent \nRightarrow monotonic \& bounded! Example: $\left\{\frac{(-1)^{n}}{n}\right\}=-1, \frac{1}{2},-\frac{1}{3}, \frac{1}{4}, \ldots$ converges to 0 , but the sequence is not monotonic.

(Lecture 3) Squeeze theorem (sandwich theorem)

$$
\begin{aligned}
& \text { If } b_{n} \leq a_{n} \leq c_{n} \text { for all } n \text { and } \lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n}=L, \\
& \text { then } \lim _{n \rightarrow \infty} a_{n}=L .
\end{aligned}
$$

Example: $\lim _{n \rightarrow \infty} \frac{\sin (\cos n)}{n}=$?
Solution: Since $-1 \leq \sin (\cos n) \leq 1$ for all n, we have

$$
\frac{-1}{n} \leq \frac{\sin (\cos n)}{n} \leq \frac{1}{n}
$$

Now, since $\lim _{n \rightarrow \infty} \frac{-1}{n}=0=\lim _{n \rightarrow \infty} \frac{1}{n}$, by squeeze theorem, we have

$$
\lim _{n \rightarrow \infty} \frac{\sin (\cos n)}{n}=0
$$

Some possible ways to show that a sequence converges

(I) Find the limit directly using some basic limit results

- $\lim _{n \rightarrow \infty} r^{n}=0$ if $|r|<1, \lim _{n \rightarrow \infty} \frac{1}{n}=0, \ldots$

Example: $\lim _{n \rightarrow \infty}\left(\cos \frac{1}{n}+\left(\frac{3}{4}\right)^{n}+\frac{1}{n^{2}}\right)=1+0+0=1$
(II) Use the monotone convergence theorem

- Show that the sequence is bounded and monotonic (may need to use mathematical induction)
- Conclude that the sequence converges (i.e. can write $\lim _{n \rightarrow \infty} a_{n}=L$, then solve some equations to find L if needed).
Example: Show that $\left\{\begin{array}{l}a_{n+1}=\sqrt{a_{n}+1} \\ a_{1}=1\end{array}\right.$ converges.
(III) Use the squeeze theorem
- Find b_{n}, c_{n} s.t. $b_{n} \leq a_{n} \leq c_{n}$ and $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n}(=L)$.
- Conclude that $\lim _{n \rightarrow \infty} a_{n}=L$.

Example: Show that $\left\{a_{n}\right\}=\left\{\frac{(-1)^{n}+\sin n}{n}\right\}$ converges.
If a way does not work, it does NOT imply that the sequence is divergent! Try another way.

Some possible ways to show that a sequence diverges

(I) Show that $\left\{a_{n}\right\}$ is unbounded (i.e. $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\infty$)

- Reason: If a sequence converges, it must be bounded Example $a_{n}=(-1)^{n} n^{2}$ diverges as $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty} n^{2}=\infty$
(II) Show that $\left\{a_{n}\right\}$ contains two subsequences which converge to two different values
- Reason: If a sequence converges, then the limit must be unique Example: $a_{n}=(-1)^{n}$ diverges since $\left\{a_{1}, a_{3}, a_{5}, \ldots\right\}$ converges to -1 and $\left\{a_{2}, a_{4}, a_{6}, \ldots\right\}$ converges to 1 .

If a way does not work, it does NOT imply that the sequence is convergent! Try another way.

(Lecture 3) Infinite series

Series: $\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\cdots+a_{n}$
Examples:

- $\sum_{k=1}^{n} k=1+2+\cdots+n=\frac{n(n+1)}{2}$
- (Arithmetic sum) $\sum_{k=1}^{n}(a+(k-1) d)=\frac{2 a+(n-1) d}{2}$
- (Geometric sum) $\sum_{k=1}^{n} a r^{k-1}=\frac{a\left(r^{n}-1\right)}{(r-1)}($ if $r \neq 1)$

Convergence of infinite series: We say that an infinite series $\sum_{k=1}^{\infty} a_{k}=a_{1}+a_{2}+a_{3}+\cdots$ is convergent if the sequence of partial sums $\left\{s_{n}\right\}$ (where $s_{n}=a_{1}+a_{2}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k}$) converges.

