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v

Date: October 19 (this Thursday)
Time: 5:35PM - 6:20PM

Venue for MATH1010F: TYW LT

(T. Y. Wong Hall, 5/F, Ho Sin Hang Engineering Building)
Closed book, closed notes
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Basic notations
Set: a collection of elements
» {a, b,c} = a set containing three elements a, b, ¢
> x € A means “x is an element of the set A”
» A C B (also written as A C B) means “A is a subset of B"
(i.e. for any element x € A, we have x € B)
{x:--}={x|---} ={x such that --- }
R = the set of all real numbers
Z={..,-3,-2,—-1,0,1,2,3,...} = the set of all integers
N=Zt={x€Z:x>0}={1,2,3,...}
= the set of all positive integers
> Q:{XER:ngforsomep,qEZWith q # 0}
= the set of all rational numbers
> () ={ } = empty set
Examples:
» 2 € Z (since 2 is an integer)
» 7 ¢ Q (since 7 is an irrational number)
» {0,2,4,6,...} CZ

vvyyvyy
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Basic notations

» Union: AUB={x:x€ Aorx € B}

» Intersection: ANB={x:x € Aand x € B}

» Union of multiple sets A1, As, ..., Ay
L_J A=A UAU---UA,
i=1

P Intersection of multiple sets Ay, Ap, ..., An:
[-] AA=AINAN---NA,
i=1

» Set difference: A\ B={x:x€ Aand x ¢ B}

Examples:

> {1,2,3}U{1,3,4,7} ={1,2,3,4,7}

> {1,2,3}n{1,3,4,7} = {1,3}

> {1,2,3}\{1,3,4,7} = {2}
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Basic notations

Intervals:
> (a,b) ={x € R:a< x < b} (open interval)
» [a,b] = {x € R:a< x < b} (closed interval)
» (a,b] ={xeR:a< x<b}
» [a,b) ={xeR:a<x<b}
» (a,00) ={x€eR:x> a}
> [a,00) ={x e R: x> a}
» (—oo,b) ={xeR:x < b}
» (—oo,bl ={xeR:x < b}

Examples:
> (—1,3)U(0,4] = (—1,4]
» [0,5] N (1,00) = (1,5]
> (0,5)\(1,2) =(0,1]U[2,5)
> U [2n7,(2n+1)7) = ---U[-2m, —7) U[0, m) U [27,3m) U - -

nez
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(Lecture 1-2) Sequences

Examples:
> =t =Lhh
» b, =2"" 2,4,8,

> c,=(-1)"=-1,1,-1,1,...

> Arithmetic sequences: a,y1 — a, = d for some constant d

» Geometric sequences: a,y1 = ra, for some constant r
Definitions:

» Monotonic increasing (or “increasing”): a, < ap41 for all n
Monotonic decreasing (or “decreasing”): a, > ap41 for all n
Monotonic: Either monotonic increasing or decreasing
Strictly increasing: a, < apy1 for all n
Strictly decreasing: a, > ap41 for all n
Bounded below: there exists M € R s.t. a, > M for all n
Bounded above: there exists M € R s.t. a, < M for all n
Bounded: there exists M € R s.t. |a,| < M for all n
(i.e. both bounded below and bounded above)

VVVYyVYVYYVYY
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(Lecture 1-2) Limits of sequences
Definitions:
» (Convergent sequence) If {a,} approaches a number L as n
approaches infinity, we say lim a, = L.
n—o0
» (Divergent sequence) If no such L exists, we say that {a,} is
divergent.

Note: If lim a, = co or —0, it is also divergent.
n—oo

Uniqueness of limit: If a, is convergent, then the limit is unique.

Basic arithmetic rules: If |im a, = aand lim b, = b, then
n—oo n—o0

» lim(a, £ by)=axb
n—oo

» lim (cap) = ca (where c is a constant)
n.—>oo

» |im a,b, = ab

n—oo

a, a .
> |im 2 =2
M, ~p U070
) 1 3\" 1
Example: lim (cos——-2(-) + < |=1-2-04+0=1
n—oco n 4 n2
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(Lecture 1-2) Limits of sequences
Limits involving +o0:

>

>
| 4
>
»

vV Yy

oo+ L =00
-0l =—-00

o0 4+ 00 = 00

- — X = —0

L. _ 00 ifL>0
7 —x ifL<0
L

T =0

(Indeterminate forms) oco — oo, % %, 0 - oo: try further

simplifying

Convergence = Boundedness:

‘If {an} is convergent, then {a,} is bounded. ‘

Remark: The converse is NOT true, i.e. bounded #- convergent!
Example: {(—-1)"} = —1,1,—1,1,... is bounded but divergent.
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(Lecture 2) Monotone convergence theorem

‘If {ap} is monotonic and bounded, then {a,} is convergent.

