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Quiz 1 reminder

▶ Date: October 19 (this Thursday)

▶ Time: 5:35PM - 6:20PM

▶ Venue for MATH1010F: TYW LT
(T. Y. Wong Hall, 5/F, Ho Sin Hang Engineering Building)

▶ Closed book, closed notes

▶ List of approved calculators:
http://www.res.cuhk.edu.hk/images/content/

examinations/

use-of-calculators-during-course-examination/

Use-of-Calculators-during-Course-Examinations.pdf
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Basic notations
Set: a collection of elements
▶ {a, b, c} = a set containing three elements a, b, c
▶ x ∈ A means “x is an element of the set A”
▶ A ⊂ B (also written as A ⊆ B) means “A is a subset of B”

(i.e. for any element x ∈ A, we have x ∈ B)
▶ {x : · · · } = {x | · · · } = {x such that · · · }
▶ R = the set of all real numbers
▶ Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } = the set of all integers
▶ N = Z+ = {x ∈ Z : x > 0} = {1, 2, 3, . . . }

= the set of all positive integers
▶ Q = {x ∈ R : x = p

q for some p, q ∈ Z with q ̸= 0}
= the set of all rational numbers

▶ ∅ = { } = empty set

Examples:
▶ 2 ∈ Z (since 2 is an integer)
▶ π /∈ Q (since π is an irrational number)
▶ {0, 2, 4, 6, . . . } ⊂ Z
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Basic notations
▶ Union: A ∪ B = {x : x ∈ A or x ∈ B}
▶ Intersection: A ∩ B = {x : x ∈ A and x ∈ B}
▶ Union of multiple sets A1,A2, . . . ,An:

n⋃
i=1

Ai = A1 ∪ A2 ∪ · · · ∪ An

▶ Intersection of multiple sets A1,A2, . . . ,An:
n⋂

i=1

Ai = A1 ∩ A2 ∩ · · · ∩ An

▶ Set difference: A \ B = {x : x ∈ A and x /∈ B}
Examples:

▶ {1, 2, 3} ∪ {1, 3, 4, 7} = {1, 2, 3, 4, 7}
▶ {1, 2, 3} ∩ {1, 3, 4, 7} = {1, 3}
▶ {1, 2, 3} \ {1, 3, 4, 7} = {2}
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Basic notations
Intervals:

▶ (a, b) = {x ∈ R : a < x < b} (open interval)

▶ [a, b] = {x ∈ R : a ≤ x ≤ b} (closed interval)

▶ (a, b] = {x ∈ R : a < x ≤ b}
▶ [a, b) = {x ∈ R : a ≤ x < b}
▶ (a,∞) = {x ∈ R : x > a}
▶ [a,∞) = {x ∈ R : x ≥ a}
▶ (−∞, b) = {x ∈ R : x < b}
▶ (−∞, b] = {x ∈ R : x ≤ b}

Examples:

▶ (−1, 3) ∪ (0, 4] = (−1, 4]

▶ [0, 5] ∩ (1,∞) = (1, 5]

▶ (0, 5) \ (1, 2) = (0, 1] ∪ [2, 5)

▶
⋃
n∈Z

[2nπ, (2n+1)π) = · · · ∪ [−2π,−π)∪ [0, π)∪ [2π, 3π)∪ · · ·
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(Lecture 1–2) Sequences
Examples:
▶ an = 1

n = 1, 12 ,
1
3 , ...