Example: (Euler's number) $e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots \approx 2.718$

(Lecture 3) Functions

Definitions:

- $f: A \rightarrow B$
- A: Domain
- B: Codomain
- f : Some rule of assigning elements in A to elements in B
- Range of $f=\{f(x): x \in A\}$ (also known as image of f)
- Natural domain = largest domain on which f can be defined

Examples:

- For $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x)=x^{2}$, the range of f is $[0, \infty)$
- The natural domain of $f(x)=\frac{1}{\sqrt{x+1}}$ is $(-1, \infty)$
- The natural domain of $\tan (x)$ is

$$
\mathbb{R} \backslash\left\{ \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \ldots\right\}=\bigcup_{n \in \mathbb{Z}}\left(\left(n-\frac{1}{2}\right) \pi,\left(n+\frac{1}{2}\right) \pi\right)
$$

(Lecture 3-4) Injective, subjective, bijective functions, and inverse functions

- $f: A \rightarrow B$ is said to be injective (or "1-1", "one-to-one") if for any $x_{1}, x_{2} \in A$ with $x_{1} \neq x_{2}$, we have $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ (Or equivalently, if $f\left(x_{1}\right)=f\left(x_{2}\right)$ then we have $x_{1}=x_{2}$)
- $f: A \rightarrow B$ is said to be surjective (or "onto") if for any $y \in B$, there exists $x \in A$ such that $y=f(x)$
- f is bijective if it is both injective and surjective
- If $f: A \rightarrow B$ is a bijective function, the inverse function $f^{-1}: B \rightarrow A$ satisfies $f^{-1}(f(x))=x$ for all $x \in A$ and $f\left(f^{-1}(y)\right)=y$ for all $y \in B$
Examples:
- $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x)=x^{3}$ is bijective
- $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x)=x^{2}$ is not injective as $f(-1)=f(1)=1$
- $f:[0, \infty) \rightarrow \mathbb{R}$ with $f(x)=x^{2}$ is injective but not surjective
- $f:[0, \infty) \rightarrow[0, \infty)$ with $f(x)=x^{2}$ is bijective, and the inverse function is $f^{-1}:[0, \infty) \rightarrow[0, \infty)$ with $f^{-1}(y)=\sqrt{y}$

(Lecture 3-4) Even, odd, periodic functions

- f is an even function if $f(-x)=f(x)$ for all x
- f is an odd function if $f(-x)=-f(x)$ for all x
- f is a periodic function if there exists a constant k such that $f(x)=f(x+k)$ for all x
Examples:
- $f(x)=x^{2}$ is even because $f(-x)=(-x)^{2}=x^{2}=f(x)$ for all x
- $f(x)=x^{3}+\sin x$ is odd because $f(-x)=(-x)^{3}+\sin (-x)=-x^{3}-\sin x=-(f(x))$ for all x
- $f(x)=x+1$ is neither odd nor even because $f(-1)=0 \neq \pm f(1)$
- $f(x)=3 \sin x+\cos \frac{x}{2}$ is periodic because
$f(x+4 \pi)=3 \sin (x+4 \pi)+\cos \frac{x+4 \pi}{2}=$
$3 \sin (x+4 \pi)+\cos \left(\frac{x}{2}+2 \pi\right)=3 \sin x+\cos \frac{x}{2}=f(x)$ for all x

(Lecture 4-5) Some common functions

Exponential function $e^{x}: \mathbb{R} \rightarrow \mathbb{R}^{+}$
$>e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$

- bijective function

Logarithmic function $\ln : \mathbb{R}^{+} \rightarrow \mathbb{R}$

- Inverse function of $e^{x}\left(y=e^{x} \Leftrightarrow x=\ln y\right)$
- bijective function

Sine function $\sin : \mathbb{R} \rightarrow[-1,1]$

- $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$
- odd function (because $\sin (-x)=-\sin x$)
- periodic function (because $\sin (x+2 \pi)=\sin x$)

Cosine function $\cos : \mathbb{R} \rightarrow[-1,1]$
$-\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\cdots$

- even function (because $\cos (-x)=\cos x$)
- periodic function (because $\cos (x+2 \pi)=\cos x$)

(Lecture 4-5) Limit of functions

Definitions:

- Left-hand limit: We say that $\lim _{x \rightarrow a^{-}} f(x)=L$ if $f(x)$ is close enough to L whenever x is close enough to a and $x<a$.
- Right-hand limit: We say that $\lim _{x \rightarrow a^{+}} f(x)=L$ if $f(x)$ is close enough to L whenever x is close enough to a and $x>a$.
- Two-sided limit: We say that $\lim _{x \rightarrow a} f(x)=L$ if both the left-hand limit and the right-hand limit exist and are equal, i.e.