Other versions:

» If {a,} is monotonic increasing and bounded above,
then {a,} is convergent.

» If {a,} is monotonic decreasing and bounded below,
then {a,} is convergent.

Example: To prove that {a,} with { z”H 1: an+1 is
1 pum—
convergent, we prove that (i) {a,} is bounded by 2 (by MI) and

(ii) {an} is monotonic increasing.

Remark:

The converse is NOT true: convergent % monotonic & bounded!
Example:

{%} =—1, %, —%, %, ... converges to 0, but the sequence is

not monotonic.
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(Lecture 3) Squeeze theorem (sandwich theorem)

If b, <a,<c,forall nand lim b, = lim ¢, =L,
n—00 n—oo

then lim a, = L.
n—o0

. sin(cosn
Example: lim g =7
n—o0 n

Solution: Since —1 < sin(cos n) <1 for all n, we have

-1 < sin(cos n) < 1

n n n

. .o —1 .1
Now, since lim — =0 = lim —, by squeeze theorem, we have
n—oo N n—oo N
. sin(cosn
jim SN0 _ g

n—00 n
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Some possible ways to show that a sequence converges
(I) Find the limit directly using some basic limit results

> lim r"=0if |[r] <1, lim 1:O,

n—00 n—oo n
. 1 3\" 1
Example: lim (cos—+ () +—5|=1+0+0=1
n—00 n 4 n

(II) Use the monotone convergence theorem
» Show that the sequence is bounded and monotonic (may need
to use mathematical induction)
» Conclude that the sequence converges (i.e. can write

lim a, = L, then solve some equations to find L if needed).
n—oo

=/ 1
Example: Show that { an 1 an + converges.
1 pr—
(I11) Use the squeeze theorem
» Find b,, ¢, s.t. b, <a, <c,and Ii)m b, = Ii)m ¢ (=1).
» Conclude that lim a, = L.

n— o0

Example: Show that {a,} = {(_l)nﬂ} converges.

n
If a way does not work, it does NOT imply that the sequence is

divergent! Try another way. 12741



Some possible ways to show that a sequence diverges

(I) Show that {a,} is unbounded (i.e. Ii_}m lan| = o0)

P> Reason: If a sequence converges, it must be bounded

Example a, = (—1)"n? diverges as lim |a,| = lim n® = oo
n—oo n—o0

(II) Show that {a,} contains two subsequences which
converge to two different values

» Reason: If a sequence converges, then the limit must be unique
Example: a, = (—1)" diverges since {a1, a3, as, ... }
converges to —1 and {ap, as, a, . . . } converges to 1.

If a way does not work, it does NOT imply that the sequence is
convergent! Try another way.
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(Lecture 3) Infinite series

n
Series: Zak:al+32+"-+an

k=1
Examples:
. n(n+1)
> k=1+2+--- =
> +24 0 5
k=1
2 2 —1)d
> (Arithmetic sum) Z(a +(k—1)d) = M
2
k=1
- a(r" —1)
> (Geometric sum) Z:ark_1 = (ifr#£1)

- (r—1)
k=1
Convergence of infinite series: We say that an infinite series

o
Z ax = a1+ a» + a3 + - - - is convergent if the sequence of partial
k=1

n
sums {sp} (where s, =a; +a,+---+a, = E ay) converges.
k=1

Example: (Euler's number) e =1+ J; + 2; + 3; + - -+ ~ 2.718
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(Lecture 3) Functions

Definitions:
» f:A— B

» A: Domain
» B: Codomain
» f: Some rule of assigning elements in A to elements in B

» Range of f = {f(x) : x € A} (also known as image of f)

» Natural domain = largest domain on which f can be defined

Examples:
» For f : R — R with f(x) = x?, the range of f is [0, 00)
» The natural domain of f(x) = -2 is (—1,00)