▶ bn = 2n−1 = 1, 2, 4, 8, ...
▶ cn = (−1)n = −1, 1,−1, 1, ...
▶ Arithmetic sequences: an+1 − an = d for some constant d
▶ Geometric sequences: an+1 = ran for some constant r

Definitions:
▶ Monotonic increasing (or “increasing”): an ≤ an+1 for all n
▶ Monotonic decreasing (or “decreasing”): an ≥ an+1 for all n
▶ Monotonic: Either monotonic increasing or decreasing
▶ Strictly increasing: an < an+1 for all n
▶ Strictly decreasing: an > an+1 for all n
▶ Bounded below: there exists M ∈ R s.t. an > M for all n
▶ Bounded above: there exists M ∈ R s.t. an < M for all n
▶ Bounded: there exists M ∈ R s.t. |an| < M for all n

(i.e. both bounded below and bounded above)
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(Lecture 1–2) Limits of sequences
Definitions:
▶ (Convergent sequence) If {an} approaches a number L as n

approaches infinity, we say lim
n→∞

an = L.

▶ (Divergent sequence) If no such L exists, we say that {an} is
divergent.
Note: If lim

n→∞
an = ∞ or −∞, it is also divergent.

Uniqueness of limit: If an is convergent, then the limit is unique.

Basic arithmetic rules: If lim
n→∞

an = a and lim
n→∞

bn = b, then

▶ lim
n→∞

(an ± bn) = a± b

▶ lim
n→∞

(can) = ca (where c is a constant)

▶ lim
n→∞

anbn = ab

▶ lim
n→∞

an
bn

=
a

b
(if b ̸= 0)

Example: lim
n→∞

(
cos

1

n
− 2

(
3

4

)n

+
1

n2

)
= 1− 2 · 0 + 0 = 1
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(Lecture 1–2) Limits of sequences
Limits involving ±∞:

▶ ∞± L = ∞
▶ −∞± L = −∞
▶ ∞+∞ = ∞
▶ −∞−∞ = −∞

▶ L · ∞ =

{
∞ if L > 0
−∞ if L < 0

▶ L
±∞ = 0

▶ (Indeterminate forms) ∞−∞, ±∞
±∞ , 0

0 , 0 · ∞: try further
simplifying

Convergence ⇒ Boundedness:

If {an} is convergent, then {an} is bounded.

Remark: The converse is NOT true, i.e. bounded ̸⇒ convergent!
Example: {(−1)n} = −1, 1,−1, 1, . . . is bounded but divergent.
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(Lecture 2) Monotone convergence theorem

If {an} is monotonic and bounded, then {an} is convergent.

Other versions:

▶ If {an} is monotonic increasing and bounded above,
then {an} is convergent.

▶ If {an} is monotonic decreasing and bounded below,
then {an} is convergent.

Example: To prove that {an} with

{
an+1 =

√
an + 1

a1 = 1
is

convergent, we prove that (i) {an} is bounded by 2 (by MI) and
(ii) {an} is monotonic increasing.

Remark:
The converse is NOT true: convergent ̸⇒ monotonic & bounded!
Example:
{ (−1)n

n } = −1, 12 ,−
1
3 ,

1
4 , . . . converges to 0, but the sequence is

not monotonic.
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(Lecture 3) Squeeze theorem (sandwich theorem)

If bn ≤ an ≤ cn for all n and lim
n→∞

bn = lim
n→∞

cn = L,

then lim
n→∞

an = L.

Example: lim
n→∞

sin(cos n)

n
= ?

Solution: Since −1 ≤ sin(cos n) ≤ 1 for all n, we have

−1

n
≤ sin(cos n)

n
≤ 1

n
.

Now, since lim
n→∞

−1

n
= 0 = lim

n→∞

1

n
, by squeeze theorem, we have

lim
n→∞

sin(cos n)

n
= 0.
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Some possible ways to show that a sequence converges
(I) Find the limit directly using some basic limit results

▶ lim
n→∞

rn = 0 if |r | < 1, lim
n→∞

1

n
= 0, ...

Example: lim
n→∞

(
cos

1

n
+

(
3

4

)n

+
1

n2

)
= 1 + 0 + 0 = 1

(II) Use the monotone convergence theorem
▶ Show that the sequence is bounded and monotonic (may need

to use mathematical induction)
▶ Conclude that the sequence converges (i.e. can write

lim
n→∞

an = L, then solve some equations to find L if needed).