$$
\lim _{x \rightarrow a} f(x)=L \Longleftrightarrow \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L
$$

Remark: Whether f is defined at a or the value of f at a is NOT important for finding $\lim _{x \rightarrow a^{-}} f(x), \lim _{x \rightarrow a^{+}} f(x), \lim _{x \rightarrow a} f(x)$
Example: If $f(x)=\left\{\begin{array}{ll}-x & \text { if } x<0 \\ 1 & \text { if } x=0 \\ x^{2} & \text { if } x>0\end{array}\right.$, we have
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(-x)=0$ and $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x^{2}=0$,
so the two-sided limit exists and we have $\lim _{x \rightarrow 0} f(x)=0(\neq 1)$

(Lecture 4-5) Properties of limits of functions

If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then

- $\lim _{x \rightarrow a} f(x) \pm g(x)=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
- $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$ (where c is a constant)
- $\lim _{x \rightarrow a} f(x) g(x)=\left(\lim _{x \rightarrow a} f(x)\right) \cdot\left(\lim _{x \rightarrow a} g(x)\right)$
- $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}\left(\right.$ if $\left.\lim _{x \rightarrow a} g(x) \neq 0\right)$

Examples:

- $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{x^{2}+x}\right)=\lim _{x \rightarrow 0} \frac{(x+1)-1}{x(x+1)}=\lim _{x \rightarrow 0} \frac{1}{x+1}=1$
- $\lim _{x \rightarrow 2} \frac{2-x}{3-\sqrt{x^{2}+5}}=\lim _{x \rightarrow 2}\left(\frac{2-x}{3-\sqrt{x^{2}+5}} \cdot \frac{3+\sqrt{x^{2}+5}}{3+\sqrt{x^{2}+5}}\right)$

$$
=\lim _{x \rightarrow 2} \frac{(2-x)\left(3+\sqrt{x^{2}+5}\right)}{4-x^{2}}=\lim _{x \rightarrow 2} \frac{3+\sqrt{x^{2}+5}}{2+x}=\frac{6}{4}=\frac{3}{2}
$$

(Lecture 4-5) Properties of limits of functions

Some other useful limit results:

- $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$
- $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1$
- $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$

Examples:

- $\lim _{x \rightarrow 0} \frac{e^{3 x}-1}{x}=\lim _{x \rightarrow 0} \frac{e^{3 x}-1}{3 x} \cdot 3=1 \cdot 3=3$
$-\lim _{x \rightarrow 0} \frac{\sin 2 x}{\sin 3 x}=\lim _{x \rightarrow 0} \frac{\frac{\sin 2 x}{2 x}(2 x)}{\frac{\sin 3 x}{3 x}(3 x)}=\frac{\left(\lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x}\right) \cdot 2}{\left(\lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x}\right) \cdot 3}=\frac{1 \cdot 2}{1 \cdot 3}=\frac{2}{3}$

(Lecture 5) Sequential criterion

$$
\begin{gathered}
\text { We have } \lim _{x \rightarrow a} f(x)=L \quad \text { (limit of function) } \\
\text { if and only if }
\end{gathered}
$$

For any sequence $\left\{x_{n}\right\}$ with $x_{n} \neq a$ for any n and $\lim _{n \rightarrow \infty} x_{n}=a$, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L \quad$ (limit of sequence).

Consequence: If we can find two sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ such that:

- $x_{n} \neq a, y_{n} \neq a$ for all n and $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=a$
- but $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq \lim _{n \rightarrow \infty} f\left(y_{n}\right)$,
then $\lim _{x \rightarrow a} f(x)$ does not exist.
Example: Prove that $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist.
Solution: Let $\left\{x_{n}\right\}=\left\{\frac{1}{n \pi}\right\}=\frac{1}{\pi}, \frac{1}{2 \pi}, \frac{1}{3 \pi}, \cdots$ and
$\left\{y_{n}\right\}=\left\{\frac{1}{2 n \pi+\frac{\pi}{2}}\right\}=\frac{1}{2 \pi+\frac{\pi}{2}}, \frac{1}{4 \pi+\frac{\pi}{2}}, \frac{1}{6 \pi+\frac{\pi}{2}}, \cdots$, then we have
$\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=0$ but $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=0 \neq \lim _{n \rightarrow \infty} f\left(y_{n}\right)=1$.