Vx+1
» The natural domain of tan(x) is

R\ {ig,i?’g,i%,...} oy ((n— %)W,(n—k ;)77>
neZ
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(Lecture 3—4) Injective, subjective, bijective functions, and
inverse functions
» f:A— Bis said to be injective (or “1-1", “one-to-one”) if
for any x1,x2 € A with x; # x2, we have f(x1) # f(x2)
(Or equivalently, if f(x1) = f(x2) then we have x; = x»)
» f:A— Bissaid to be surjective (or “onto”) if
for any y € B, there exists x € A such that y = f(x)
P> f is bijective if it is both injective and surjective
» If f: A— B is a bijective function, the inverse function
f~1: B — A satisfies f "1(f(x)) = x for all x € A and
f(fl(y))=yforallycB
Examples:
> f:R — R with f(x) = x3 is bijective
> f:R — R with f(x) = x? is not injective as f(—1) = f(1) =1
> f:[0,00) — R with f(x) = x? is injective but not surjective
> f:[0,00) — [0,00) with f(x) = x? is bijective, and the inverse
function is f =1 : [0,00) — [0, 00) with f~1(y) = \/y
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(Lecture 3—4) Even, odd, periodic functions

» f is an even function if f(—x) = f(x) for all x
» fis an odd function if f(—x) = —f(x) for all x

» f is a periodic function if there exists a constant k such that
f(x) = f(x + k) for all x

Examples:
> f(x) = x? is even because f(—x) = (—x)? = x? = f(x) for all x
> ) = x> +sinx is odd because

f(x
f(—x) = (=x)3 +sin(—x) = —x3 — sinx = —(f(x)) for all x
f(x) = x + 1 is neither odd nor even because f(—1) =0 # £f(1)

) =
f(x) = 3sinx + cos 5 is periodic because
f(x + 4m) = 3sin(x + 47) + cos XHT =
3sin(x + 47) + cos (% + 2m) = 3sinx + cos § = f(x) for all x
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(Lecture 4-5) Some common functions
Exponential function X : R — R"
> =l xS
» bijective function
Logarithmic function In: R™ — R
» Inverse function of ¥ (y = ¥ < x =Iny)
» bijective function
Sine function sin : R — [—1, 1]
> sinx:x—é—f%—g—?—%jt---
» odd function (because sin(—x) = — sin x)
» periodic function (because sin(x + 27) = sin x)
Cosine function cos: R — [—1,1]
> cosx:l—g—f—i-%—%?-l-g—
» even function (because cos(—x) = cos x)

» periodic function (because cos(x + 27) = cos x)
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(Lecture 4-5) Limit of functions
Definitions:
» Left-hand limit: We say that lim f(x) = L if f(x) is close
X—ra

enough to L whenever x is close enough to a and x < a.
> Right-hand limit: We say that lim_ f(x) = Lif f(x) is close
X—a
enough to L whenever x is close enough to a and x > a.
» Two-sided limit: We say that lim f(x) = L if both the
X—a

left-hand limit and the right-hand limit exist and are equal, i.e.

lim f(x) = L <= lim f(x)= lim f(x)=L
xX—a x—a— x—at

Remark: Whether f is defined at a or the value of f at ais NOT
important for finding lim f(x), lim f(x), lim f(x)
x—a~ x—at Xx—a
—x ifx<0
Example: If f(x)=¢ 1 if x=0 , we have
x2 if x>0
lim f(x) = lim (—x) =0and lim f(x) = lim x> =0,
x—0— x—0— x—0*t x—0t

so the two-sided limit exists and we have lim f(x) =0 (# 1)
x—0 19/41



(Lecture 4-5) Properties of limits of functions
If )I(T;'a f(x) and )!lnag(x) exist, then
> lim £(x) £ g(x) = lim £(x) & lim g(x)
» lim cf(x) = c lim f(x) (where c is a constant)
X—a X—a

> lim F(x)g(x) = (Iim f(x)) - (nm g(x))

x—a Xx—a x—a
lim f(x)
. f X) x—a -
> | = fl
Mgl ~ lim gl (THTEX) 7 0)

Examples:

> |im 1_; — lim w lim 1 -1
x—0 \ X x2 —+ x x—0 X(X + 1) x=0x +1

> fim 27X —Im 2 —x 3+vVx2+5
x—=23 — x2 x+2\3—v/x2+5 3+Vx2+5
—Iim( —x)(3+x/x2+5)_|i 3+vVx*+5 6 3
_x~>2 4 — x2 x—2 2+ x _4_2

20/41



(Lecture 4-5) Properties of limits of functions

Some other useful limit results:

Coe* =1

> |im =1
x—0 X

oo In(1+x
x—0 X
sin x

=1

> |im
x—0 X

=1

Examples:
3x 3x
.oe*—1 .oe*—1
> |im = |im
x—0 X x—0 X

lim sin 2x

. I .