Example: Show that

{
an+1 =

√
an + 1

a1 = 1
converges.

(III) Use the squeeze theorem
▶ Find bn, cn s.t. bn ≤ an ≤ cn and lim

n→∞
bn = lim

n→∞
cn (= L).

▶ Conclude that lim
n→∞

an = L.

Example: Show that {an} =
{

(−1)n+sin n
n

}
converges.

If a way does not work, it does NOT imply that the sequence is
divergent! Try another way.
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Some possible ways to show that a sequence diverges

(I) Show that {an} is unbounded (i.e. lim
n→∞

|an| = ∞)

▶ Reason: If a sequence converges, it must be bounded

Example an = (−1)nn2 diverges as lim
n→∞

|an| = lim
n→∞

n2 = ∞

(II) Show that {an} contains two subsequences which
converge to two different values
▶ Reason: If a sequence converges, then the limit must be unique

Example: an = (−1)n diverges since {a1, a3, a5, . . . }
converges to −1 and {a2, a4, a6, . . . } converges to 1.

If a way does not work, it does NOT imply that the sequence is
convergent! Try another way.
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(Lecture 3) Infinite series

Series:
n∑

k=1

ak = a1 + a2 + · · ·+ an

Examples:

▶
n∑

k=1

k = 1 + 2 + · · ·+ n =
n(n + 1)

2

▶ (Arithmetic sum)
n∑

k=1

(a+ (k − 1)d) =
2a+ (n − 1)d

2

▶ (Geometric sum)
n∑

k=1

ark−1 =
a(rn − 1)

(r − 1)
(if r ̸= 1)

Convergence of infinite series: We say that an infinite series
∞∑
k=1

ak = a1 + a2 + a3 + · · · is convergent if the sequence of partial

sums {sn} (where sn = a1 + a2 + · · ·+ an =
n∑

k=1

ak) converges.

Example: (Euler’s number) e = 1 + 1
1! +

1
2! +

1
3! + · · · ≈ 2.718
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(Lecture 3) Functions

Definitions:
▶ f : A → B

▶ A: Domain
▶ B: Codomain
▶ f : Some rule of assigning elements in A to elements in B

▶ Range of f = {f (x) : x ∈ A} (also known as image of f )

▶ Natural domain = largest domain on which f can be defined

Examples:

▶ For f : R → R with f (x) = x2, the range of f is [0,∞)

▶ The natural domain of f (x) = 1√
x+1

is (−1,∞)

▶ The natural domain of tan(x) is

R \ {±π

2
,±3π

2
,±5π

2
, . . . } =

⋃
n∈Z

(
(n − 1

2
)π, (n +

1

2
)π

)
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(Lecture 3–4) Injective, subjective, bijective functions, and
inverse functions

▶ f : A → B is said to be injective (or “1-1”, “one-to-one”) if
for any x1, x2 ∈ A with x1 ̸= x2, we have f (x1) ̸= f (x2)
(Or equivalently, if f (x1) = f (x2) then we have x1 = x2)

▶ f : A → B is said to be surjective (or “onto”) if
for any y ∈ B, there exists x ∈ A such that y = f (x)

▶ f is bijective if it is both injective and surjective
▶ If f : A → B is a bijective function, the inverse function

f −1 : B → A satisfies f −1(f (x)) = x for all x ∈ A and
f (f −1(y)) = y for all y ∈ B

Examples:

▶ f : R → R with f (x) = x3 is bijective

▶ f : R → R with f (x) = x2 is not injective as f (−1) = f (1) = 1

▶ f : [0,∞) → R with f (x) = x2 is injective but not surjective

▶ f : [0,∞) → [0,∞) with f (x) = x2 is bijective, and the inverse
function is f −1 : [0,∞) → [0,∞) with f −1(y) =

√
y
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(Lecture 3–4) Even, odd, periodic functions