(Lecture 5) Squeeze theorem for functions

Let f, g, h be functions. If $f(x) \leq g(x) \leq h(x)$ for any $x \neq a$ on a neighborhood of a and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$, then the limit of $g(x)$ at $x=a$ exists and we have $\lim _{x \rightarrow a} g(x)=L$.

Example: $\lim _{x \rightarrow 0} x \sin \frac{1}{e^{x^{2}}-1}=$?
Solution:
Since $-1 \leq \sin \frac{1}{e^{x^{2}}-1} \leq 1$ for all x, we have $-x \leq x \sin \frac{1}{e^{x^{2}}-1} \leq x$.
As $\lim _{x \rightarrow 0}(-x)=0=\lim _{x \rightarrow 0} x$, by squeeze theorem, $\lim _{x \rightarrow 0} x \sin \frac{1}{e^{x^{2}}-1}=0$.

(Lecture 6-7) Limits at infinity

Definitions:

- We say that $\lim _{x \rightarrow \infty} f(x)=L$ if $f(x)$ is close enough to L whenever x is large enough.
- (Similar for $\lim _{x \rightarrow-\infty} f(x)$)

Examples:

- $\lim _{x \rightarrow \infty} \frac{1}{x-1}=0$
- $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$
- $\lim _{x \rightarrow \infty}\left(1+\frac{1}{2 x}\right)^{3 x}=\lim _{x \rightarrow \infty}\left(1+\frac{1}{2 x}\right)^{3 x \cdot \frac{2}{2}}=$

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{2 x}\right)^{2 x \cdot \frac{3}{2}}=\left(\lim _{x \rightarrow \infty}\left(1+\frac{1}{2 x}\right)^{2 x}\right)^{\frac{3}{2}}=e^{\frac{3}{2}}
$$

- $\lim _{x \rightarrow \infty} \frac{x^{k}}{e^{x}}=0$ and $\lim _{x \rightarrow \infty} \frac{(\ln x)^{k}}{x}=0$ for any positive integer k

(Lecture 7) Asymptotes

- Horizontal asymptotes:

If $\lim _{x \rightarrow \infty} f(x)=b$ or $\lim _{x \rightarrow-\infty} f(x)=b$, then $y=b$ is a horizontal asymptote of $f(x)$.

- Vertical asymptotes:

If $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$ or $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$, then $x=a$ is a vertical asymptote of $f(x)$.

Examples:

- $y=0$ is a horizontal asymptote of $f(x)=e^{x}$ since $\lim _{x \rightarrow-\infty} e^{x}=0$
- $x=2$ is a vertical asymptote of $f(x)=1+\frac{1}{x-2}$ since $\lim _{x \rightarrow 2^{+}} f(x)=\infty$

(Lecture 7) Continuity of functions

f is said to be continuous at $x=a$ if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

In other words, we have:
(i) The limit $\lim _{x \rightarrow a} f(x)$ exists (i.e. $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$), and
(ii) It is equal to the value of f at $x=a$.
f is said to be continuous on an interval (a, b) if f is continuous at every point on (a, b).
Examples:

- $x^{n}, \cos x, \sin x, e^{x}$ are continuous on \mathbb{R}
- $\ln (x)$ is continuous on \mathbb{R}^{+}
- $f(x)=\left\{\begin{array}{ll}-x+1 & \text { if } x<0 \\ \cos x & \text { if } x \geq 0\end{array}\right.$ is continuous at $x=0$

(Lecture 7) Properties of continuous functions

Properties:

- If $f(x)$ and $g(x)$ are continuous at $x=a$, then the following functions are also continuous at $x=a$:
- $f(x) \pm g(x)$
- $c f(x)$ (where c is a constant)
- $f(x) g(x)$
- $\frac{f(x)}{g(x)}$ (if $\left.g(a) \neq 0\right)$
- If $f(x)$ is continuous at $x=a$ and $g(u)$ is continuous at $u=f(a)$, then the composition $(g \circ f)(x)$ (i.e. $g(f(x)))$ is also continuous at $x=a$.
Examples:
- $\cos (x)+2 x$ is continuous on \mathbb{R} because both $\cos x$ and x are continuous on \mathbb{R}.
- $\sin \left(x^{3}+1\right)$ is continuous at $x=0$ because $x^{3}+1$ is continuous at $x=0$ and $\sin (u)$ is continuous at $u=1$.
(Lecture 7) Intermediate value theorem and extreme value theorem

Intermediate value theorem (IVT):

Let f be a continuous function on $[a, b]$. For any real number L between $f(a)$ and $f(b)$ (i.e. $f(a)<L<f(b)$ or $f(b)<L<f(a)$), there exists $c \in(a, b)$ such that $f(c)=L$.