> lim sin 2x — lim %(2)() _ o0 2 _ 1
x—0sin3x  x—0 5‘3%(3)0 (I' sin 3x> 3 1

3=1.3=3

m
x—=0 3x
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(Lecture 5) Sequential criterion

We have Ii_}m f(x) =L (limit of function)
if and only if

For any sequence {x,} with x, # a for any n and lim x, = a,
n—o0

we have ILm f(xn) = L (limit of sequence).
n—oo

Consequence: If we can find two sequences {x,}, {yn} such that:

> x,,;éa,y,,;éaforallnandnli_>n;ox,,:n|i_>ngoy,,:a

> . .
but lim (x,) # lim (y),

then lim f(x) does not exist.
X—a

o1 .
Example: Prove that I|m0 sin — does not exist.
x,

Solution: Let {x,} = {X} =21 2L L ... and

{yn} = 2,,7r1+ } = ZWiw ; 47rfr7r ; 67rfrﬂ ,---, then we have
lim x, = I|m N Yn = 0 but I|m f(xn) =0# I|m flyn) = 1.
n—o0
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(Lecture 5) Squeeze theorem for functions

on a neighborhood of a and Iim f(x) = IiLn h(x) =
then the limit of g(x) at x = a exists
and we have IiLn g(x) = L.

Let f, g, h be functions. If f(x) < g(x) < h(x) for any x # a

Example: lim xsin —; =7
x—0 ex” —1
Solution:
Since —1 < S|n < 1 for all x, we have —x < xsin 1
e —

. 1
As lim(—x)=0= I|m x, by squeeze theorem, lim xsin

x—0 —0 x—0 e —1

<x
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(Lecture 6-7) Limits at infinity
Definitions:
» We say that x|'—>r20 f(x) = L if f(x) is close enough to L
whenever x is large enough.
» (Similar for xl@oo f(x))

Examples:

. 1
> |im =0
X—00 X —

1\" 1\~
> e= lim <1+> = lim <1+>
n—o00 n X—00 X
3x 3X-%
> |im (1 + 1) = lim <1 + 1) =
X—$00 2x X—00 2x

1 2x-3 1\ 3 s
lim <1+> :<Iim <1+> ) —e>
X—00 2X X—00 2X

k k

. X . In x
» |im — =0 and Ilim (Inx)
x—o00 eX X—00 X

= 0 for any positive integer k
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(Lecture 7) Asymptotes

» Horizontal asymptotes:
If lim f(x)=5b or lim f(x)=b,
X—>00 X—>—00

then y = b is a horizontal asymptote of f(x).

» Vertical asymptotes:

If lim f(x) =400 or lim f(x)= to0,
x—a~ x—at
then x = a is a vertical asymptote of f(x).

Examples:
» y =0 is a horizontal asymptote of f(x) = e* since
lim =0
X—r—00
» x =2 is a vertical asymptote of f(x) =1+ since
X J—
lim f(x)= o0
x—2+
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(Lecture 7) Continuity of functions

f is said to be continuous at x = a if

lim f(x) = f(a).

X—a

In other words, we have:
(i) The limit IiLn f(x) exists (i.e. lim f(x)= lim f(x)), and

x—a~ x—at

(ii) It is equal to the value of f at x = a.

f is said to be continuous on an interval (a, b) if f is continuous at
every point on (a, b).
Examples:

» x" cosx, sinx, € are continuous on R

» In(x) is continuous on R

{ —x+1 ifx<0

| 2 =
f(x) COS X ifx>0

is continuous at x = 0
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(Lecture 7) Properties of continuous functions

Properties:

» If f(x) and g(x) are continuous at x = a, then the following
functions are also continuous at x = a:

> f(x) +g(x)
» cf(x) (where c is a constant)

> f(x)g(x)
> 10 (if g(a) #0)
» If f(x) is continuous at x = a and g(u) is continuous at
u = f(a), then the composition (g o )(x) (i.e. g(f(x))) is
also continuous at x = a.
Examples:

» cos(x) + 2x is continuous on R because both cos x and x are
continuous on R.

» sin(x3 + 1) is continuous at x = 0 because x> + 1 is
continuous at x = 0 and sin(u) is continuous at u = 1.
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(Lecture 7) Intermediate value theorem and extreme value

theorem
Intermediate value theorem (IVT):

Let f be a continuous function on [a, b].
For any real number L between f(a) and f(b)
(iie. f(a) <L < f(b)orf(b)<L<f(a)),
there exists ¢ € (a, b) such that f(c) = L.