▶ f is an even function if f (−x) = f (x) for all x

▶ f is an odd function if f (−x) = −f (x) for all x

▶ f is a periodic function if there exists a constant k such that
f (x) = f (x + k) for all x

Examples:

▶ f (x) = x2 is even because f (−x) = (−x)2 = x2 = f (x) for all x

▶ f (x) = x3 + sin x is odd because
f (−x) = (−x)3 + sin(−x) = −x3 − sin x = −(f (x)) for all x

▶ f (x) = x + 1 is neither odd nor even because f (−1) = 0 ̸= ±f (1)

▶ f (x) = 3 sin x + cos x
2 is periodic because

f (x + 4π) = 3 sin(x + 4π) + cos x+4π
2 =

3 sin(x + 4π) + cos
(
x
2 + 2π

)
= 3 sin x + cos x

2 = f (x) for all x
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(Lecture 4–5) Some common functions
Exponential function ex : R → R+

▶ ex = 1 + x + x2

2! +
x3

3! + · · ·
▶ bijective function

Logarithmic function ln : R+ → R
▶ Inverse function of ex (y = ex ⇔ x = ln y)

▶ bijective function

Sine function sin : R → [−1, 1]

▶ sin x = x − x3

3! +
x5

5! −
x7

7! + · · ·
▶ odd function (because sin(−x) = − sin x)

▶ periodic function (because sin(x + 2π) = sin x)

Cosine function cos : R → [−1, 1]

▶ cos x = 1− x2

2! +
x4

4! −
x6

6! +
x8

8! − · · ·
▶ even function (because cos(−x) = cos x)

▶ periodic function (because cos(x + 2π) = cos x)
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(Lecture 4–5) Limit of functions
Definitions:
▶ Left-hand limit: We say that lim

x→a−
f (x) = L if f (x) is close

enough to L whenever x is close enough to a and x < a.
▶ Right-hand limit: We say that lim

x→a+
f (x) = L if f (x) is close

enough to L whenever x is close enough to a and x > a.
▶ Two-sided limit: We say that lim

x→a
f (x) = L if both the

left-hand limit and the right-hand limit exist and are equal, i.e.

lim
x→a

f (x) = L ⇐⇒ lim
x→a−

f (x) = lim
x→a+

f (x) = L

Remark: Whether f is defined at a or the value of f at a is NOT
important for finding lim

x→a−
f (x), lim

x→a+
f (x), lim

x→a
f (x)

Example: If f (x) =

 −x if x < 0
1 if x = 0
x2 if x > 0

, we have

lim
x→0−

f (x) = lim
x→0−

(−x) = 0 and lim
x→0+

f (x) = lim
x→0+

x2 = 0,

so the two-sided limit exists and we have lim
x→0

f (x) = 0 (̸= 1)
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(Lecture 4–5) Properties of limits of functions
If lim

x→a
f (x) and lim

x→a
g(x) exist, then

▶ lim
x→a

f (x)± g(x) = lim
x→a

f (x)± lim
x→a

g(x)

▶ lim
x→a

cf (x) = c lim
x→a

f (x) (where c is a constant)

▶ lim
x→a

f (x)g(x) =
(
lim
x→a

f (x)
)
·
(
lim
x→a

g(x)
)

▶ lim
x→a

f (x)

g(x)
=

lim
x→a

f (x)

lim
x→a

g(x)
(if lim

x→a
g(x) ̸= 0)

Examples:

▶ lim
x→0

(
1

x
− 1

x2 + x

)
= lim

x→0

(x + 1)− 1

x(x + 1)
= lim

x→0

1

x + 1
= 1

▶ lim
x→2

2− x

3−
√
x2 + 5

= lim
x→2

(
2− x

3−
√
x2 + 5

· 3 +
√
x2 + 5

3 +
√
x2 + 5

)
= lim

x→2

(2− x)(3 +
√
x2 + 5)

4− x2
= lim

x→2

3 +
√
x2 + 5

2 + x
=

6

4
=

3

2
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(Lecture 4–5) Properties of limits of functions