Example: Show that $f(x)=x^{7}+x^{3}+1$ has a real root.
Solution: Note that $f(-1)=-1<0$ and $f(0)=1>0$. As f is continuous, by IVT, there exists $c \in(-1,0)$ s.t. $f(c)=0$.

Extreme value theorem (EVT):
Let f be a continuous function on $[a, b]$. Then there exists
$\alpha, \beta \in[a, b]$ such that $f(\alpha) \leq f(x) \leq f(\beta)$ for any $x \in[a, b]$ (i.e. f has a global maximum and a global minimum in $[a, b]$).

(Lecture 8) Derivatives

f is said to be differentiable at $x=a$ if the following limit (called the derivative of f at $x=a$) exists:

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Another form:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Remark: For piecewise functions, we need to check both
$\lim _{x \rightarrow a^{-}} \frac{f(x)-f(a)}{x-a}$ and $\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a}$
Example of finding derivative by definition (i.e. first principle):

- If $f(x)=x^{2}$, then

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h}=2 x .
\end{aligned}
$$

(Lecture 8-9) Derivatives of common functions

- $\left(x^{n}\right)^{\prime}=n x^{n-1}$
- $\left(e^{x}\right)^{\prime}=e^{x}$
- $(\ln x)^{\prime}=\frac{1}{x}$
- $(\sin x)^{\prime}=\cos x$
- $(\cos x)^{\prime}=-\sin x$
- $(\tan x)^{\prime}=\sec ^{2} x=\frac{1}{\cos ^{2} x}$
- $(c)^{\prime}=0$ (where c is a constant)
- $(\sinh x)^{\prime}=\cosh x\left(\right.$ where $\left.\sinh x=\frac{e^{x}-e^{-x}}{2}, \cosh x=\frac{e^{x}+e^{-x}}{2}\right)$
- $(\cosh x)^{\prime}=\sinh x$
- $(\tanh x)^{\prime}=\operatorname{sech}^{2} x=\frac{1}{\cosh ^{2} x}$

(Lecture 8-9) Differentiation rules

If f and g are differentiable at a point, then the following functions are also differentiable at that point:

- $(f(x) \pm g(x))^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)$
- $(c f(x))^{\prime}=c f^{\prime}(x)$ (where c is a constant)
- Product rule:

$$
(f g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

- Quotient rule:

$$
\left(\frac{f}{g}\right)^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}} \quad(\text { if } g(x) \neq 0)
$$

Examples:

- $\left(x^{3} \sin x\right)^{\prime}=\left(x^{3}\right)^{\prime} \sin x+x^{3}(\sin x)^{\prime}=3 x^{2} \sin x+x^{3} \cos x$
- $\left(\frac{\sin x}{x^{2}+1}\right)^{\prime}=\frac{(\sin x)^{\prime}\left(x^{2}+1\right)+(\sin x)\left(x^{2}+1\right)^{\prime}}{\left(x^{2}+1\right)^{2}}=\frac{\left(x^{2}+1\right) \cos x+2 x \sin x}{\left(x^{2}+1\right)^{2}}$

(Lecture 8-9) Differentiation rules

Chain rule:

If $f(x)$ is differentiable at $x=a$ and $g(u)$ is differentiable at $u=f(a)$, then $(g \circ f)$ is differentiable at $x=a$ and we have

$$
(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) f^{\prime}(a)
$$

In other words, we have

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

Examples:

- $\left(\sin x^{2}\right)^{\prime}=\frac{d(\sin u)}{d u} \frac{d u}{d x}\left(\right.$ let $\left.u=x^{2}\right)=(\cos u)(2 x)=2 x \cos x^{2}$
- $\left(e^{\sin x}\right)^{\prime}=e^{\sin x} \cos x$