Example: Show that f(x) = x” + x3 + 1 has a real root.
Solution: Note that f(—=1) = -1 <0and f(0)=1>0. As f is
continuous, by IVT, there exists ¢ € (—1,0) s.t. f(c) =0.

Extreme value theorem (EVT):

Let f be a continuous function on [a, b]. Then there exists
a, B € [a, b] such that f(a) < f(x) < f(B) for any x € [a, b]
(i.e. f has a global maximum and a global minimum in [a, b]).
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(Lecture 8) Derivatives

f is said to be differentiable at x = a if the following limit (called
the derivative of f at x = a) exists:

f'(a) = lim 7)[()() —f(a)

Another form:
f(a+ h)—f(a)

f'(a) = li
(a) hlno h
Remark: For piecewise functions, we need to check both
f(x)—f~ f(x)—f
lim 7()() (2) and lim (x) (2)
x—a~ X —a x—at X —a

Example of finding derivative by definition (i.e. first principle):
> If f(x) = x?, then

. f(x+h)—f(x)
Fi(x) = |
(x) h[PO h
2 2 2
i XA xE L 2xh bt
h—0 h h—0 h
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(Lecture 8-9) Derivatives of common functions

> (x") = nx"!
> (&) =
1
> (In
(inx) =~
> (sinx)’ = cosx
> (cosx) = —sinx
1
> (tan sec? X = ———
(tanx)' = ¥ T cos? x
» (c) =0 (where c is a constant)
» (sinh x)" = cosh x (where sinh x = %, coshx = H%)
» (coshx)" =sinhx
1
> (tanhx)’ = sech®x = 5
cosh” x
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(Lecture 8-9) Differentiation rules

If f and g are differentiable at a point, then the following functions
are also differentiable at that point:

> (f(x) £8(x)) = '(x) + &'(x)
» (cf(x)) = cf’(x) (where c is a constant)
» Product rule:

(fg)'(x) = f'(x)g(x) + f(x)g’'(x)
» Quotient rule:

2 = (if g(x) # 0)

Examples:
> (x3sinx) = (x3) sin x + x3(sin x)’ = 3x?sin x + x> cos x

p ([ sinx /_ (sin x)"(x®4+1)+(sin x)(x>+1)" __ (x?+1) cos x+2x sin x
x2+1) = (x2+1)2 - (x2+1)2
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(Lecture 8-9) Differentiation rules

Chain rule:
If f(x) is differentiable at x = a and g(v) is differentiable at
u = f(a), then (g o f) is differentiable at x = a and we have

(g0 f)(a) =g'(f(a))f"(a)

In other words, we have

d _dy du
dx  du dx
Examples:
> (sinx?) = W% (let u = x2) = (cos u)(2x) = 2x cos x>

> (esin x)/ —_ eSinXCOSX

A more complicated version: Q = Q @ ﬂ
P “dx  du dv dx
Example:
1
3V .3 2y _ 2 3
» (In(cos(x))) = i - (—=sin(x”)) - (3x%) = —3x“tanx

32/41



(Lecture 8-9) Continuity and differentiability

‘ If fis differentiable at x = a, then f is continuous at x = a

The converse is NOT true: if f is continuous at x = a, it may or
may not be differentiable at x = a

—x ifx<0
Example: f(x) = |x| = { « x>0

» f(x) is continuous on R (i.e. at every point x € R):
= )!ina(—x) =—a="f(a)
» Forany a>0, lim f(x) = lim x = a = f(a)
X—ra X—ra
» For a=0, we have lim f(x)= lim (—x)=0=f(0) and
x—0~ x—0~
lim f(x) = lim x =0 = f(0), and hence lim f(x) = f(0)
x—0+ x—0

> For any a <0, lim f(x)
X—ra

x—0F
» f(x) is not differentiable at x = 0:
f(h)—f(0 h|—0 h
Note that f/(0) = lim f(h) — £(0) = lim [hl -0 = lim Ll but
| ‘ h—0 h | ‘ h—0 h h—0 h
h h —h
lim — = lim —=1 li = lim —=-1
hsos b hsor h and hso- h hoor K
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Another example of continuous but not differentiable
functions

Fx) = Ix + 1] = |x[ + [x = 1]