Some other useful limit results:

▶ lim
x→0

ex − 1

x
= 1

▶ lim
x→0

ln(1 + x)

x
= 1

▶ lim
x→0

sin x

x
= 1

Examples:

▶ lim
x→0

e3x − 1

x
= lim

x→0

e3x − 1

3x
· 3 = 1 · 3 = 3

▶ lim
x→0

sin 2x

sin 3x
= lim

x→0

sin 2x
2x (2x)

sin 3x
3x (3x)

=

(
lim
x→0

sin 2x

2x

)
· 2(

lim
x→0

sin 3x

3x

)
· 3

=
1 · 2
1 · 3

=
2

3
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(Lecture 5) Sequential criterion

We have lim
x→a

f (x) = L (limit of function)

if and only if
For any sequence {xn} with xn ̸= a for any n and lim

n→∞
xn = a,

we have lim
n→∞

f (xn) = L (limit of sequence).

Consequence: If we can find two sequences {xn}, {yn} such that:
▶ xn ̸= a, yn ̸= a for all n and lim

n→∞
xn = lim

n→∞
yn = a

▶ but lim
n→∞

f (xn) ̸= lim
n→∞

f (yn),

then lim
x→a

f (x) does not exist.

Example: Prove that lim
x→0

sin
1

x
does not exist.

Solution: Let {xn} =
{

1
nπ

}
= 1

π ,
1
2π ,

1
3π , · · · and

{yn} =
{

1
2nπ+π

2

}
= 1

2π+π
2
, 1
4π+π

2
, 1
6π+π

2
, · · · , then we have

lim
n→∞

xn = lim
n→∞

yn = 0 but lim
n→∞

f (xn) = 0 ̸= lim
n→∞

f (yn) = 1.
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(Lecture 5) Squeeze theorem for functions

Let f , g , h be functions. If f (x) ≤ g(x) ≤ h(x) for any x ̸= a
on a neighborhood of a and lim

x→a
f (x) = lim

x→a
h(x) = L,

then the limit of g(x) at x = a exists
and we have lim

x→a
g(x) = L.

Example: lim
x→0

x sin
1

ex2 − 1
= ?

Solution:

Since −1 ≤ sin 1
ex2−1

≤ 1 for all x , we have −x ≤ x sin
1

ex2 − 1
≤ x .

As lim
x→0

(−x) = 0 = lim
x→0

x , by squeeze theorem, lim
x→0

x sin
1

ex2 − 1
= 0.
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(Lecture 6–7) Limits at infinity
Definitions:

▶ We say that lim
x→∞

f (x) = L if f (x) is close enough to L

whenever x is large enough.

▶ (Similar for lim
x→−∞

f (x))

Examples:

▶ lim
x→∞

1

x − 1
= 0

▶ e = lim
n→∞

(
1 +

1

n

)n

= lim
x→∞

(
1 +

1

x

)x

▶ lim
x→∞

(
1 +

1

2x

)3x

= lim
x→∞

(
1 +

1

2x

)3x · 2
2

=

lim
x→∞

(
1 +

1

2x

)2x · 3
2

=

(
lim
x→∞

(
1 +

1

2x

)2x
) 3

2

= e
3
2

▶ lim
x→∞

xk

ex
= 0 and lim

x→∞

(ln x)k

x
= 0 for any positive integer k
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(Lecture 7) Asymptotes

▶ Horizontal asymptotes:
If lim

x→∞
f (x) = b or lim

x→−∞
f (x) = b,

then y = b is a horizontal asymptote of f (x).

▶ Vertical asymptotes:
If lim

x→a−
f (x) = ±∞ or lim

x→a+
f (x) = ±∞,

then x = a is a vertical asymptote of f (x).