A more complicated version: $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d v} \cdot \frac{d v}{d x}$ Example:

$$
\left(\ln \left(\cos \left(x^{3}\right)\right)\right)^{\prime}=\frac{1}{\cos x^{3}} \cdot\left(-\sin \left(x^{3}\right)\right) \cdot\left(3 x^{2}\right)=-3 x^{2} \tan x^{3}
$$

(Lecture 8-9) Continuity and differentiability

$$
\text { If } f \text { is differentiable at } x=a \text {, then } f \text { is continuous at } x=a
$$

The converse is NOT true: if f is continuous at $x=a$, it may or may not be differentiable at $x=a$
Example: $f(x)=|x|= \begin{cases}-x & \text { if } x<0 \\ x & \text { if } x \geq 0\end{cases}$

- $f(x)$ is continuous on \mathbb{R} (i.e. at every point $x \in \mathbb{R}$):
- For any $a<0, \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a}(-x)=-a=f(a)$
- For any $a>0, \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} x=a=f(a)$
- For $a=0$, we have $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(-x)=0=f(0)$ and

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x=0=f(0), \text { and hence } \lim _{x \rightarrow 0} f(x)=f(0)
$$

- $f(x)$ is not differentiable at $x=0$:

Note that $f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{|h|-0}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}$ but

$$
\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=1 \text { and } \lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{-h}{h}=-1
$$

Another example of continuous but not differentiable functions

$$
\begin{aligned}
f(x) & =|x+1|-|x|+|x-1| \\
& =\left\{\begin{array}{lll}
-(x+1)-(-x)-(x-1) & =-x & \text { if } x<-1 \\
(x+1)-(-x)-(x-1) & =x+2 & \text { if }-1 \leq x<0 \\
(x+1)-(x)-(x-1) & =-x+2 & \text { if } 0 \leq x<1 \\
(x+1)-(x)+(x-1) & =x & \text { if } x \geq 1
\end{array}\right.
\end{aligned}
$$

- $f(x)$ is continuous on \mathbb{R}
- $f(x)$ is not differentiable at $x=-1,0,1$
(Optional) Continuous but nowhere differentiable function
Weierstrass function (More details in MATH2050/2060)
https://en.wikipedia.org/wiki/Weierstrass_function

- $f(x)$ is continuous on \mathbb{R}
- $f(x)$ is not differentiable at any $x \in \mathbb{R}$

(Lecture 10-11) Implicit differentiation

Idea: Find y^{\prime} without having to explicitly write $y=f(x)$.
Example: If $x \sin y+y^{2}=x+3 y$, find the slope of tangent at $(0,0)$.

$$
\begin{aligned}
\left(x \sin y+y^{2}\right)^{\prime} & =(x+3 y)^{\prime} \\
\left(\sin y+x(\cos y) y^{\prime}\right)+2 y y^{\prime} & =1+3 y^{\prime} \\
(x \cos y+2 y-3) y^{\prime} & =1-\sin y \\
y^{\prime} & =\frac{1-\sin y}{x \cos y+2 y-3}
\end{aligned}
$$

The slope of tangent at $(0,0)$ is $\frac{1-\sin 0}{0 \cdot \cos 0+2 \cdot 0-3}=-\frac{1}{3}$

(Lecture 10-11) Logarithmic differentiation

Idea: Find the derivative of some complicated functions using logarithms.

Example: If $y=x^{x}$, find y^{\prime}.

$$
\begin{aligned}
\ln y & =\ln \left(x^{x}\right) \\
(\ln y)^{\prime} & =(x \ln x)^{\prime} \\
\frac{1}{y} y^{\prime} & =1 \cdot \ln x+x \cdot \frac{1}{x} \\
y^{\prime} & =y(\ln x+1)=x^{x}(\ln x+1)
\end{aligned}
$$

(Lecture 10-11) Derivatives of some other special functions

- More general exponential function:

Let $a>0$ and define $a^{x}=e^{x \ln a}$. Then we have:

- $a^{x+y}=a^{x} \cdot a^{y}$ for any $x, y \in \mathbb{R}$
- $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\ln a$
- $\left(a^{x}\right)^{\prime}=a^{x} \ln a$

Example: $\left(2^{x^{2}+\cos x}\right)^{\prime}=\left(2^{x^{2}+\cos x} \ln 2\right)(2 x-\sin x)$