—(x+1)—(—x)—(x—-1) =-x if x<—1

) (x+)—(—x)—(x—-1) =x+2 if —1<x<0
(x+1)—(x)—(x—=1) =-—x+2 fo<x<l
(x+1)—(x)+(x—1) =X if x>1

» f(x) is continuous on R
» f(x) is not differentiable at x = —1,0,1
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(Optional) Continuous but nowhere differentiable function

Weierstrass function (More details in MATH2050,/2060)
https://en.wikipedia.org/wiki/Weierstrass_function

» f(x) is continuous on R
» f(x) is not differentiable at any x € R
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https://en.wikipedia.org/wiki/Weierstrass_function

(Lecture 10-11) Implicit differentiation

Idea: Find y’ without having to explicitly write y = f(x).

Example: If xsiny + y? = x + 3y, find the slope of tangent at
(0,0).

(xsiny +y?) = (x+3y)’
(siny + x(cosy)y') +2yy" = 1+ 3y
(xcosy +2y —3)y' =1—siny
, 1—siny

xcosy +2y —3

1—sin0 1

0-cos0+2-0—-3 3

The slope of tangent at (0,0) is
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(Lecture 10-11) Logarithmic differentiation

Idea: Find the derivative of some complicated functions
using logarithms.

Example: If y = x*, find y'.

Iny = In(x¥)
(Iny) = (xInx)’
1

1
Yy =1-lnx+4+x-~
y X

Yy =y(lnx+1) =x*(Inx + 1)
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(Lecture 10-11) Derivatives of some other special functions

>

More general exponential function:
Let a > 0 and define a* = e¥"2. Then we have:
> Y = 3.3 forany x,y € R
-1
> fim 2
x—0 X
> (a¥) =a"Ina
!
Example: <2X2+°°5X> = <2X2+°°5X In 2) (2x — sinx)
Inverse functions:
If f(y) is a bijective and differentiable function with '(y) # 0
for any y, then the inverse function y = f~%(x) is
differentiable:

=Ina

1
—1y/ _
)= 771
Examples:
=1 I __ 1 —1 r_ 1 -1 ! 1
(sin""x) = Vi (cos™" x) = A (tan™" x) = 52



(Lecture 11-12) Higher order derivatives
> Second derivative:
d?y d (dy
"no__ gn ¢y _ 9 [%
y' =10 = dx?  dx (dx)
» n-th derivative:

dn d (d [(d d
(n) — gy = &Y _ B A
Y () dx"  dx <dx (dx < dx>)>

» 0-th derivative:

y @ = fO(x) = f(x)

Examples:
> (sinx?)" = ((sinx?)")" = ((cos x?)(2x))’
= (—sin x?)(2x)(2x) + 2 cos x> = —4x? sin x> + 2 cos x?

» Find y" if xy +siny = 1:

(xy +siny) =1 = (y+xy'+y'cosy)=0=y' = -y
X + cosy
o _Yxdcosy) —y(1—y'siny) 2y(x +cosy) + ysiny
Y= (x + cos y)? B (x + cosy)3
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(Lecture 11-12) Higher order differentiation rules

If f and g are n-times differentiable (i.e. f(") and g(" exist), then:

> (f+g)") = fln) 4 g(n)
> (cf)(" = cf(") (where c is a constant)
» Leibniz's rule (product rule for higher order derivatives):

n
() =3 (Z) Fn=) g )

k=0

|
where (n> - " is the binomial coefficient.
k (n—

k)!k!
Example: (x3sin x)(*)
=1-(3)"sinx+4-(x3)"(sinx) +6-(x3)"(sinx)" + 4(x3)'(sin x)"" +
1 x3(sinx)""
=0+ 24 cos x — 36xsin x — 12x% cos x + x> sin x
= (x3 — 36x) sin x + (24 — 12x?) cos x

40 /41



(Lecture 12-13) n-times differentiability and continuity

If fis n-times differentiable at x = a
(F(")(a) exists, i.e. £("=1) is differentiable at x = a),
then f("=1) is continuous at x = a.

f is n-times differentiable at x = a (i.e. f(")(a) exists)

3
f("=1(a) exists and ("~ is continuous at x = a
4
I
f'(a) exists and f’ is continuous at x = a
4

f is continuous at x = a

However, the converse is NOT true!
Example: Let f(x) = |x|x, then:

» f is differentiable at x =0

» f’is continuous at x =0

» but f’ is not differentiable at x =0 (i.e. f/(0) does not exist)
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