Examples:

▶ y = 0 is a horizontal asymptote of f (x) = ex since
lim

x→−∞
ex = 0

▶ x = 2 is a vertical asymptote of f (x) = 1 +
1

x − 2
since

lim
x→2+

f (x) = ∞
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(Lecture 7) Continuity of functions

f is said to be continuous at x = a if

lim
x→a

f (x) = f (a).

In other words, we have:

(i) The limit lim
x→a

f (x) exists (i.e. lim
x→a−

f (x) = lim
x→a+

f (x)), and

(ii) It is equal to the value of f at x = a.

f is said to be continuous on an interval (a, b) if f is continuous at
every point on (a, b).

Examples:

▶ xn, cos x , sin x , ex are continuous on R
▶ ln(x) is continuous on R+

▶ f (x) =

{
−x + 1 if x < 0
cos x if x ≥ 0

is continuous at x = 0
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(Lecture 7) Properties of continuous functions

Properties:
▶ If f (x) and g(x) are continuous at x = a, then the following

functions are also continuous at x = a:
▶ f (x)± g(x)
▶ cf (x) (where c is a constant)
▶ f (x)g(x)
▶ f (x)

g(x) (if g(a) ̸= 0)

▶ If f (x) is continuous at x = a and g(u) is continuous at
u = f (a), then the composition (g ◦ f )(x) (i.e. g(f (x))) is
also continuous at x = a.

Examples:

▶ cos(x) + 2x is continuous on R because both cos x and x are
continuous on R.

▶ sin(x3 + 1) is continuous at x = 0 because x3 + 1 is
continuous at x = 0 and sin(u) is continuous at u = 1.
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(Lecture 7) Intermediate value theorem and extreme value
theorem

Intermediate value theorem (IVT):

Let f be a continuous function on [a, b].
For any real number L between f (a) and f (b)
(i.e. f (a) < L < f (b) or f (b) < L < f (a)),
there exists c ∈ (a, b) such that f (c) = L.

Example: Show that f (x) = x7 + x3 + 1 has a real root.
Solution: Note that f (−1) = −1 < 0 and f (0) = 1 > 0. As f is
continuous, by IVT, there exists c ∈ (−1, 0) s.t. f (c) = 0.

Extreme value theorem (EVT):

Let f be a continuous function on [a, b]. Then there exists
α, β ∈ [a, b] such that f (α) ≤ f (x) ≤ f (β) for any x ∈ [a, b]
(i.e. f has a global maximum and a global minimum in [a, b]).
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(Lecture 8) Derivatives
f is said to be differentiable at x = a if the following limit (called
the derivative of f at x = a) exists:

f ′(a) = lim
x→a

f (x)− f (a)

x − a

Another form:

f ′(a) = lim
h→0

f (a+ h)− f (a)

h
Remark: For piecewise functions, we need to check both

lim
x→a−

f (x)− f (a)

x − a
and lim

x→a+

f (x)− f (a)

x − a

Example of finding derivative by definition (i.e. first principle):
▶ If f (x) = x2, then

f ′(x) = lim
h→0

f (x + h)− f (x)

h

= lim
h→0

(x + h)2 − x2

h
= lim

h→0

2xh + h2

h
= 2x .
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(Lecture 8–9) Derivatives of common functions

▶ (xn)′ = nxn−1

▶ (ex)′ = ex

▶ (ln x)′ =
1

x
▶ (sin x)′ = cos x

▶ (cos x)′ = − sin x

▶ (tan x)′ = sec2 x =
1

cos2 x
▶ (c)′ = 0 (where c is a constant)

▶ (sinh x)′ = cosh x (where sinh x =
ex − e−x

2
, cosh x =

ex + e−x

2
)

▶ (cosh x)′ = sinh x

▶ (tanh x)′ = sech2x =
1

cosh2 x
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(Lecture 8–9) Differentiation rules
If f and g are differentiable at a point, then the following functions
are also differentiable at that point:

▶ (f (x)± g(x))′ = f ′(x)± g ′(x)