- Inverse functions:

If $f(y)$ is a bijective and differentiable function with $f^{\prime}(y) \neq 0$ for any y, then the inverse function $y=f^{-1}(x)$ is differentiable:

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Examples:

$$
\left(\sin ^{-1} x\right)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}, \quad\left(\cos ^{-1} x\right)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}}, \quad\left(\tan ^{-1} x\right)^{\prime}=\frac{1}{1+x^{2}}
$$

(Lecture 11-12) Higher order derivatives

- Second derivative:

$$
y^{\prime \prime}=f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)
$$

- n-th derivative:

$$
y^{(n)}=f^{(n)}(x)=\frac{d^{n} y}{d x^{n}}=\frac{d}{d x}\left(\frac{d}{d x}\left(\frac{d}{d x}\left(\cdots \frac{d y}{d x}\right)\right)\right)
$$

- 0-th derivative:

$$
y^{(0)}=f^{(0)}(x)=f(x)
$$

Examples:

- $\left(\sin x^{2}\right)^{\prime \prime}=\left(\left(\sin x^{2}\right)^{\prime}\right)^{\prime}=\left(\left(\cos x^{2}\right)(2 x)\right)^{\prime}$

$$
=\left(-\sin x^{2}\right)(2 x)(2 x)+2 \cos x^{2}=-4 x^{2} \sin x^{2}+2 \cos x^{2}
$$

- Find $y^{\prime \prime}$ if $x y+\sin y=1$:

$$
\begin{gathered}
(x y+\sin y)^{\prime}=1^{\prime} \Rightarrow\left(y+x y^{\prime}+y^{\prime} \cos y\right)=0 \Rightarrow y^{\prime}=\frac{-y}{x+\cos y} \\
\Rightarrow y^{\prime \prime}=-\frac{y^{\prime}(x+\cos y)-y\left(1-y^{\prime} \sin y\right)}{(x+\cos y)^{2}}=\frac{2 y(x+\cos y)+y^{2} \sin y}{(x+\cos y)^{3}}
\end{gathered}
$$

(Lecture 11-12) Higher order differentiation rules

If f and g are n-times differentiable (i.e. $f^{(n)}$ and $g^{(n)}$ exist), then:

- $(f \pm g)^{(n)}=f^{(n)} \pm g^{(n)}$
- $(c f)^{(n)}=c f^{(n)}$ (where c is a constant)
- Leibniz's rule (product rule for higher order derivatives):

$$
(f g)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} f^{(n-k)} g^{(k)}
$$

where $\binom{n}{k}=\frac{n!}{(n-k)!k!}$ is the binomial coefficient.
Example: $\left(x^{3} \sin x\right)^{(4)}$
$=1 \cdot\left(x^{3}\right)^{\prime \prime \prime \prime} \sin x+4 \cdot\left(x^{3}\right)^{\prime \prime \prime}(\sin x)^{\prime}+6 \cdot\left(x^{3}\right)^{\prime \prime}(\sin x)^{\prime \prime}+4\left(x^{3}\right)^{\prime}(\sin x)^{\prime \prime \prime}+$
$1 \cdot x^{3}(\sin x)^{\prime \prime \prime \prime}$
$=0+24 \cos x-36 x \sin x-12 x^{2} \cos x+x^{3} \sin x$
$=\left(x^{3}-36 x\right) \sin x+\left(24-12 x^{2}\right) \cos x$

(Lecture 12-13) n-times differentiability and continuity

If f is n-times differentiable at $x=a$
$\left(f^{(n)}(a)\right.$ exists, i.e. $f^{(n-1)}$ is differentiable at $\left.x=a\right)$, then $f^{(n-1)}$ is continuous at $x=a$.
f is n-times differentiable at $x=a$ (i.e. $f^{(n)}(a)$ exists)
$f^{(n-1)}(a)$ exists and $f^{(n-1)}$ is continuous at $x=a$
\Downarrow
\Downarrow
$f^{\prime}(a)$ exists and f^{\prime} is continuous at $x=a$
\Downarrow
f is continuous at $x=a$
However, the converse is NOT true!
Example: Let $f(x)=|x| x$, then:

- f is differentiable at $x=0$
- f^{\prime} is continuous at $x=0$
- but f^{\prime} is not differentiable at $x=0$ (i.e. $f^{\prime \prime}(0)$ does not exist)