▶ (cf (x))′ = cf ′(x) (where c is a constant)

▶ Product rule:

(fg)′(x) = f ′(x)g(x) + f (x)g ′(x)

▶ Quotient rule:(
f

g

)′
(x) =

f ′(x)g(x)− f (x)g ′(x)

(g(x))2
(if g(x) ̸= 0)

Examples:

▶ (x3 sin x)′ = (x3)′ sin x + x3(sin x)′ = 3x2 sin x + x3 cos x

▶
(

sin x
x2+1

)′
= (sin x)′(x2+1)+(sin x)(x2+1)′

(x2+1)2
= (x2+1) cos x+2x sin x

(x2+1)2
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(Lecture 8–9) Differentiation rules
Chain rule:
If f (x) is differentiable at x = a and g(u) is differentiable at
u = f (a), then (g ◦ f ) is differentiable at x = a and we have

(g ◦ f )′(a) = g ′(f (a))f ′(a)

In other words, we have

dy

dx
=

dy

du
· du
dx

Examples:

▶ (sin x2)′ = d(sin u)
du

du
dx (let u = x2) = (cos u)(2x) = 2x cos x2

▶ (esin x)′ = esin x cos x

A more complicated version:
dy

dx
=

dy

du
· du
dv

· dv
dx

Example:

▶ (ln(cos(x3)))′ =
1

cos x3
· (− sin(x3)) · (3x2) = −3x2 tan x3
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(Lecture 8–9) Continuity and differentiability

If f is differentiable at x = a, then f is continuous at x = a

The converse is NOT true: if f is continuous at x = a, it may or
may not be differentiable at x = a

Example: f (x) = |x | =
{

−x if x < 0
x if x ≥ 0

▶ f (x) is continuous on R (i.e. at every point x ∈ R):
▶ For any a < 0, lim

x→a
f (x) = lim

x→a
(−x) = −a = f (a)

▶ For any a > 0, lim
x→a

f (x) = lim
x→a

x = a = f (a)

▶ For a = 0, we have lim
x→0−

f (x) = lim
x→0−

(−x) = 0 = f (0) and

lim
x→0+

f (x) = lim
x→0+

x = 0 = f (0), and hence lim
x→0

f (x) = f (0)

▶ f (x) is not differentiable at x = 0:

Note that f ′(0) = lim
h→0

f (h)− f (0)

h
= lim

h→0

|h| − 0

h
= lim

h→0

|h|
h

but

lim
h→0+

|h|
h

= lim
h→0+

h

h
= 1 and lim

h→0−

|h|
h

= lim
h→0+

−h

h
= −1
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Another example of continuous but not differentiable
functions

f (x) = |x + 1| − |x |+ |x − 1|

=


−(x + 1)− (−x)− (x − 1) = −x if x < −1
(x + 1)− (−x)− (x − 1) = x + 2 if − 1 ≤ x < 0
(x + 1)− (x)− (x − 1) = −x + 2 if 0 ≤ x < 1
(x + 1)− (x) + (x − 1) = x if x ≥ 1

▶ f (x) is continuous on R
▶ f (x) is not differentiable at x = −1, 0, 1
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(Optional) Continuous but nowhere differentiable function

Weierstrass function (More details in MATH2050/2060)
https://en.wikipedia.org/wiki/Weierstrass_function

▶ f (x) is continuous on R
▶ f (x) is not differentiable at any x ∈ R
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(Lecture 10–11) Implicit differentiation

Idea: Find y ′ without having to explicitly write y = f (x).

Example: If x sin y + y2 = x + 3y , find the slope of tangent at
(0, 0).

(x sin y + y2)′ = (x + 3y)′

(sin y + x(cos y)y ′) + 2yy ′ = 1 + 3y ′

(x cos y + 2y − 3)y ′ = 1− sin y

y ′ =
1− sin y

x cos y + 2y − 3

The slope of tangent at (0, 0) is
1− sin 0

0 · cos 0 + 2 · 0− 3
= −1

3
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(Lecture 10–11) Logarithmic differentiation

Idea: Find the derivative of some complicated functions
using logarithms.

Example: If y = xx , find y ′.

ln y = ln(xx)

(ln y)′ = (x ln x)′

1

y
y ′ = 1 · ln x + x · 1

x

y ′ = y(ln x + 1) = xx(ln x + 1)
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(Lecture 10–11) Derivatives of some other special functions
▶ More general exponential function:

Let a > 0 and define ax = ex ln a. Then we have:
▶ ax+y = ax · ay for any x , y ∈ R
▶ lim

x→0

ax − 1

x
= ln a

▶ (ax)′ = ax ln a

Example:
(
2x

2+cos x
)′

=
(
2x

2+cos x ln 2
)
(2x − sin x)

▶ Inverse functions:
If f (y) is a bijective and differentiable function with f ′(y) ̸= 0
for any y , then the inverse function y = f −1(x) is
differentiable:

(f −1)′(x) =
1

f ′(f −1(x))

Examples:

(sin−1 x)′ =
1√

1− x2
, (cos−1 x)′ = − 1√

1− x2
, (tan−1 x)′ =

1

1 + x2
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(Lecture 11–12) Higher order derivatives
▶ Second derivative:

y ′′ = f ′′(x) =
d2y

dx2
=

d

dx

(
dy

dx

)
▶ n-th derivative:

y (n) = f (n)(x) =
dny

dxn
=

d

dx

(
d

dx

(
d

dx

(
· · · dy

dx

)))
▶ 0-th derivative:

y (0) = f (0)(x) = f (x)

Examples:

▶ (sin x2)′′ = ((sin x2)′)′ = ((cos x2)(2x))′

= (− sin x2)(2x)(2x) + 2 cos x2 = −4x2 sin x2 + 2 cos x2

▶ Find y ′′ if xy + sin y = 1:

(xy + sin y)′ = 1′ ⇒ (y + xy ′ + y ′ cos y) = 0 ⇒ y ′ =
−y

x + cos y

⇒ y ′′ = −y ′(x + cos y)− y(1− y ′ sin y)

(x + cos y)2
=

2y(x + cos y) + y2 sin y

(x + cos y)3
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(Lecture 11–12) Higher order differentiation rules

If f and g are n-times differentiable (i.e. f (n) and g (n) exist), then:

▶ (f ± g)(n) = f (n) ± g (n)

▶ (cf )(n) = cf (n) (where c is a constant)

▶ Leibniz’s rule (product rule for higher order derivatives):

(fg)(n) =
n∑

k=0

(
n
k

)
f (n−k)g (k)

where

(
n
k

)
=

n!

(n − k)!k!
is the binomial coefficient.

Example: (x3 sin x)(4)

= 1 · (x3)′′′′ sin x + 4 · (x3)′′′(sin x)′ + 6 · (x3)′′(sin x)′′ + 4(x3)′(sin x)′′′ +
1 · x3(sin x)′′′′
= 0 + 24 cos x − 36x sin x − 12x2 cos x + x3 sin x
= (x3 − 36x) sin x + (24− 12x2) cos x
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(Lecture 12–13) n-times differentiability and continuity

If f is n-times differentiable at x = a

(f (n)(a) exists, i.e. f (n−1) is differentiable at x = a),

then f (n−1) is continuous at x = a.

f is n-times differentiable at x = a (i.e. f (n)(a) exists)
⇓

f (n−1)(a) exists and f (n−1) is continuous at x = a
⇓
...
⇓

f ′(a) exists and f ′ is continuous at x = a
⇓

f is continuous at x = a

However, the converse is NOT true!
Example: Let f (x) = |x |x , then:
▶ f is differentiable at x = 0

▶ f ′ is continuous at x = 0

▶ but f ′ is not differentiable at x = 0 (i.e. f ′′(0) does not exist)
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